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Abstract Aharonov–Berry superoscillations are band-limited sequences of functions 
that happen to oscillate asymptotically faster than their fastest Fourier component. 
In this paper we analyze in what sense functions in the Schwartz space S (R, C) or 
in some of its subspaces, tempered distributions or also ultra-distributions, could be 
approximated over compact sets or relatively compact open sets (depending on the 
context) by such superoscillating sequences. We also show how one can profit of the 
existence of such sequences in order to extrapolate band-limited signals with finite 
energy from a given segment of the real line.

Keywords Approximation by superoscillations · Schwartz space · Tempered 
distributions · Band-limited signals

Mathematics Subject Classification 32A15 · 32A10 · 47B38

1 Introduction

In a series of papers [1–3], Aharonov and his collaborators introduced the notion of 
weak measurements, based on the idea that one can pre- and post-select an ensemble 
of particles, and then calculate the so-called weak value of an observable. To be more
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specific, if |ψ f in > and |ψin > are the final and initial state of an ensemble of particles,
and if Â is the operator representing an observable, then the weak value of Â is defined
to be

Âw := 〈ψ f in| Â|ψin〉
〈ψ f in|ψin〉 .

It is clear that if |ψ f in > and |ψin > are almost orthogonal, then the weak value of
an operator can assume arbitrarily large values (this is dramatically demonstrated, for
example, in [3]). It is in this context that the notion of superoscillations arose in a nat-
ural way. According to Aharonov and Berry (who identified this same phenomenon in
more classical settings [13–17]), superoscillations are defined as band-limited func-
tions that can oscillate faster than their fastest Fourier component. It turns out that
there are many interesting questions regarding superoscillations, both from a mathe-
matical as well as from a physical point of view. In the last few years, these functions
have been given a rather thorough mathematical treatment, see [4,5,7–9,19] and the
monograph [10], with a particular focus on the longevity of the superoscillatory phe-
nomenon when such functions are evolved according to a wide class of differential
equations of physical interest (in particular the Schrödinger equation). For further
applications of superoscillations in physics see also [23,24,26–28]. For those who
have never encountered superoscillations before, we might mention that the classical
superoscillatory function that appears when considering weak measurements is of the
type

Fn(x, λ0) =
(
cos
( x

n

)
+ iλ0 sin

( x

n

))n =
n∑

k=0

Ck(n, λ0)e
i(1−2k/n)x

where λ0 > 1 and

Ck(n, λ0) =
(

n

k

)(
1 + λ0

2

)n−k (1 − λ0

2

)k

,

where
(n

k

)
denotes the binomial coefficient. If we fix x ∈ R and we let n go to infinity,

we obtain that

lim
n→+∞ Fn(x, λ0) = eiλ0x .

The so-called superoscillatory behavior occurs because the terms (1 − 2k/n) that
appear in the Fourier representation of Fn are bounded in modulus by one, but the
limit function x �→ eiλ0x oscillates with frequency λ0 arbitrarily large. In this paper
we will show that these functions can be utilized to approximate Schwartz functions
and tempered distributions, as well as to extrapolate band-limited functions, in novel
ways.



In the Banach space

(M2(R,C), ‖ f ‖erg)

:=
{

f ∈ L2
loc(R,C) : ‖ f ‖2erg := lim sup

T →+∞
(1/T )

∫ T/2
−T/2 | f (x)|2 dx < +∞}

{ f ∈ L2
loc(R,C) : ‖ f ‖2erg = 0} ,

harmonic characters x �→ eλ(x) = eiλx (namely homomorphisms from (R,+) to
(R/(2πZ),+)) span as a Hilbertian basis the non-separable Hilbert Besicovitch space
(B2(R,C), 〈 , 〉erg) of almost periodic functions (one could say also stationary signals
from the determinist point of view), where

〈 f1, f2〉erg := lim
T →+∞

1

T

∫ T/2

−T/2
f1(x) f2(x) dx .

Given f ∈ B2(R,C), we denote as �[ f ] := {λ ∈ R : 〈 f, eλ〉 	= 0} its spectrum
(which may be discrete as well as continuous). Elements in the subspace

T (R,C) := { f ∈ B2(R,C) : #(�[ f ]) < +∞}

will be called generalized trigonometric polynomial functions ; such functions extend
to C as entire functions belonging to the weighted algebra

A1(C) = Exp(C) := { f ∈ H(C) : |F(z)| = O(eB|z|) for some B ≥ 0} .

Any f ∈ B2(R,C) such that f (x + T0) = f (x) a.e on R for some T0 > 0 is such
that

�[ f ] ⊂ (2π/T0)Z and lim
n→+∞

∥∥∥ f −
n∑

k=−n

〈 f, e2πk/T0〉 e2πk/T0

∥∥∥
L2([x0,x0+T0])

= 0, ∀ x0 ∈ R,

the convergence of the sequence of trigonometric polynomial functions (so-called
f -Fejér partial sums)

(
n∑

k=−n

(1 − |k|/n) 〈 f, e2πk/T0〉 e2πk/T0

)

n≥1

(1)

towards f being uniform on any segment [a, b] ofR as soon as f admits a continuous
T0-periodic representative.

