Journal Title
XX(X):1-19
©The Author(s) 2019

Reprints and permission:

HPC simulations of brownout: a
non-interacting particles dynamic model

sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Roberto Porcu!3, Edie Miglio!, Nicola Parolini!, Mattia Penati', and Noemi Vergopolan?

Abstract

Helicopters can experience brownout when flying close to a dusty surface. The uplifting of dust in
the air can remarkably restrict the pilot's visibility area. Consequently, a brownout can disorient the
pilot and lead to the helicopter collision against the ground. Given its risks, brownout has become
a high-priority problem for civil and military operations (Sabbagh 2006). Proper helicopter design
is thus critical, as it has a strong influence over the shape and density of the cloud of dust that
forms when brownout occurs. A way forward to improve aircraft design against brownout is the use of
particle simulations. For simulations to be accurate and comparable to the real phenomenon, billions
of particles are required. However, using a large number of particles, serial simulations can be slow
and too computationally expensive to be performed. In this work, we investigate an MPl + multi-
GPU approach to simulate brownout. In specific, we use a semi-implicit Euler method to consider the
particle dynamics in a Lagrangian way, and we adopt a precomputed aerodynamic field. Here, we do
not include particle-particle collisions in the model; this allows for independent trajectories and effective
model parallelization. To support our methodology, we provide a speedup analysis of the parallelization
concerning the serial and pure-MPI simulations. The results show (i) very high speedups of the MPI
+ multi-GPU implementation with respect to the serial and pure-MPI ones, (ii) excellent weak and
strong scalability properties of the implemented time integration algorithm, and (iii) the possibility to
run realistic simulations of brownout with billions of particles at a relatively small computational cost.
This work paves the way towards more realistic brownout simulations, and it highlights the potential

of HPC for aiding and advancing aircraft design for brownout mitigation.

Keywords
helicopter, brownout, particles dynamics, MPIl, CUDA, GPU, Tesla P100

IMOX-Department of Mathematics, Polytechnic University of Milan,
Italy
2CEE-Department of Civil and Environmental Engineering, Princeton

Introduction

In helicopter aviation, the term brownout refers
to the phenomenon generated by the rotor
downwash during landing or take-off on dusty

or sandy soils. Brownout restricts the pilot’s

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

University, Princeton, NJ
3CCSE-Center for Computational Sciences and Engineering,
Lawrence Berkeley National Laboratory, Berkeley, CA

Corresponding author:
Roberto Porcu, CCSE-Center for Computational Sciences and
Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA

Email: roberto.porcu@polimi.it

Journal Title XX(X)

visibility due to the uplifting of a cloud of dust

particles in the air, as exemplified by Figure 1.

(a) Eurocopter EC135 D-HZSG, Briiggemann (2012)

TR e

(b) Bell-Boeing V-22 Osprey, Williams (2010)

Figure 1. Helicopters experiencing brownout.

When brownout occurs, the pilot may
experience disorientation and loss of control.
This is a dangerous situation which may
lead the helicopter to crash to the ground,
e.g. see Vyrnwy-Jones (1988), Durnford et al.
(1995), and Braithwaite et al. (1997). Other
consequences of brownout are rotor blades
abrasion, damages to the components of the
rotor, and loss of power due to air filter
occlusion. Single-rotor helicopters are generally
severely affected by this problem but, as
pointed out in D’Andrea (2010),

rotor helicopters (as tandems and tiltrotors) the

for dual-

situation can be even worse.

Different factors may influence the occur-
rence and the intensity of brownout: rotor
blades rotation speed, rotor configuration, soil
moisture, soil particle sizes, land surface tex-
ture, weather conditions, and aircraft landing
angle. Landing site preparation, specific piloting

techniques, and helicopter aerodynamic design

Prepared using sagej.cls

are effective remedies to prevent or limit the
occurrence of this phenomenon (e.g., see Syal
et al. (2011) and Phillips et al. (2010)). How-
ever, site preparation preceding the landing is
only possible at specific sites, as base camps.
Otherwise, specific piloting techniques and air-
craft aerodynamic design are then essential in
cases of landing at unexpected locations and
during severe weather conditions. The design
of the rotor blades has a remarkable impact
on the shape and intensity of the rotor down-
wash (e.g., see Ghosh et al. (2010) and Phillips
et al. (2010)). Therefore, brownout simulations
are critical to (i) provide insights to wisely
improve the design of the fuselage and rotor
of a helicopter, and to (ii) be used for pilots
training purposes when embedded in rotorcraft
flight simulators, see for example Wachspress
et al. (2008), Duda et al. (2013) and Viertler
and Hajek (2015). A further remedy to over-
come visibility restriction during brownout is
represented by the 3D-LZ Helicopter LADAR
Imaging System (e.g. see Schuetz et al. (2010),
(2009) and Savage et al.

(2010)). It consists of a virtual image recon-

Szoboszlay et al.

struction solution that employs those waves of
the spectrum whose wavelength is of the order
of the millimeter. These waves can penetrate
typical visual obscurants. Overall, this approach
is not resolving problems of rotor abrasion and
air filter occlusion, which significantly increase

maintenance costs.

During the past few years, industries and
academies have been spending a lot of effort
to expand our knowledge on brownout and
fill up the critical lack of experimental data.
For example, Nathan and Green (2008, 2009),
and Doehler and Peinecke (2010) provide quan-
titative and qualitative results of a series of
brownout-like experiments to help the valida-

tion of numerical simulations. In Wong and

Porcu, Miglio, Parolini, Penati and Vergopolan

Tanner (2010), Tanner (2011), and Syal and
Leishman (2011) the authors present measure-
ments of the brownout cloud and flow data
for an EH-60L Black Hawk, obtained through
the photogrammetry technique. Wadcock et al.
(2008) analyze the characteristics of the rotor
wash for a UH-60 Blackhawk and an EH-101
Merlin presenting full-scale tests to be used
as validation for CFD simulations. The work
by Keller et al. (2006) presents a physics-
based aerodynamic analysis and prediction of
the rotor wash flow field near the ground. The
results provided by these authors can be used to
drive debris particles and reproduce brownout
in flight simulators.

Earlier numerical simulations of brownout
can be found in Wachspress et al. (2008),
D’Andrea (2009, 2010, 2011) and Gerlach
(2011). In the works by Phillips and Brown
(2008, 2009) and Phillips et al. (2010, 2011),
the authors demonstrate that the shape of
the cloud of dust is mainly affected by the
entire helicopter and not only by the rotor
configuration. In Tritschler et al. (2014) the
authors describe how flight path optimization
can mitigate rotorcraft brownout. Phillips and
Brown (2009) and Syal and Leishman (2013)
include the modeling of dust particles saltation
from the ground into rotorcraft brownout
problems. The uplift of dust particles lying
on the ground is due to the bombardment by
previously suspended particles in the flow. The
authors show how bombardment can play a
critical role in the rapid development of intense
dust clouds.