Definition 1.1 Given f ∈ B2(R,C), a sequence (Yn)n≥1 with entries in T (R,C) is
said to be f -superoscillating whenever there exists a frequential threshold λ f > 0,
together with a temporal segment K = [a, b] with strictly positive diameter, such that



• �[ f ] ∩ (R \ [−λ f , λ f ]) 	= ∅ ;
• �[Yn] ⊂ [−λ f , λ f ] for any n ∈ N

∗ ;
• f|K admits a continuous representant which is achieved as the uniform limit over

K of the sequence (Yn)n≥1.

The compact segment K is then called a superoscillation set for the f -superoscillating
sequence (Yn)n≥1.

Remark 1.2 Note that whenever f admits a T0-periodic continuous representant, the
sequence (1) of the f -Fejér partial sums fails of course to be a f -superoscillating
sequence since the spectrum of Yn equals �[ f ] ∩ [−2π(n − 1)/T0, 2π(n − 1)/T0]
for any n ∈ N

∗.

Remark 1.3 It is important to notice that whether Definition 1.1 is stated here with
respect to an almost-periodic function f in the Besicovitch space B2(R,C), it makes
sense as well when f is an element of L2(R,C). This will be important for us in
the sequel since we will deal with functions f ∈ L2(R,C) which therefore admit a
spectrum f̂ in the L2 sense (the spectrum �[ f ] being here defined as the complement
of the largest open set on which f̂ = 0 almost everywhere) but do not fit with the
frame of B2(R,C) since they are such that ‖ f ‖erg = 0.

Mathematically speaking, the evidence for the existence of f -superoscillating
sequences with arbitrary large superoscillation sets is provided (when f is an har-
monic character eλ0 , λ0 ∈ R

∗) by the following simple observation that we will use
extensively all through this paper. Suppose |λ0| > 1 (which is possible up to rescaling
eventually the real line). Since

eλ0(x) = ei λ0 x = lim
n→+∞

(
1 + λ0

i x

n

)n

∀ x ∈ R,

the convergence being uniform on any segment [−T, T ] ⊂ R and

∣∣∣ cos
( x

n

)
− 1
∣∣∣ ≤ T 2

2n2 ,

∣∣∣ sin
( x

n

)
− x

n

∣∣∣ ≤ T 3

6 n3 ∀ x ∈ [−T, T ]

thanks to Taylor–Lagrange inequality, one has also

eλ0(x) = lim
n→+∞

(
cos
( x

n

)
+ λ0 sin

( x

n

))n

= lim
n→+∞

(
n∑

k=0

(
n

k

)(1 + λ0

2

)n−k(1 − λ0

2

)k
e1−2k/n(x)

)
, (2)

the convergence being again uniform on any segment [−T, T ], such convergence in
x remaining uniform in λ0 provided λ0 ∈ [−�,�] (see [10], Chapter 3, Theorem
3.1.8 and Remark 3.1.15). Note that this still holds when x = z ∈ D(0, T ) ⊂ C



and λ0 keeps values in the closed disk D(0,�) ⊂ C. The sequence of generalized
trigonometric polynomials

(
Fn(x, λ0)

)
n≥1

=
(

n∑
k=0

(
n

k

)(1 + λ0

2

)n−k(1 − λ0

2

)k
e1−2k/n(x)

)

n≥1

is clearly an eλ0 -superoscillating sequence (with arbitrary large oscillation sets
[−T, T ]) since one has |1 − 2k/n| ≤ 1 < |a| for any 0 ≤ k ≤ n. Observe that
such construction relies deeply on the divisibility property of the abelian group R

and that the price to pay in order to realize such an eλ0 -superoscillating sequence
(Yλ0,n)n≥1 is that the (real) coefficients

〈
Yλ0,n, e1−2k/n

〉 = Ck(n, λ0) :=
(

n

k

)(1 + λ0

2

)n−k(1 − λ0

2

)k
(3)

form a sequence C(n, λ0) in �1(N) such that

lim
n→+∞ ‖C(n, λ0)‖1 = lim

n→+∞
( |1 + λ0| + |1 − λ0|

2

)n = +∞.

Up to now, the study of such concept of superoscillation over the group (R,+) from
the mathematical point of view focused on two aspects.

1. Show that the f -superoscillating behavior of a sequence (Yn)n≥1 persists
when (Yn)n≥1 and f are considered as initial values [ f (t, x)]t=0 = f (x),
[Yn(t, x)]t=0 = Yn(x) of a Cauchy problem

(
∂/∂t + Q(x, ∂/∂x)

)
[�](t, x) ≡ 0 (x ∈ R, t > 0) (4)

(mostly for fundamental differential operators in quantum physics such as the
Schrödinger operator ∂/∂t−i ∂2/∂x2 or the harmonic oscillator ∂/∂t−i

(
∂2/∂x2−

x2
)
/2, see [4,6–8,10]).

2. Generate new and more examples of f -superoscillating sequences for various
classes of complex functions f such as for example those represented as restrictions
to the real line of sums of generalized Dirichlet series (see [10], Sect. 4.3).