In Hu et al. (2011), Govindarajan (2011)
and Govindarajan et al. (2013), the authors
discuss different particle-clustering algorithms,
such as the fast multipole method, the Gaussian
method,

method, which can reduce the computational

the k-means, and the Osiptsov’s

Prepared using sagej.cls

cost per time step in brownout simulations.
Although these algorithms allow a significant
reduction of the time required by brownout
they

are problem dependent and have limited

simulations for particular conditions,

applicability. In terms of particle-particle
interactions, Syal (2012) and Thomas (2013)
found that, during a brownout, the motion of
particles does not influence the aerodynamic
field if the particle concentration is not high

enough.

In this paper, we introduce an algorithm that
uses MPI + multi-GPU to simulate particle
dynamics in the context of brownout simula-
tions for HPC. In specific, the algorithm uses
a semi-implicit Euler scheme to consider par-
ticle dynamics in a Lagrangian way. In this
study, we account for different amounts, sizes,
and densities of the particles. We test the
simulations using (i) an analytical and (ii) a
precomputed aerodynamic field. For the ana-
lytical field, we compute a high-order solution
employing the Richardson extrapolation. The
precomputed field is an input data provided
by previous CFD simulations. In our work,
similar to what is proposed by Syal (2012) and
Thomas (2013), particle-particle collisions are
not included. Also, a benchmark comparison
of the simulation performance concerning pure-
MPI implementation is presented. The numeri-
cal results of this study focus on (i) the speedup
obtained through HPC techniques, and on (ii)
the scalability with the increasing number of
particles. The overarching objective of this
study is to develop a robust and efficient parallel
computation of brownout that we will use as
the basis for subsequent model development.
Although preliminary, the initial results show
the potential of HPC for accurate and efficient

particle tracking simulations applications.

Journal Title XX(X)

The paper is organized as follows: in
Section “Mathematical and numerical model”,
we describe the equations of motion of the
system of particles and the time-integration
algorithm we adopt for the simulations of
the brownout phenomenon. In Section “HPC
implementation”, we provide a brief digression
on the parallelization of the numerical method
we employ. Finally, in Section “Numerical
results”, we present the outcomes and speedup
comparisons for the brownout simulations using
the analytical and precomputed aerodynamic
fields, as well as a performance comparison

against pure-MPI implementation.

Mathematical and numerical model

In this work, the brownout phenomenon is
simulated in a Lagrangian way, following the
motion of the particles. The adopted time-
integration scheme is the semi-implicit Euler
method, which is a first-order symplectic
integrator capable of preserving the total
energy, then reducing the numerical dissipation.
For higher-order methods that can be applied
to particle mechanics and brownout problems,
e.g.,
integrators, we refer to Porcu (2013) and Miglio
et al. (2018).

The dynamics of each particle p are governed

Stormer-Verlet or spectral variational

by the second Newton’s law F, = m,a,, where

a,, is the acceleration and F,, is the forcing term,

defined as (e.g. see Jasion (2013)):
F,=F)+FS+F) +F) +F)

(1)

where

2

1 md

D __ p
F, = S Pair |Vrel,p‘ Vrel _Cd,p

P 2 Y 4 (2)

is the Stokes drag force (e.g. see Hoerner

(1965)) and FS =m,g is the gravity force.

Prepared using sagej.cls

The additional terms Fg , Fﬁ/f and Ff are the

Saffman, Magnus and Basset forces respectively.

In equation (2) the quantity

(3)

Vrelyp = Vp — Vair (Xp>

represents the relative velocity of the particle
with respect to the air at the position x,; g is
the gravitational acceleration; m, and d, denote
respectively the mass and the diameter of the
particle; pgir is the density of the air, assumed
uniform. The drag coefficient Cy,, is inversely
proportional to the Reynolds number Re, of the
particle, as follows (e.g. see Johson (2016)):
24 Pair [Veelp| dp

Cd’p = _R s Rep = —. s
€p Hair

(4)

where f1,4;- denotes the dynamic viscosity of the

air, assumed uniform.

The role of the additional terms Fg, Fé‘/[and
Ff is discussed, for example, in Jasion (2013)
and Johson (2016). In particular, the Saffman
force acts on particles moving in shear flows,
and it is negligible when the Reynolds number
of the particles is small. Also, the contribution
of Magnus force, which is a lift force related
to rotating particles in fluids, can be neglected
for particles of small sizes. Finally, the Basset
force depends on the relative acceleration of the
particles with respect to the surrounding fluid.
It may be neglected when the fluid/particle

density ratio is small.

On the basis of these considerations the

forcing term (1) can be simplified as:

()

Fp = 37po,uairvrel,p + myg,

where the additional terms FJ, F)'. and
Ff have been mneglected according to the

consideration previously done. This approach

Porcu, Miglio, Parolini, Penati and Vergopolan

is consistent with the brownout simulation
literature (see Syal (2012) and Thomas (2013)).
According to the semi-implicit Euler scheme,

at each time step the new position x**+!

» and

velocity V’;“ are computed as follows:

k41 _ ok Lokt
x, =%, + At v

(6)

k+l _ ok _ k ook
v = v+ At ay(x), vy),

where, according to (5), it is assumed:

a,(xk, vy = 1820 (v’; — vair(x’;)) +g (7)
Ppdy

and At = t**1 — ¥ is the timestep, assumed
constant. Since we consider the particles to
have a spherical shape, the mass relation m, =
smd3p, is used in (7). The numerical scheme (6)
is semi-implicit, then the fulfillment of the
stability condition is required.

The mathematical model and the algorithm
adopted for this work have specific characteris-

tics which provide the following advantages:

o the Lagrangian tracking of every single
particle allows obtaining very accurate

solutions;

e the small number of unknowns and
variables allows simulating large numbers
of particles, improving the reliability of

the results;

o the algorithm has excellent scalability
properties. This ensures lower computa-
tional cost when more hardware resources

are available.

Besides, the small timestep size adopted in
the semi-implicit FEuler scheme can be highly
relevant for further model development, such as

the inclusion of particle-particle collisions.

Prepared using sagej.cls

HPC implementation

GPUs (Graphic Processor Units) are highly
parallel, multi-threaded, many-core processors
with huge computational capabilities and high
memory bandwidth. We decide to exploit their
potential for brownout simulations because they
are designed to be extremely efficient for SIMD
(single instruction multiple data) problems. In
this work, as we do not consider particle-particle
collisions, the trajectories of the particles are all
independent of each other. For this reason, it is
convenient to subdivide the number of particles
uniformly among the MPI tasks. Each task then
equally distributes the computational load. For
instance, the number of particles is evenly
distributed among the available GPUs, and
then almost identical operations are repeated
on each particle at every timestep.

Within this setup, GPU routines — called
kernels — are invoked by the host (a thread
on the CPU) and run on the device (the
GPU). After a kernel has been invoked, the
CUDA (Compute Unified Device Architecture)
runtime system creates a grid of many parallel
threads residing on the device. Each thread
executes the entire kernel.

During the execution, CUDA threads can
access different memory spaces. In general,
GPU-parallel applications mostly access the

following GPU memory spaces:

o registers: small and fast-access local

memory which is private to each thread;

o shared memory: small and fast-access
local memory, shared among all the
threads of the same block. It has the same
lifetime as the block;

o global memory: large slow-access global

memory which is visible to all the threads

Journal Title XX(X)

and is persistent across kernel launches by

the same application.