As it turns out, these two aspects complement each other: solving a Cauchy-type
problem such as (4) for a large class of differential equations (or even convolution
equations when Q happens to be a convolution operator) leads to the realization of
more general classes of f -superoscillating sequences for suitable functions f ; for
example, given p ∈ N

∗, those realized as

lim
n→+∞

(
n∑

k=0

C p,k(n, λ0) e(1−2k/n)p

)

for convenient coefficients C p,k(n, λ0) (n ∈ N
∗, k ∈ N).



Unfortunately, the Besicovitch space B2(R,C), which realizes indeed a mathe-
matical frame according the deterministic concept of stationarity, fails to integrate
fundamental classes of complex functions f that essentially vanish at infinity. Among
such classes, one of the most important ones is certainly the Schwartz space S (R,C),
since it contains in particular all Gabor atoms x �→ e−(x−x0)2/(2σ)eλ0(x) (x0, λ0 ∈ R,
σ > 0) as well as the modulated Gaussian chirps in which such Gabor atoms prop-
agate along the action of the Schrödinger operator, and also the Hermite functions
(hm)m≥0 which play (with respect to the uncertainty principle) the essential role of
being eigenvectors of the Fourier transform f �→ f̂ from L2(R,C) into itself. Since
the concept of f -superoscillating sequence appeals only (see Definition 1.1) to com-
pact subsets K = [a, b] of R as superoscillations sets (namely subsets of R where the
phenomenon of superoscillation concretely appears), it makes sense to speak about f -
superoscillation sequences when f ∈ S (R,C), more generally when f ∈ L2(R,C)

admits a continuous representative on the whole R, and ask then whether there is a
f -superoscillating sequence (Yn)n≥1 (depending only on f ) for which any segment
[−T, T ] is a superoscillation set. This is the question we address in Sect. 2. We will
give a positive answer to this question (Theorem 2.1). The result will remain valid for
a larger subclass of L2(R,C) whose elements admit a continuous representative f on
R such that f (x) tends uniformly towards 0 when |x | tends to +∞ (Theorem 2.4).

In Sect. 3, we will revisit the so-called Hermite spectral decomposition of L2(R,C)

along which elements inS (R,C) are developed in Sect. 2 (in order to be treated next)
from a different point of view : precisely that of the persistence of superoscillations
under the action of convolutor operators acting on weighted algebras of entire func-
tions. Under stronger conditions on f that just being in the Schwartz spaceS (R,C)

as in the previous section, one will be able to state a persistence result which tells that
the g-superoscillation phenomenon for a Gaussian g propagates precisely along the
Hermite spectral decomposition to a subclass ofS (R,C) that contains all Gaussians
(Theorem 3.3).

In Sect. 4, we will introduce the concept of T -superoscillating sequence when
T ∈ S ′(R,C) (Definition 4.1) and show that, according to this concept, any tem-
pered distribution T with support such that Supp T̂ ∩ (R \ [−1, 1]) 	= ∅ admits a
T -superoscillating subsequence for which any relatively compact open subset U can
be considered as a superoscillation set (Theorem 4.3).We introduce also in this section
Gevrey-type subclasses SGev of the Schwartz space which are essentially character-
ized by the ultra fast decrease of their coordinates along the orthonormal basis of
Hermite functions. When T is an ultra-distribution belonging to a convenient subclass
of S ′

Gev, one will exhibit (in a sense to be defined) T -superoscillating sequences.
In the final Sect. 5 of this paper, we exploit the existence of superoscillating-

sequences towards extrapolation problems for some extremely rigid class of functions
in L2(R,C). Any element in the C-vector space

BL2(R,C) :=
⋃
�>0

{
f ∈ L2(R,C) ; f̂ = 0 a.e. on R \ [−�,�]}

=
⋃
�>0

H� ⊂ L2(R,C)



of band-limited complex signals with finite energy admits a continuous representant
f : R → C that extends as an entire function which belongs to the weighted algebra
A1(C). So does any generalized trigonometric polynomial function Y , which on the
opposite fails to be in L2(R,C) but nevertheless keeps finite spectrum, hence can be
considered band-limited as well. The class BL2(R,C) stands then as a natural class
of functions f to which the concept of f -superoscillating sequence can be carried.
We will precisely profit from such a concept in Sect. 5 in order to extrapolate over
the whole real line the continuous representant f of an element in BL2(R,C) from
the values of this continuous representant taken over [−1, 1], even under the single
assumption that for example just the values of f over the grid of triadic points �/3 j ,
� = −3 j , . . . , 3 j , j ∈ N, are known with an arbitrary precision (Theorem 5.1).

2 Developments Along the Hermite’s Orthonormal Basis and
eλ-Superoscillations

Let (hm)m≥0 be the orthonormal basis of L2(R,C) defined by

hm(x) = (−1)m

π1/4 2m/2
√

m! ex2/2
( d

dx

)m[e−x2 ] ∀ m ∈ N.