GPUs are designed to have an array of
Streaming Multiprocessors (SM), which can be
assigned several blocks of threads. The thread
blocks run independently from each other. Each
block can be assigned to any of the available
multiprocessors in any order, concurrently or
thread blocks can be

executed in different ways across any number

sequentially. Hence,
of cores (automatic scalability).

In this work, we analyze both the strong and
weak scalability properties of our paralleliza-
tion. For the strong scalability analysis, the
problem size is kept fixed, and the number of
parallel processors is varied to study the change
in the solution time. In the weak scalability
analysis, the computational load per processor
is kept constant as the number of processors
varies to determine the difference in the solution
time.

For further details on GPU and CUDA
programming we refer to Kirk and Wen-mei
(2012), Sanders and Kandrot (2010), Ruetsch
and Fatica (2013) and to manuals NVIDIA
(b), PGI (2019).

Code organization and data structures

The flowchart of the proposed method is
illustrated in Figure 2. For realistic simulations
of brownout, we employ a precomputed
aerodynamic field, which 1is representative
of the rotor downwash. This data contains
information about the vectorial velocity of
the air around the helicopter at several,
equispaced, time instants. It is computed on
a structured grid, equispaced on each direction
and stored into files, one for each time instant.
In our realistic brownout simulations, this

precomputed aerodynamic data is used as a

Prepared using sagej.cls

INPUT OF
PARAMETERS

SETUP INITIAL
CONDITIONS

1 =t 4+ At

IS IT TIME
TO UPDATE ™JES READ
AERODYNAMIC AER%E;\:.ﬁAMlc
DATA?
NO
UPDATE KINEMATIC
AND DYNAMIC
QUANTITIES
1% step: compute PREPROCESS
vhiand Cf, =— AERODYNAMIC
2" step: compute UL
vyt and xpt!
3 step: check
admissibility

IS IT TIME
TO UPDATE
DENSITIES?

UPDATE PARTICLES

DENSITIES IN EACH

CELL OF THE GRID
T

YES

NEXT TIME
ITERATION
k =k+1

noy

{;E_END_M_’\}

Figure 2. Flowchart of the program to simulate the brownout
phenomenon.

given input known at fixed time instants and
evenly staggered points in space. These points
constitute the vertices of the aerodynamic

computational grid.

To optimize efficiency and memory usage,
we keep only positions, velocities, and densities
of the particles stored in the GPU global
memory. Also, we store the “old” and “new”
space-averaged aerodynamic field data. At each
time iteration, each thread can compute and
temporarily store all the other needed kinematic
and dynamic variables on its registers. Because
of the mutual independence of the trajectories
of the particles, no communication is necessary
during the kinematic update, so each GPU

works only on its variables. The adopted data

Porcu, Miglio, Parolini, Penati and Vergopolan

layout is a standard struct of arrays. We allocate
one struct for each GPU, and each struct
contains six monodimensional arrays having the
size of the number of particles managed by
the corresponding GPU. Three arrays are for
the particles coordinates X, = (24 p, Typ, Tsp)
and three for the velocities v, = (Vg p, Uy p, V2 p)-
Each struct also contains seven tridimensional
arrays. One array is used to compute and
store the spatial densities of particles in the
computational grid, and it has the dimensions
of the entire grid. The remaining six arrays
contain the three components of the space-
averaged air velocity Vair = (Vg air, Uy airs Uz air)
defined on the whole aerodynamic grid, read
from input files. Three of them correspond to
the “old” time instant ¢*, and the remaining to
the “new” time instant t**!. The data layout
for the positions, velocities, and densities of
the particles is standard. For what concerns
the space-averaged aerodynamics field, we do
not divide the workload among the MPI
tasks or GPUs, but we require each GPU
to compute and store the whole aerodynamic
data.

that it allows us to avoid host-devices and

The advantage of this approach is

task-task communication, and it exploits the
excellent performance of a GPU when a SIMD
computation is required. Finally, we would like
to point out that we adopt double-precision
floating-point numbers for all the real-valued
variables, both on the CPU and GPU.

Initial conditions

The computational domain is a rectangular

cuboid with dimensions

[—L,L] x [-L, L] x [0, L], (8)

where L is chosen in order to make it as big as

the aerodynamic field domain.

Prepared using sagej.cls

At

uniformly or randomly distributed inside a

initial time ¢ =0, particles can be

horizontal and narrow box of dimensions
[—L, L] x [-L, L] x [10mm, 25 mm].

This setting is adopted since our mathematical
model does not consider saltation of particles
from the ground. Then we initialize particles
positions as they are already suspended in the
air.

During the simulation, when a particle goes
out of the computational domain, its kinematic
quantities (7.e. positions and velocities) are

reset to the corresponding initial conditions.

Aerodynamic data

The aerodynamic field interacts with the
particles through the drag force FI’? , defined
in (2). In this study, we use (i) an analytical
and (ii) a precomputed and more realistic
aerodynamic field.

For the analytical approach we consider a
solenoidal field defined in cylindrical coordi-

nates, as follows:

[0Y(p.2)]
Vp,air 0z
Vair = Vo, air = 0) (9)
Uz,ai’r aw<p7 ’Z)
. Op
where

»(p, z) = Asin (%) sin (%)
is a potential field with multiplicative factor A
and characteristic length L. Since vy is always
zero and the other two components of the
velocity don’t depend on the angular coordinate
0, the above aerodynamic field has a cylindrical
symmetry along the z direction and it can be

naturally assumed as bidimensional.

Journal Title XX(X)

The precomputed and more realistic aerody-
namic field was determined before the brownout
simulation. The data relative to this field is
stored into files, each corresponding to a fixed
time instant multiple of the timestep adopted
in the problem. When the time reaches one of
these instants, the corresponding aerodynamic
data is read. The air velocity is evaluated at
the vertices of the aerodynamic grid, which is

common to all the files.

To define the pointwise value of the air
velocity v, inside each cell, we preprocess
the aerodynamic information immediately after
reading the data file.

GPU parallelly computes the component-wise

In particular, each
average of the air velocities at the eight vertices

of each cell of the whole aerodynamic domain.

During each time interval I := [t", " "], we
keep on the GPU global memory both the
old (t") and new (t"*!) space-averaged air
velocities. Given the current time t* € I™, we
compute the relative velocity (3) at time t*
through a linear interpolation over the time

interval:

erl,p p air (Xglj)v (10)

k (ch) — v (Xk) +wn+lvn+1(xk)7

air

Time integration

At each timestep, the update of the kinematic
and dynamic quantities is organized as follows,

as illustrated in Figure 2:

Prepared using sagej.cls

. 1st
(i.e. at tF) relative velocities and drag
coefficients as defined in (10) and (4);

step : computation of the “old”

« 2" step : computation of the “new” (i.e.
at tf+1) velocities and positions according
to (6);

. 37 check of the admissibility

of the updated positions and reset to

step :

the initial conditions for those particles
whose new coordinates exceed the domain

boundaries.

The update of the relative velocities of the
particles depends on the information of the
averaged air velocity at each particle position.
Due to the turbulent nature of the aerodynamic
field, particles having consecutive indices in the
data structure are likely to have coordinates
that are far away from each other in space.
Hence, there is a high chance for consecutive
threads to access the aerodynamic data array at
not consecutive but spread addresses, resulting
in GPU global memory uncoalesced accesses
problems. This issue can’t be solved by loading
the aerodynamic data into thread-local memory
spaces, like registers or shared memory, because
it is needed in its whole, and it exceeds
Neither the texture

memory can be beneficial to solve this problem

the available resources.

because texture memory is helpful only when
the accesses are clustered. We refer to NVIDIA
(b) for further details about these topics.
Nevertheless, to investigate potential in-
put/output implication in our implementation
efficiency, we profiled the simulations using both
the analytical and the realistic test cases. The
operation-wise results are synthesized in Ta-
ble 1. We observe an averaged timing of
443.01ps for the analytical field simulation,
while 500.88 us for the realistic field one. The

Porcu, Miglio, Parolini, Penati and Vergopolan

Table 1. Averaged computational times by operation using 1
GPU to simulate 6.144 x 10° particles.

kernel 1D operation
1 set initial conditions of the particles
2 compute densities of the particles
3 time integration algorithm
4 compute space-averaged air velocities
Simulations with analytical field
kernel | registers shared avg. total
ID nb. mem time %
1 24 0B 91.402 s 0%
2 22 0B 237.90ps | 0.18%
3 72 0B 443.01ps | 95.94%
Copy HtoD: 13.733MB, 3.32 GB/s | 7.54ms | 3.86%
Simulations with realistic field
kernel | registers shared avg. total
ID nb. mem time %
1 24 0B 91.23 s 0%
2 22 0B 141.09ps | 0.12%
3 78 0B 500.88 s | 96.71%
4 32 0B 65.89 s 0.03%
Copy HtoD: 13.733MB, 32 GB/s | 4.072ms | 2.39%
Copy DtoH: 11.908MB, 11.16 GB/s | 153 ms 0.7%

timings show that there is not a significant
difference in the performance of the time inte-
gration algorithm using the analytical or pre-
computed fields. We consider this is related to
the improvements provided by the most recent

GPU hardware architectures.

Densities of particles

The spatial distribution of particles and their
densities throughout the computational domain
provides us with important information about
the visibility conditions around the helicopter.
This information can be used, for instance,
for image rendering purposes when brownout
restricted visibility condition is represented in
rotorcraft flight simulators (e.g., see Wachspress
et al. (2008)).

We consider the same grid adopted for the
aerodynamic field data. On this grid, when
the simulation time has reached an integer
multiple of a custom time interval (that we set
equal to 5 x 1072s), we update the densities
of the particles. For each cell of this grid,
each GPU computes the density over the cell

volume of the particles it is managing. At the

Prepared using sagej.cls

end of the kernel, we synchronize host and
device, and we copy the computed densities
on the host memory. Finally, an MPI sum
reduction is performed by the master task
when each task has gathered all the densities
calculated by the GPUs it is managing. Each
particle atomically contributes to the total
density of its corresponding cell. To perform this
computation in parallel on the GPU, we employ
the API AtomicAdd, which allows achieving
mutual exclusion mechanisms that prevent race
conditions. Atomic functions work both on
global and shared memory. In the latter case,
the performance is higher since accesses must
be mutually exclusive only for threads of the

same block.

Numerical results

In this section, the results obtained with two
different aerodynamic fields are analyzed. We
run the MPI + multi-GPU parallel simulations
on a Dell Linux Cluster made of 80 nodes
equipped with 2.4GHz Xeon Broadwell E5-2680
v4 CPUs. Each node has 28 cores, 720 GB
RAM, Omnipath interconnection. Each node is
also equipped with 4 NVIDIA Tesla 1328 MHz
P100, interconnected through Omnipath with a
dedicated 16 GB RAM per GPU. We employ
the CUDA 10.1 library extensions for Fortran
90 provided by the PGI compiler v19.5. We run
the serial and MPI-parallel simulations on an
HPE Linux Cluster made of 408 nodes inter-
connected through Omnipath and equipped
with 2.4 GHz Skylake processors. Each node has
40 cores and 192 GB RAM.

In the first case, we consider an analytical
solenoidal flow field, as previously described
in section “Aerodynamic data”. This does
not give significant results from the point of

view of the brownout phenomenon, but it is

10

Journal Title XX(X)

still useful to investigate the performance of
the parallelization without overheads due to
readings of the files of the aerodynamic field.

In the second case, a realistic flow field
obtained from a previous CFD simulation
consistent with the brownout problem is
considered. In this case, the interest focuses not
only on the performance gain achieved through
the parallelization but also on the accuracy of
the numerical solution.

In both cases we assume that the total
number of particles is equally subdivided into

three groups of different diameters (d,):

o “Small” particles with d, = 5 pm;
o “Medium” particles with d, = 10 pm;
o “Large”particles with d, = 15 pm.

We assume the dynamic viscosity of the
air /4, uniform and equal to 1.78 x 1075 Pas.
Consequently, the timestep At must be less
than or equal to 2x107*s to guarantee
numerical stability of the semi-implicit Euler
(6). For

each simulation, we consider a computational

time-integration scheme adopted
domain of the type described by (8) with a
characteristic length L equal to 7.5m, and we
set the final time instant equal to 50s.

To evaluate the efficiency and performance of
the proposed algorithm, we perform a speedup
analysis in relative and absolute terms. Let
us consider a number n = 2P, where p is an
integer greater or equal than 1. We compute
the “relative” speedup as the ratio of the
computational cost between simulations with
n/2 and n GPUs or MPI parallel tasks. We
define the speedup to be “absolute” when it
represents the ratio of the computational cost
between simulations with 1 and n GPUs or MPI
parallel tasks. The latter can be obtained by
multiplying all the preceding relative speedups.

In the following subsections, we summarize

Prepared using sagej.cls

this analysis in several tables, where we report
both the relative and absolute speedups. In
this way, the reader has an immediate and
exhaustive understanding of the performance of
the parallelization when different configurations
are adopted.

In the subsequent, we discuss the simulations
and performance results for both the analytical
and realistic aerodynamic fields. The timings
presented in the corresponding tables and
figures refer to the elapsed time spent for the
actual computation, MPI communication, and
input of the aerodynamic data (the latter only
for simulations with the realistic aerodynamic
field). An analysis of the computational cost
with profiling tools shows that the time spent

in input and MPI operations is marginal.

Analytical aerodynamic field

The
defined by (9), is illustrated in Figure 3. In

the tests using the analytical field we set the
1

solenoidal analytical field, previously

multiplicative factor A equal to 40m?s~! and
the characteristic length L equal to 7.5 m, which
is coincident with the size of the computational
domain. In specific, Figure 3 illustrates
respectively a tridimensional and bidimensional
vectorial plots of the aerodynamic flow velocity
field.

Based on the total number of particles, we
compare the performance of the simulations
using five different configurations N;, where
N; is equal to 27'x 6.144 x 10° with 7 €
{1,...,5}. Figure 4 illustrates the positions of
the particles in the case of the first configuration
N, at time 12.5s.