Each such normalized Hermite function hm is related to the corresponding Hermite
polynomial (here in the sense of physicists)

Hm(X) := (−1)meX2
( d

d X

)m[e−X2 ] = m!
[m/2]∑
k=0

(−1)k

k! (m − 2k)! (2X)m−2k (m ∈ N)

(5)
through the relation

hm(x) = 1

π1/4 2m/2
√

m! e−x2/2 Hm(x) ∀ m ∈ N.

It follows from the right-hand side equalities (5) that one has the formal identity

∞∑
m=0

Hm(X)

m! Y m = exp
(
2XY − X2) ∈ C[[X, Y ]],

which implies, thanks to the Cauchy integral formulas for derivatives, that

∀ λ ∈ R, |hm(λ)| ≤
√

m!
π1/4 2m/2 e−λ2/2

∣∣∣
∫

|ζ |=1
e2λζ−ζ 2 dζ

ζm+1

∣∣∣

≤
√

m!
π1/4 2m/2 e−λ2/2+2|λ|+1. (6)



Given T > 0, we need to recall also how the sequence ((hm)|[−T,T ])m≥0 behaves
asymptotically as the index m goes to +∞. As soon as

√
2m > T , the whole segment

[−T, T ] lies entirely in the so-called oscillatory domain of the Hermite polynomial
function Hm . In order to quantify this heuristic assertion, we refer for example to
Theorem 5 in [21]. Since T 2 > T 2/2, one deduces from such result that there exist
two sequences (εT,m)m≥T 2 and (η T,m)m≥T 2 of continuous real functions on [−T, T ]
which both converge uniformly towards 0 on this segment and are related to the
sequence

(
(hm)[−T,T ]

)
m≥T 2 as follows :

∀x ∈ [−T, T ], ∀ m ≥ T 2, hm(x) = (1 + εT,m(x)
)√ 2

π

cos
(
m λ(x, m)

)

(2m)1/4
,

where

λ(x, m) = x√
2m

√
1 − x2

2m
+
(
1 + 1

2m

)
Arcsin

( x√
2m

)
− π

2

=
√

2

m
x − π

2
+ η T,m(x)

m
.

In particular

∀ m ≥ T 2, sup
[−T,T ]

|hm(x)| ≤ kT

m1/4 , where kT := 21/4√
π

(
1+ sup

m≥T 2
sup

[−T,T ]
|ηT,m |

)
.

(7)

Theorem 2.1 Let cm = π−1/42−m/2(m!)−1/2 for any integer m ≥ 0 and for any
n ∈ N

∗, 0 ≤ k ≤ n, let

Jm,n,k : = 1

2n

[m/2]∑
κ0=0

n−k∑
κ1=0

k∑
κ2=0

(−1)κ0+κ2 2m−2κ0 m!
κ0!(m − 2κ0)!

n!
κ1!(n − k − κ1)! κ2!(k − κ2)!

×2
m−1
2 + κ1+κ2

2 −κ0 �
(m + 1

2
+ κ1 + κ2

2
− κ0

)
. (8)

Let f ∈ S (R,C) such that Supp f̂ ∩ (R \ [−1, 1]) 	= ∅. One can find two sequences
(Mn)n≥1, (Nn)n≥1 of strictly positive integers such that the sequence (Y f

n )n≥0, where

Y f
n = 1√

2π

( Nn∑
k=0

( Mn∑
m=0

(−i)mcm 〈 f, hm〉 Jm,Nn ,k

)
e1−2k/Nn

)

is a f -superoscillating sequence for which any segment [−T, T ] is a superoscillation
set.

Proof Any f ∈ L2(R,C) expands in L2(R,C) as

f =
∑
m≥0

〈 f, hm〉 hm (9)



since (hm)m≥0 is an orthonormal basis of L2(R,C). The fact that f represents an
element inS (R,C) is characterized by the conditions

∀ p ∈ N,
∑
m≥0

(1 + m)p |〈 f, hm〉| < +∞ (10)

(see [31, Lemma 3]). It follows from Fourier inversion formula, together with the fact
that for any m ∈ N, the Hermite function hm is an eigenvector of the Fourier transform
(with corresponding eigenvalue (−i)n

√
2π ), that

∀ x ∈ R, f (x) =
∞∑

m=0

〈 f, hm〉 hm(x) =
∞∑

m=0

〈 f, hm〉
2π

∫

R

ĥm(λ) eiλx dλ

= 1√
2π

∞∑
m=0

(−i)m 〈 f, hm〉
∫

R

hm(λ) eλ(x) dλ,

the series of functions of x in the right-hand side of this equality being normally
convergent on any compact set [−T, T ] ofR because of uniform estimates (7) and the
rapid decrease (10) of the sequence |〈 f, hm〉|. Fix now m ∈ N. For any λ ∈ R, one
has (see (2))

eλ(x) = lim
n→+∞

(
cos
( x

n

)
+ λ sin

( x

n

))n
.

For any ε > 0, one can find ηε > 0 such that |t | ≤ ηε �⇒ |tan(t)| ≤ (1 + ε)|t |.
Therefore

∀ x ∈ [−T, T ], ∀ n ≥ T√
ηε

,

∣∣∣ cos
( x

n

)
+ λ sin

( x

n

)∣∣∣
n

=
(
cos2

( x

n

)
+ λ2 sin2

( x

n

))n/2

≤
[(

1 + (1 + ε)
λ2

n2

)n2]1/2n ≤ exp
((1 + ε

2

) λ2

2n

)
. (11)

It then follows from Lebesgue’s domination theorem and upper estimate (6) that

∀ x ∈ [−T, T ],∫

R

hm(λ) eλ(x) dλ

= lim
n→+∞

cm

2n

n∑
k=0

(
n

k

)(∫

R

(1 + λ)n−k (1 − λ)k e−λ2/2 Hm(λ) dλ
)

e1−2k/n(x)

(12)

Moreover, splitting R as [−�,�] ∪ {|λ| > �} with � >> 1 and using the results
quoted in the introduction about the uniformity of the convergence (2) with respect to



x ∈ [−T, T ] and λ0 ∈ [−�,�], one gets also that the convergence in (12) is uniform
for x ∈ [−T, T ]. Observe now that for any n ≥ 1, for any k = 0, ..., n,

(λ + 1)n−k(1 − λ)k =
n−k∑
κ1=0

k∑
κ2=0

(
n − k

κ1

)(
k

κ2

)
(−1)κ2 λκ1+κ2 .

Then, using the development of the Hermite polynomial Hm such as given in (5), one
has

1

2n

(
n

k

)∫

R

(1 + λ)n−k (1 − λ)k e−λ2/2 Hm (λ) dλ

= 1

2n

[m/2]∑
κ0=0

n−k∑
κ1=0

k∑
κ2=0

(−1)κ0+κ2 2m−2κ0 m!
κ0!(m − 2κ0)!

n!
κ1!(n − k − κ1)! κ2!(k − κ2)!

×
∫

R

e−λ2/2λm+κ1+κ2−2κ0 dλ

= 1

2n

[m/2]∑
κ0=0

n−k∑
κ1=0

k∑
κ2=0

(−1)κ0+κ22m−2κ0 m!
κ0!(m − 2κ0)!

n!
κ1!(n − k − κ1)! κ2!(k − κ2)!

×2
m−1
2 + κ1+κ2

2 −κ0

∫

R

e−t t
m−1
2 + κ1+κ2

2 −κ0 dt

= 1

2n

[m/2]∑
κ0=0

n−k∑
κ1=0

k∑
κ2=0

(−1)κ0+κ2 2m−2κ0 m!
κ0!(m − 2κ0)!

n!
κ1!(n − k − κ1)! κ2!(k − κ2)!

×2
m−1
2 + κ1+κ2

2 −κ0 �
(m + 1

2
+ κ1 + κ2

2
− κ0

)
= Jm,n,k .

It then follows from (12) that for any M ∈ N one has uniformly on [−T, T ],
M∑

m=0

〈 f, hm〉 hm = 1√
2π

lim
n→+∞

(
n∑

k=0

(
M∑

m=0

(−i)mcm 〈 f, hm〉 Jm,n,k

)
e1−2k/n

)
.

(13)
Let us proceed now as follows in order to construct the two sequences (Mn)n≥1 and
(Nn)n≥1. Fix n ∈ N

∗. It follows from estimates (7) relative to the uniform asymptotic
behaviour of the sequence

(
(hm)[−n,n]

)
when m ≥ n2 tends to +∞, together with

estimates (10) ensuring the rapid decrease of the sequence (〈 f, hm〉)m≥0, that there
exists Mm ≥ m2 such that

sup
[−n,n]

∣∣∣∣ f −
Mn∑

m=0

〈 f, hm〉 hm

∣∣∣∣ ≤
1

n
. (14)

For such Mn >> n2 fixed, (13) implies that one can find Nn >> 1 such that

sup
[−n,n]

∣∣∣
Mn∑

m=0

〈 f, hm〉 hm − 1√
2π

Nn∑
k=0

( Mn∑
m=0

(−i)mcm 〈 f, hm〉 Jm,Nn ,k

)
e1−2k/Nn

∣∣∣ ≤ 1

n
.

(15)



Combining (14) with (15), one gets

sup
[−n,n]

∣∣∣∣ f − 1√
2π

Nn∑
k=0

( Mn∑
m=0

(−i)mcm 〈 f, hm〉 Jm,Nn ,k

)
e1−2k/Nn

∣∣∣∣ ≤
2

n
= o(1).

Since the sequence ([−n, n])n≥1 exhaustsR as an increasing sequence with respect to
inclusion and (2/n)n≥1 decreases towards 0, the conclusion of Theorem 2.1 follows.