One

configuration N; requires about eight days

run of the serial program with

and sixteen hours to be completed. The
for the GPU-parallel

simulations with one, two, four, eight, and

computational times

Porcu, Miglio, Parolini, Penati and Vergopolan

11

Velocity magnitude [m/s]

M’|h|mmMmmH|mmm|HmmMmmuhuuM
.5 6 7.5 9 10 12 14

4.1e-3 1.5 3 4 15 16.76

(b) Slice along a vertical plane passing through the origin.

Figure 3. lllustrations of the analytical air velocity.

Particle type

1 1
Small Medium Large

Figure 4. Positions of the particles for a simulation with
6.144 x 10° particles and the analytical aerodynamic field, at
time t = 12.5s.

sixteen GPUs in Table 2.

Comparing the serial and the parallel runs in

are reported

the case of the first configuration /Ny, we observe

Prepared using sagej.cls

that the smallest speedup provided by the
parallelization (corresponding to the simulation
with one GPU) is about 2200X.

For
and sixteen GPUs,
linearly. This

simulations with two, four, eight,
the speedup increases
the

weak and strong scalability properties of

demonstrates excellent
the proposed implementation. The simulation
timings in Table 2 clearly show that for any
configuration N; the speedup obtained doubling
the number of GPUs is always close to the
theoretical limit of 2X. This result proves
the good strong scalability properties of the
GPU parallelization, as illustrated in Figure 5.
Observing Figure 6, we can also deduce
good weak scalability properties. Indeed, the
execution time does not change significantly
when the number of particles per GPU is kept

constant.

Computational time [s]
g,
///ZZ

101 L L
10° 10'
Number of GPUs

Figure 5. Strong scalability analysis for the simulations with
the analytical aerodynamic field.

Realistic aerodynamic field

We run the program adopting a realistic aero-
dynamic field that was previously computed
through CFD simulations. Our goal is to
test the parallelization performance on a real
brownout-like problem and to investigate the
accuracy of the implemented numerical method.

Similar to the analytical aerodynamic field case,

12

Journal Title XX(X)

_Q_NP|
_Q_NP2
—e—NP,

_ —e—NP,

2403 NP, |1

2 o :

o—

s N

=

=] o0——

©

=]

a

£ o___e___——e————o

S

[&]

102k o_’_e/o |

100 10'
Number of GPUs

Figure 6. Weak scalability analysis for the simulations with
the analytical aerodynamic field. For each line in the plot, the
number of particles per GPU is kept constant and is equal to
NP; = 271 x 6.144 x 10° with 5 € {1,...,5}.

we consider five different configurations with a
total number of particles N; respectively equal
to 2071 x 6.144 x 10 with 7 € {1,...,5}.

We firstly run the code in serial (one
MPI-task) and in parallel with pure MPI,
successively increasing the number of MPI-
tasks. In these simulations, we consider the first
configuration N; and we set the number of
particles equal to 6.144 x 10°. The results are
reported in Table 3. Figure 7 illustrates the
positions of the particles at three different time
instants. We observe good properties of strong

scalability, as illustrated in Figure 8.

We run the GPU-parallel simulations to as-
sess the performance improvement that can be
gained through the proposed implementation.
The timings relative to these simulations are
reported in Table 4. Observing Figure 9, we can
confirm that, even with a realistic aerodynamic
field, the excellent strong scalability properties
are preserved. The same conclusions hold for the
weak scalability properties, as clearly illustrated

in Figure 10.

Overall, considering the first configuration
N, with 6.144 x 10° particles, we observe that
the serial implementation takes about nine

days and eleven hours to complete. The same

Prepared using sagej.cls

Table 2. Computational times and speedup comparison for
simulations with the analytical aerodynamic field. Different
numbers of particles and GPUs have been adopted.

6.144 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 0:05:39
2 0:02:58 1.90X 1.90X
4 0:01:33 1.91X 3.65X
8 0:0:49 1.90X 6.92X
16 0:0:26 1.89X 13.04X
12.288 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 0:11:46
2 0:06:05 1.93X 1.93X
4 0:03:13 1.90X 3.66X
8 0:01:42 1.89X 6.93X
16 0:00:55 1.86X 12.84X
24.576 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 0:24:05
2 0:12:32 1.92X 1.92X
4 0:06:40 1.88X 3.61X
8 0:03:31 1.90X 6.85X
16 0:01:53 1.87X 12.79X
49.152 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 0:48:23
2 0:25:05 1.93X 1.93X
4 0:13:12 1.90X 3.67X
8 0:07:01 1.88X 6.90X
16 0:03:42 1.90X 13.08X
98.304 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 1:35:16
2 0:49:37 1.92X 1.92X
4 0:26:05 1.90X 3.65X
8 0:13:37 1.92X 7.00X
16 0:07:16 1.87X 13.11X

configuration runs in parallel on one GPU in
about six minutes, which represents a speedup
equal to 2160X. A comparison of the timings
for this test between the pure MPI and hybrid
MPI + multi-GPU configurations is illustrated

in Figure 11. We observe that the simulation

Porcu, Miglio, Parolini, Penati and Vergopolan

13

Particle type

Lalrge

1
Small Medium

(a) Simulation time ¢t = 1s

(b) Simulation time ¢t = 25

(c) Simulation time t = 4s

Figure 7. Positions of the particles during the simulation with
the real aerodynamic field at three different time instants. The
total number of particles is 6.144 x 10°.

with 256 MPI-tasks is still almost two orders of
magnitude slower than the one with one single

GPU.

Prepared using sagej.cls

Table 3. Computational times and speedup comparison for
serial and pure-MPI parallel simulations with the realistic
aerodynamic field.

6.144 x 10° particles
MPI timing speedup
tasks | (dd:hh:mm:ss) | relative | absolute
1 9:11:04:31
2 4:22:38:19 1.91X 1.91X
4 2:14:09:23 1.91X 3.65X
8 1:08:40:51 1.90X 6.95X
16 0:17:17:12 1.89X 13.14X
32 0:09:12:00 1.88X 24.68X
64 0:04:53:22 1.88X 46.44X
128 0:02:40:47 1.83X 84.74X
256 0:01:40:00 1.61X 136.25X
—e—N,

106,

Computational time [s]
= =
> 2

100 10 102
Number of MPI parallel tasks
Figure 8. Strong scalability analysis for the pure-MPI parallel

simulations with the realistic aerodynamic field and
6.144 x 10° particles.

104,

o
o

Computational time [s]
2
///ZZ

10 ' '
10° 10'
Number of GPUs

Figure 9. Strong scalability analysis for the simulations with
the realistic aerodynamic field.