Remark 2.2 One can express also the conclusion of Theorem 2.1 in two steps as
follows: given any segment [−T, T ] ⊂ R and any M ∈ N such that there exists at
least one m ≤ M with 〈 f, hm〉 	= 0, the sequence (Y f

M,n)n≥1, where

Y f
M,n := 1√

2π

( n∑
k=0

( M∑
m=0

(−i)mcm 〈 f, hm〉 Jm,n,k

)
e1−2k/n

)
∀ n ≥ 1

is
∑M

0 〈 f, hm〉 hm-superoscillating (since
∑M

0 〈 f, hm〉 hm has an unbounded spectrum
as all hm have) and admits [−T, T ] as a superoscillation set (step 1). Then (step 2) the
sequence

(Y f
M,∞)M≥0 =

( M∑
k=0

〈 f, hm〉 hm

)
M≥0

=
(
Proj⊥vec(h0,...,hM )[ f ]

)

M≥0

converges uniformly towards f on [−T, T ].
It could be worthwhile to point out the following consequence of Theorem 2.1,

which clearly emphasizes the fact testing the superoscillation phenomenon makes
sense only on compact segments of the real temporal line.

Corollary 2.3 Let −∞ < a < b < +∞ and ϕ : [a, b] → C be a C∞ complex
valued function. There exists a sequence of generalized trigonometric polynomial
functions (Y[a,b],n[ϕ])n≥1 with spectrum in [−1, 1] ∩ Q such that (Y[a,b],n[ϕ])n≥1
converges uniformly towards ϕ on the segment [a, b].
Proof Thanks to Borel’s theorem, one can extend ϕ to a smooth function ϕ : R → C.
Multiplying ϕ by a test-function ψ[a,b] ∈ D(R, [0, 1]) which identically equals 1 in
an open neighborhood of [a, b], one may assume that ϕ ∈ D(R,C) ⊂ S (R,C).
Then the conclusion follows from Theorem 2.1. ��

In fact, the conclusion of Theorem 2.1 stands for a much wider class of continuous
complex-valued functions from R to C than just the Schwartz classS (R,C).

Theorem 2.4 Let f ∈ L2(R,C) such that the sequence (〈 f, hm〉)m≥0 of its coordi-
nates in the orthonormal basis of Hermite functions is in �q(N) with 1 ≤ q < 4/3.
Then f admits a continuous representant for which the assertions in Theorem 2.1 and
Remark 2.2 remains valid.



Proof For any T > 0 and for any k ≥ 0, one has combining asymptotic estimates (7)
with Hölder’s inequality

∑

m>[T 2]+1+k

|〈 f, hm〉| sup
[−T,T ]

|hm |

≤ kT

( ∑

m>[T 2]+1+k

|〈 f, hm〉|q
)1/q ( ∑

m>[T 2]+1+k

1

mq ′/4

)1/q ′

= ok(1) (16)

since q ′ = q/(q − 1) > 4. Therefore f admits a continuous representative in R

defined on each [−T, T ] as the sumof the normally convergent series
∑

m〈 f, hm〉hm in
C([−T, T ],C). Since f develops in L2(R,C) as (9), one can express such continuous
representant f on [−T, T ] as follows : given any k ≥ 0 (for the moment kept fixed),
it follows from (13) that

∀ x ∈ [−T, T ], f (x) =
[T 2]+1+k∑

m=0

〈 f, hm〉 hm(x)

+
∑

m>[T 2]+1+k

〈 f, hm〉 (1 + εT,m(x))

√
2

π

cos
(√

2m x − mπ/2 + η T,m(x)
)

(2m)1/4

= lim
n→+∞

1√
2π

( n∑
k=0

( [T 2]+1+k∑
m=0

(−i)mcm 〈 f, hm〉 Jm,n,k

)
e1−2k/n(x)

)

+
∑

m>[T 2]+1+k

〈 f, hm〉 (1 + εT,m(x))

√
2

π

cos
(√

2m x − mπ/2 + η T,m(x)
)

(2m)1/4
,

(17)

where the combinatorial coefficients Jm,n,k have been introduced in (8). One just need
to repeat word for word at this point the final arguments in the proof of Theorem 2.1,
starting from (13). ��
Remark 2.5 Observe here that for any m ≥ [T 2] + 1, the signal

ϕm : x �→ cos(
√
2m x − mπ/2) =

{
(−1)k e√

2m (x) + e−√
2m (x)

2 if m = 2k

(−1)k e√
2m (x) − e−√

2m (x)

2i if m = 2k + 1

can be approximated uniformly on [−T, T ] in a ϕm-superoscillating way as follows

e±√
2m = lim

n→+∞

(
1

2n

n∑
k=0

(
n

k

)(
1 + (±√

2m)
)n−k (1 − (±√

2m)
)k

e1−2k/n

)
,



the limits along n being uniform on [−T, T ]. The tail function defined as the restriction
over [−T, T ] of the orthogonal projection of f on [vec(h0, . . . , h[T 2]+k)]⊥ for k >> 1
(depending on T ) can be considered as a quasi almost periodic function

∑

m≥[T 2]+k+1

(αm e√
m + βm e−√

m),

that is the sequences m �→ αm and m �→ βm (m ≥ [T 2] + k + 1) are almost
constant complex sequences : the modulus of αm (respectively of βm) stands for the
amplitude of the monic function αme√

2m (respectively βm e−√
2m) it affects, while its

argument stands for the its phase shift. This provides an alternative way to realize a
superoscillating sequence, provided one enlarges slightly the constraints in Definition
1.1 in order to tolerate infinitesimal variations of amplitudes and phase shifts of the
monic trigonometric polynomial functions involved in the decomposition of the entries
(Yn)n≥1, which seems reasonable from the physicists’s point of view.

3 Persistence of g-Superoscillations when g : x �→ e−εx2 is a Gaussian

Though the explicitation of the superoscillation sequence (Y f
n )n≥0 in Theorem 2.1

relies on the coordinates of f ∈ S (R,C) in the orthonormal basis of Hermite func-
tions (hm)m≥1, combined with the absolute combinatoric constants Jm,n,k defined as
(8), the fact that the approximation procedure needs to be conducted in two steps (see
Remark 2.2) makes the superoscillating approximation sequence (Y f

n )n≥0 indeed hard
to handle. Let us therefore state the following Proposition, which shows that under
stronger conditions on f than just being in S (R,C), one has indeed a much more
clear reformulation of Theorem 2.1.

Proposition 3.1 Let f ∈ S (R,C) such that Supp f̂ ∩ (R \ [−1, 1]) 	= ∅ and

∑
m≥0

|〈 f, hm〉|
(m!)−1/2

( 1√
2

)m
< +∞. (18)

Let μ = (μn)n≥0 and ν = (νn)n≥1 two arbitrary sequences of integers tending to
+∞. The sequence (Yμ,ν

n )n≥1, where

Yμ,ν
n = 1√

2π

νn∑
k=0

( μn∑
m=0

(−i)mcm 〈 f, hm〉 Jm,νn ,k

)
e1−2k/νn

is a f -superoscillating sequence which admits any compact set [−T, T ] as a super-
oscillating set.

Proof Let ε > 0. It follows fromcondition (18) and estimates (6) that for anyn ≥ 1+ε,

∫

R

( ∞∑
m=0

|〈 f, hm〉| |hm(λ)|
)
exp
((1 + ε

2

) λ2

2n

)
dλ < +∞. (19)



Proposition 3.1 then follows from the approximations (13), together with domination
estimates (11) and finally (19) which validates the application of Fubini’s theorem. ��

As we have seen in Sect. 2, any Gaussian function g : x �→ e−(x−x0)2/(2σ), which
can be transformed up to translation and rescaling and multiplication by a positive
constant into the standard Gaussian x �→ e−x2 or better the Hermite function h0,
can be uniformly approximated on any compact set [−T, T ] by the g-superoscillating
sequence (Yn[g])n≥1 where

Yn[g] = 1

2π

1

2n

n∑
k=0

(
n

k

)(∫

R

ĝ(λ) (1 + λ)n−k(1 − λ)k dλ
)

e1−2k/n ∀ n ≥ 1,

any compact segment [−T, T ] being then a superoscillation set. There could be indeed
other candidates for such a g-superoscillating sequence. In order to state a result about
the persistence of such an g-superoscillating phenomenon along the expansion of any
f ∈ S (R,C) (or in a convenient subspace of S (R,C) along the development (9)),
one will appeal to the theory of convolutor operators in weighted algebras of entire
functions.

We recall first the following classical notion in differential equations (Malgrange,
Ramis, etc.) as well as in number theory :

Definition 3.2 A power series
∑

m≥0 am zm is called Gevrey with order s ∈ R if and
only if the power series

∑
m≥0 am/(m!)s zm has a strictly positive radius of conver-

gence. When s < 0, this is equivalent to say that the series
∑

m≥0 am zm defines an
element in the weighted algebra

A| |−1/s (C) := {F ∈ H(C) ; |F(z)| = O
(
eB|z|−1/s )

f or some B ≥ 0
}
.

We can now state the following persistence result about g-superoscillating phe-
nomenon when g is a Gaussian function.

Theorem 3.3 Let f ∈ S (R,C) be of the form f (x) = e−x2/2�(x) where∑
m≥0〈�, hm〉 zm is a (−1/2)-Gevrey series. Let (yn)n≥1 be any (g : x �→ e−x2)-

superoscillating sequence which admits [−T, T ] as superoscillating set and moreover
is such that the entire analytic continuations (z �→ yn(z))n≥1 of the (x �→ yn(x))n≥1
define a bounded set in A1(C). Then the sequence of functions (Yn)n≥1, where

Yn(x) =
n∑

m=0

〈�, hm〉
( d

dx

)m[yn]

is a f -superoscillating sequence which admits also any [−T, T ] as a superoscillating
set.

Proof The fact that
∑

m≥0〈�, hm〉zm is a Gevrey series of order −1/2 is equivalent
to the fact that the entire function z �→ ∑

m≥0〈�, hm〉 zm belongs to the weighted



algebra

A2(C) = {F ∈ H(C) ; F(z) = O(eB|z|2) for some B ≥ 0
}
,

which implies that the symbol
∑

m≥0〈�, hm〉 zm of the operator

D� :=
∑
m≥0

〈�, hm〉
( d

dx

)m

induces a continuous multiplication operator of A2(C) into itself. Hence the operator
D� acts as a continuous convolution operator from the dual algebra (via the Fourier-
Borel transform, see [10], Chapter 4, also [12,34])

A2,0 := {F ∈ H(C) ; ∀ ε > 0 , F(z) = O(eε|z|2)}

into itself. It follows from the fact that the (hm)m≥0 form an orthonormal system in
L2(R,C) that one has in L2(R,C) (also uniformly on any compact set if one takes
continuous representants), see (9),

�(x) =
∞∑

m=0

〈�, hm〉 hm(x) = ex2/2
∞∑

m=0

〈�, hm〉
( d

dx

)
[e−x2 ].