The simulations can run on the available
hardware up to a limit of about 300 x 10°
particles per GPU. Simulations with a number
of particles close to that limit have been run

with one, two, four, eight, and sixteen GPUs,

14 Journal Title XX(X)
Table 4. Computational times and speedup comparison for
simulations that have been run with different numbers of

::E' particles and on 1, 2, 4, 8, and 16 GPUs. The realistic
_e_sz aerodynamic field has been adopted.
T 150 o | 6.144 x 10° particles
@ —0 NPy " A
£ nb. of timing speedup
g o5 o o o GPUs | (hh:mm:ss) | relative | absolute
*é o . A 1 0:06:18
8 2 0:03:25 1.84X 1.84X
o———
107] 4 0:01:53 1.81X 3.35X
8 0:01:02 1.82X 6.10X
‘ ‘ 16 0:00:34 1.82X 11.12X
10° 10
Number of GPUs 12.288 x 10° particles

Figure 10. Weak scalability analysis for the simulations with nb. of timing speedup

the realistic aerodynamic field. For each line in the plot, the GPUs (hh:mm:ss) relative | absolute

number of 1particles per GGPU is kept constant and is equal to 1 0:13:00

NP; = 27" x 6.144 x 10° with s € {1,...,5}. 5 0:06:54 1.88X 1.88X

4 0:03:51 1.80X 3.38X
- S 8 0:02:06 1.83X 6.19X
16 0:01:10 1.80X 11.14X
I MP! + multi-GPU
o] 24.576 x 10° particles
A nb. of timing speedup
s GPUs | (hh:mm:ss) | relative | absolute
'3%); . 1 0:25:36
g" 2 0:13:14 1.94X | 1.94X
102 4 0:06:53 1.92X 3.72X
8 0:03:38 1.89X 7.05X
10! 16 0:01:54 1.91X 13.47X
R R
'\§2m§\>$\%$\©§\w‘§\v§\%‘§26‘§\ Mt e e 49.152 x 10° particles
° ¢ nb. of timing speedup

Figure 11. Bar chart for the simulation N; with the realistic GPUs | (hh:mm:ss) | relative | absolute

aerodynamic field. The computational cost, expressed in time 1 0:51:21

required by the pure-MPI and MPI 4+ multi-GPU parallel Y-8

simulations, is compared. 2 0:26:23 1.95X 1.95X

4 0:13:41 1.93X 3.75X
8 0:07:09 1.91X 7.18X
. . . . 16 0:03:44 1.92X 13.75X
and the timings relative to their execution are -
reported in Table 5. Over the limit of about 98.'3(.)4 x 107 particles
nb. of timing speedup
300 x 10° particles per GPU, the maximum GPUs | (hh:mm:ss) | relative | absolute
amount of available memory is exceeded, 1 1:41:57
. . 2 0:51:51 1.97X 1.97X
and the execution fails. Hence, we need at 7 05639 105X 383X
least four GPUs to run a simulation with 3 0:13:54 1.02X 734X
more than one billion particles. In order to 16 0:07:18 1.90X | 13.97X

investigate and to have results about problems
with these characteristics, we run a simulation
with 1015.68 x 10°
configurations, one purely MPI-parallel with
2000 parallel tasks, and one multi-GPU parallel
with 1 CPU process distributing the work
to 4 GPUs. The timings requested by these

particles adopting two

Prepared using sagej.cls

simulations with the described configurations
are reported in Table 6.

Given that the particles in these simulations
are microscopic (hpm to 15um), one billion
particles comprise only a tiny fraction of the

domain. Therefore, more particles would be

Porcu, Miglio, Parolini, Penati and Vergopolan

15

necessary for a reliable representation of the
real phenomenon. For simulations considering
multi-billion particles, computational efficiency
is a must, and assumptions such as the
particle-particle collisions cannot be neglected
anymore as it becomes an inherent part of the

phenomena.

Table 5. Computational times for the realistic field and
comparison of the speedup obtained using 1, 2, 4, 8, and 16
GPUs. The number of simulated particles is close to the limit
fixed by memory resources.

288 x 10° particles
nb. of timing speedup
GPUs | (hh:mm:ss) | relative | absolute
1 4:41:00
2 2:26:31 1.92X 1.92X
4 1:19:03 1.85X 3.56X
8 0:41:49 1.89X 6.72X
16 0:22:18 1.88X 12.60X

Table 6. Computational times for the realistic field and
comparison of the speedup obtained using 4 GPUs or 2000
MPI tasks.

| 1015.68 x 10° particles
timing speedup
(dd:hh:mm:ss)
2000 MPI tasks 1:08:28:20
4 GPUs 0:04:20:14 7.49X

We also carry out a numerical assessment
of the convergence order for the implemented
method. In this experiment, we repeat the
simulation with 6.144 x 10° particles six times,
each iteration with a different timestep At; =
2271 % 107* s with i = {1,...,6}. We compute
the errors over the positions and the velocities
at time t = 0.45s with respect to the values of
the corresponding physical quantities provided
by the Richardson extrapolation. Figure 12
shows a loglog plot of the ¢*°-norm of the
error over the timestep. Since the semi-implicit
Euler numerical scheme used is a first-order
integrator, we observe that the performed
analysis is in agreement with the expected

order.

Prepared using sagej.cls

T
—&— Positions
—4A— Velocities

100 F

£ norm of the error

10°° 10
Timestep [s]

Figure 12. lllustration of ¢°°-norm of the error over the
timestep size.

Figure 13 describes the spatial distribution of
the error. In this figure, the particles are located
at their respective computed positions. As
expected, the error is higher for those particles
which have traveled longer in comparison to
those at the advancing front. The particles that,
during the computation, leave the domain at
least one time are not taken into account in
the shown results. Indeed, when a particle goes
out of the domain, its physical quantities are
reset at its corresponding initial condition, thus
resulting in a discontinuity on its trajectory.

Analyzing each type of particle, it is possible
to observe that the error is still decreasing with
the timestep, and the convergence orders are
always equal to 1, as observed in Figure 14. The
larger particles are affected by smaller errors,
either for their coordinates and velocities. This
can be related to the higher inertia of those
particles, which reduces the perturbations. We
do not believe the reason to be related to the
traveled distance, since the advancing front is
composed of the three types of particle, as

illustrated in Figure 15.

Conclusions

This study proposes an algorithm that uses

a semi-implicit FEuler scheme to simulate

16

Journal Title XX(X)

Position error module [m]

2.634e-07 g, T Ig.lﬂe_ |

J——

4e-6 5 l ll(‘)‘g(li!OZ!’: [I”(UU)‘OZl l HI;I).Olﬁ 0.13 2:458e-01

(c) Timestep At = 1.25 x 10 %s.

Figure 13. lllustration of the £°°-norm of the error of the
positions in a log scale.

the dynamics of particles in a Lagrangian
way. The proposed methodology is applied to
simulate brownout using an MPI + multi-
GPU approach. In terms of computational
performance, the proposed implementation
shows promising initial results, especially when
CUDA programming on graphics hardware is

used. Overall, our results show big speedup

Prepared using sagej.cls

—©&— Positions, Small
—©— Positions, Medium
0 —&— Positions, Large
107 F | —A— velocities, Small
—A— Velocities, Medium
—4—— Velocities, Large

£ norm of the error

10° 104
Timestep [s]

Figure 14, lllustration of the £°°-norm of the error for each
type of particle.

Particle type

I
Large

I
Small Medium

Figure 15. Distribution of the different types of particle at
time ¢t = 0.45s.

improvements when comparing the brownout
simulations using the GPU-parallel and the
serial implementation. For example, in the case
of a simple test with 6.144 x 10° particles, the
serial program runs for nine days and eleven
hours to complete fifty seconds of brownout
simulation. The same simulation runs in parallel
on a single GPU for six minutes, about 2160

times faster than the serial program.

In this paper, we also evaluate brownout
simulation’s performance considering different
numbers of particles and GPUs. From the
results, we observe excellent weak and strong
GPU-parallel

implementation. Also, we optimize the request

scalability properties of the

Porcu, Miglio, Parolini, Penati and Vergopolan

17

of GPU memory to increase the number
of particles that can be managed by any
single GPU. Within this setup, the largest
number of particles that can be simulated
is about 288 x 10° per GPU. Considering
this latter result and the excellent weak
the

proposed implementation shows to be capable

and strong scalability characteristics,

of simulating billions of particles in a relatively
This

demonstrated by simulating one billion particles

short amount of time. potential is

using four GPUs. The simulation is complete
and a half. The
if run with MPI
on 2000 parallel tasks. We conclude that

the GPU parallelization allows performing

after four hours same

test is 7.5 times slower

realistic brownout simulations in a reasonable
short

number of GPUs. The same performance on

computational time using a small
a multiprocessor environment can only be
achieved by employing tens of thousands of

threads.

In terms of numerical developments, semi-
implicit Euler integrators require a very small
timestep to guarantee numerical stability and
accuracy. This can be a favorable computational
these

naturally allows us to take

characteristic for simulations, as it
into account
particle-particle collisions, saltation of particles,
and the neglected forces (i.e. the Saffman,
Magnus, and Basset forces). To implement
these additional features, a path forward
would be to employ the framework provided
by the open-source library AMReX (Zhang
(2019)), which offers powerful functionalities
for particles handling. Specifically, AMReX
allows simulating a collection of particles in
a hybrid MPI + OpenMP + Multi-GPU
parallel environment. Particles are immersed in

a structured mesh which is distributed through

Prepared using sagej.cls

the different MPI parallel tasks. Fixing a cut-
off distance, which defines a “neighborhood” for
each particle, we can use AMReX’s routines
to fill “neighbor buffers” containing copies of
the neighboring ones. In this way, collisions and
short-range forces can be efficiently computed
looping only a few, closer particles.

However, it has been shown in Porcu (2013)
and Miglio et al. (2018) that implicit high-
order methods, such as spectral wvariational
integrators, can also be highly efficient, allowing
a larger timestep size to achieve the same
level of accuracy in comparison to lower
order methods. In this direction, for future
development, it would also be interesting to
investigate the implementation of high-order

time integrators in brownout simulations.

References

Braithwaite M, Groh S and Alvarez E (1997) Spatial
Disorientation in US Army Helicopter Accidents: An
Update of the 1987-92 Survey to Include 1993-95. Army
Aeromedical Research Lab, Fort Rucker, AL.

Briiggemann J (2012) Eurocopter ecl135 d-hzsg brownout.

wikimedia .

https : / / commons .

Eurocopter _ EC135 _ D-HZSG _ Brownout _ I _Br % C37%

org / wiki / File :

BCggemann. jpg.

Doehler HU and Peinecke N (2010) Image-based drift and
height estimation for helicopter landings in brownout.
In: International Conference Image Analysis and
Recognition. Springer, pp. 366-377.

Duda H, Advani SK and Potter M (2013) Design of the DLR
AVES research flight simulator. In: ATAA Modeling and
Simulation Technologies (MST) Conference, pp. 4737.

D’Andrea A (2009) Numerical analysis of unsteady vortical
flows generated by a rotorcraft operating on the ground:

In: 65th

Annual Forum of the American Helicopter Society,

Grapevine, TX. pp. 423-446.

The first assessment of helicopter brownout.

D’Andrea A (2010) Unsteady numerical simulations of
helicopters and tiltrotors operating in sandy-desert
environment. In: Proceedings of the American Helicopter
Society Specialist’s Conference on Aeromechanics. pp.

667-690.

https://commons.wikimedia.org/wiki/File:Eurocopter_EC135_D-HZSG_Brownout_I_Br%C3%BCggemann.jpg
https://commons.wikimedia.org/wiki/File:Eurocopter_EC135_D-HZSG_Brownout_I_Br%C3%BCggemann.jpg
https://commons.wikimedia.org/wiki/File:Eurocopter_EC135_D-HZSG_Brownout_I_Br%C3%BCggemann.jpg

18

Journal Title XX(X)

D’Andrea A (2011) Development and application of a
physics-based computational tool to simulate helicopter
brownout. In: 37th FEuropean Rotorcraft Forum
Proceedings, Gallarate (VA), Italy. pp. 903-916.

Durnford SJ, Crowley JS, Rosado NR, Harper J and
DeRoche S (1995) Spatial Disorientation: A Survey
of US Army Helicopter Accidents 1987-1992.

Aeromedical Research Lab, Fort Rucker, AL.

Army

Gerlach T (2011) Visualisation of the brownout phe-
nomenon, integration and test on a helicopter flight
simulator. The Aeronautical Journal 115(1163): 57-63.

Ghosh S, Lohry M and Rajagopalan R (2010) Rotor
configurational effect on rotorcraft brownout. In: 28th
ATAA Applied Aerodynamics Conference, pp. 4238.

Govindarajan BM (2011) Ewaluation of particle clustering
algorithms in the prediction of brownout dust clouds.
PhD Thesis, University of Maryland. https://drum.
1ib.umd.edu/handle/1903/11846.

Govindarajan B, Leishman JG and Gumerov NA (2013)
Particle-clustering algorithms for the prediction of
brownout dust clouds. AIAA journal 51(5): 1080-1094.
American Institute of Aeronautics and Astronautics.

Hoerner SF (1965) Fluid-dynamic drag: practical information
on aerodynamic drag and hydrodynamic resistance.

Hu Q, Syal M, Gumerov NA, Duraiswami R and Leishman
JG (2011) Toward improved aeromechanics simulations
using recent advancements in scientific computing.
In: Proceedings 67th Annual Forum of the American
Helicopter Society, Virginia Beach, VA. pp. 3-5.

Jasion G (2013) Toward a physics based entrainment model

PhD Thesis,
University of Southampton. https://eprints.soton.
ac.uk/355705/.

Johnson RW (2016), Handbook of fluid dynamics. CRC' Press

Keller JD, Whitehouse GR, Wachspress DA, Teske ME,
and Quackenbush TR (2006) A physics-based model of

rotorcraft brownout for flight simulation applications.

for simulation of helicopter brownout.

In: Annual forum proceedings 62(2): pp. 1098. American
Helicopter Society, Inc.
Kirk DB and Wen-mei WH (2012) Programming massively
parallel processors: a hands-on approach. Newnes.
Lohry MW, Ghosh S and Rajagopalan RG (2011)
Graphics hardware acceleration for rotorcraft brownout
20th AIAA Computational Fluid
Dynamics Conference. p. 3224.
Miglio E, Parolini N, Penati M and Porcu R (2018) High-

simulation. In:

order variational time integrators for particle dynamics.

Communications in Applied and Industrial Mathematics,

Prepared using sagej.cls

Sciendo 9(2): 34-49.

Nathan N and Green R (2008) Measurements of a rotor
flow in ground effect and visualization of the brown-out
phenomenon. In: 64th Annual Forum of the American
Helicopter Society, Montréal, Canada.

Nathan N and Green R (2009) Flow visualisation of the
helicopter brown-out phenomenon. Aeronautical Journal
113(1145): 467-478.

NVIDIA (b) CUDA C Programming Guide. http://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming _Guide.
pdf.

PGI (2019) PGI CUDA Fortran Programming Guide and
Reference. https://www.pgroup.com/resources/docs/
19.5/pdf/pgil9cudaforug.pdf.

Phillips C, Brown R and Kim HW (2011) Helicopter
brownout-can it be modelled? Aeronautical Journal
115(1164): 123-133.

Phillips C and Brown RE (2008) The effect of helicopter
configuration on the fluid dynamics of brownout. In:
84th European Rotorcraft Forum. pp. 2398-2426.

Phillips C and Brown RE (2009) Eulerian simulation of
the fluid dynamics of helicopter brownout.
Adrcraft 46(4): 1416-1429.

Phillips C, Kim HW and Brown RE (2010) The flow physics

Journal of

of helicopter brownout. 66th American Helicopter
Society Forum: Rising to New Heights in Vertical Lift
Technology

Porcu R (2013) Metodi numerici e tecniche di program-
mazione per l'accelerazione di un modello di dinamica di
particelle non interagenti. Master’s Thesis, Politecnico
di Milano.

Ruetsch G and Fatica M (2013) Cuda fortran for scientists
and engineers. FElsevier.

Sabbagh L (2006) Flying blind in iraq: Us helicopters
navigate real desert storms. Popular Mechanics 3.

Sanders J and Kandrot E (2010) CUDA by example:
an introduction to general-purpose GPU programming.
Addison-Wesley Professional.

Savage J, Harrington W, McKinley RA, Burns HN, Braddom
S and Szoboszlay Z (2009) 3D-LZ helicopter ladar
imaging system.

Applications XV 7684: pp. 768407. International Society

In: Laser Radar Technology and

for Optics and Photonics.

Schuetz CA, Stein Jr EL, Samluk J, Mackrides D,
Wilson Jp, Martin RD, Dillon TE, and Prather DW
(2009) Studies of millimeter-wave phenomenology for
helicopter brownout mitigation. In: Millimetre Wave and

Terahertz Sensors and Technology II 7485: pp. 74850F.

https://drum.lib.umd.edu/handle/1903/11846
https://drum.lib.umd.edu/handle/1903/11846
https://eprints.soton.ac.uk/355705/
https://eprints.soton.ac.uk/355705/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://www.pgroup.com/resources/docs/19.5/pdf/pgi19cudaforug.pdf
https://www.pgroup.com/resources/docs/19.5/pdf/pgi19cudaforug.pdf

Porcu, Miglio, Parolini, Penati and Vergopolan

19

International Society for Optics and Photonics.
Syal M (2012) Development of a Lagrangian-Lagrangian
PhD
Thesis, University of Maryland. http://drum.1lib.umd.
edu/handle/1903/13095.
M and Leishman JG

methodology to predict brownout dust clouds.

(2011)
Predicted Brownout Dust Clouds with Photogrammetry

Syal Comparisons of
Measurements. In: 67th Annual Forum of the American
Helicopter Society, Virginia Beach, VA.

Syal M and Leishman JG (2013) Modeling of bombardment
ejections in the rotorcraft brownout problem. AIAA
journal 51(4): 849-866. American Institute of Aeronau-
tics and Astronautics.

Syal M, Rauleder J, Tritschler J and Leishman JG (2011) On
the possibilities of brownout mitigation using a slotted-
tip rotor blade. In: 29th AIAA Applied Aerodynamics
Conference. pp.3183.

Szoboszlay ZP, Turpin TS and McKinley RA (2009)
Symbology for brown-out landings: the first simulation
for the 3D-LZ program. In: 65th Annual Forum of the
American Helicopter Society, Grapevine, TX.

Tanner PE (2011) Photogrammetric characterization of a
brownout cloud. In: 67th Annual Forum of the American
Helicopter Society, Virginia Beach, VA.

Thomas S (2013) A GPU-accelerated, hybrid FVM-RANS

PhD
Thesis, University of Maryland. http://drum.1lib.umd.
edu/handle/1903/14832.

Tritschler JK, Celi R and Leishman JG (2014) Methodology
for rotorcraft brownout mitigation through flight path

methodology for modeling rotorcraft brownout.

optimization. Journal of Guidance, Control, and
Dynamics 37(5): 1524-1538.

Viertler F and Hajek M (2015) Requirements and design
challenges in rotorcraft flight simulations for research
applications. In: AIAA Modeling and Simulation

Technologies Conference, pp. 1808.

(1988)
Incidents in US Army Helicopters, 1 January 1980-
30 April 1987. Army Aeromedical Research Lab, Fort
Rucker, AL.

Wachspress DA, Whitehouse GR, Keller JD, McClure
K, Gilmore P and Dorsett M (2008) Physics based

modeling of helicopter brownout for piloted simulation

Vyrnwy-Jones P Disorientation Accidents and

applications. Technical report, DTIC Document.
Wadcock AJ, Ewing LA, Solis E, Potsdam M and

Rajagopalan G (2008) Rotorcraft downwash flow field

study to understand the aerodynamics of helicopter

brownout. Technical report, DTIC Document.

Prepared using sagej.cls

Wong OD and Tanner (2010)

measurements of an EH-60L brownout cloud. In: 66th

PE Photogrammetric

Annual Forum of the American Helicopter Society,
Phoeniz, AZ.
Williams GSS (2010)

afghanistan. http : / / commons

Osprey takes on brown-out in

. wikimedia . org /
wiki/File:Flickr_-_DVIDSHUB_- _Osprey_Takes_on_
'Brown-0Out'_in_Afghanistan. jpg.

Zhang W, Almgren A, Beckner V, Bell J, Blaschke J, Chan
C, Day M, Friesen B, Gott K, Graves D, Katz MP,
Myers A, Nguyen T, Nonaka A, Rosso M, Williams S
and Zingale M (2019) AMReX: a framework for block-
structured adaptive mesh refinement. Journal of Open
Source Software, 4(37). https://escholarship. org/

uc/item/00j3z3rd

http://drum.lib.umd.edu/handle/1903/13095
http://drum.lib.umd.edu/handle/1903/13095
http://drum.lib.umd.edu/handle/1903/14832
http://drum.lib.umd.edu/handle/1903/14832
http://commons.wikimedia.org/wiki/File:Flickr_-_DVIDSHUB_-_Osprey_Takes_on_'Brown-Out'_in_Afghanistan.jpg
http://commons.wikimedia.org/wiki/File:Flickr_-_DVIDSHUB_-_Osprey_Takes_on_'Brown-Out'_in_Afghanistan.jpg
http://commons.wikimedia.org/wiki/File:Flickr_-_DVIDSHUB_-_Osprey_Takes_on_'Brown-Out'_in_Afghanistan.jpg
https://escholarship.org/uc/item/00j3z3rd
https://escholarship.org/uc/item/00j3z3rd

	Introduction
	Mathematical and numerical model
	HPC implementation
	Code organization and data structures
	Initial conditions
	Aerodynamic data
	Time integration
	Densities of particles

	Numerical results
	Analytical aerodynamic field
	Realistic aerodynamic field

	Conclusions