From the hypothesis on the g-superoscillating sequence (yn)n≥0, it follows fromMon-
tel’s theorem that one can extract from the sequence (yn)n≥1 a subsequence (ynk )k≥0
such that the entire functions z �→ ynk

(z) form a convergent sequence in Exp(C),
hence in A2,0(C), with limit y∞ in A2,0(C). Due to the continuity of the convolutor
operator D�, the sequence (Ynk )k≥0, where

Ynk =
nk∑

m=0

〈�, hm〉
( d

dx

)m[ ynk
]

converges in Exp(C) towards the element D�[ y∞] ∈ Exp(C). Hence the sequence
(ex2/2Ynk (x))k≥0 converges uniformly on any compact of K towards x �→
ex2/2y∞(x). Since the sequence (ynk )k≥0 converges uniformly to x �→ e−x2 and

f (x) = e−x2/2
(

ex2/2
∑
m≥0

〈�, hm〉
( d

dx

)m[e−x2 ]
)

∀ x ∈ K ,

one has y∞(x) = f (x) on R. Since the result does not depend on the choice of the
subsequence (ynk )k≥0, the conclusion of the Theorem follows. ��



Remark 3.4 The sequence (yn)n≥1 realized as in (12) by averaging conveniently eλ-
superoscillating sequences according to Fourier inversion formula

e−x2 = 1

2
√

π

∫

R

e−λ2/4 eλ(x) dλ

satisfies the required conditions in Theorem 3.3.

Remark 3.5 Up to a rescaling, the Gaussian g can be replaced by x �→ e−x2/(2σ) for
any σ > 0 ; the hypothesis needed then on f becomes f (x) = e−x2/(4σ) �(x), where∑

m≥0〈�, hm〉 zm is a (−1/2)-Gevrey series.

4 T -Superoscillating Sequences (T ∈ S ′(R,C))

The space S ′(R,C) of complex tempered distributions in R, namely complex dis-
tributions in R which are restrictions to the real line of complex valued distributions
on its compactification S

1 = P
1(R), can be characterized as well in terms of the

asymptotic behavior of the coefficients in the spectral Hermite developments of its
elements. More precisely, any element in T ∈ S ′(R,C) can be expressed as the limit
(inS ′(R,C))

T = lim
M→+∞

(
M∑

m=0

〈T , hm〉 [hm]
)

, (20)

where |〈T , hm〉| = O(m p) for some p ∈ N and [hm] denotes the distribution-function
induced by the Hermite function hm . The action of T is therefore described as

∀ϕ ∈ S (R,C), 〈T , ϕ〉 =
∞∑

m=0

〈T , hm〉 〈ϕ, hm〉

(see [22], Theorem 2.2). For example, the Dirac measure δ0 : ϕ �→ ϕ(0) =
(1/2π)

∫
R

ϕ̂(λ) dλ can be approximated in two ways :

• either as the limit in S ′(R,C) of the sequence of distributions-functions([
ε−1

m g(x/εm)
])

m≥0, where (εm)m≥0 denotes an arbitrary sequence of strictly
positive numbers that converges towards 0, which is the most classical way to
modelize the impulsion at the origin ;

• either as δ0 =∑∞
m=0 hm(0) [hm], the convergence of the series being understood

inS ′(R,C), that is ϕ(0) =∑m≥0 hm(0) 〈hm, ϕ〉 for any ϕ ∈ S (R,C).

It does not make sense to restrict a distribution to a segment [a, b] of R ; in order
to adapt the notion of f -oscillating sequence to the frame of tempered complex dis-
tributions on the real line, one needs then to modify slightly Definition 1.1.

Definition 4.1 Given T ∈ S ′(R,C), a sequence ([Yn])n≥1 with entries distributions-
functions such that Yn ∈ T (R,C) for any n ∈ N

∗ is said to be T -superoscillating
whenever there exists a frequential threshold λ f > 0, together with a relatively com-
pact open set U , such that



• Supp T̂ ∩ (R \ [−λT , λT ]) 	= ∅ ;
• �[Yn] ⊂ [−λT , λT ] for any n ∈ N

∗ ;
• one has limn→+∞[(Yn)|U ] = T |U in D ′(U,C).

The relatively compact open set U is then called a superoscillation set for the T -
superoscillating sequence ([Yn])n≥1.

Remark 4.2 Since the concept of superoscillating sequence involves by itself neces-
sarily the notion of spectrum, it is not possible to extendDefinition 4.1 to the casewhere
T would belong just to D ′(R,C). One needs indeed the spectrum �[T] = Supp T̂ to
be well defined, thus in principle T to be tempered.

Theorem 4.3 Let the constants cm (m ∈ N) and Jm,n,k (m ∈ N, n ∈ N
∗, k ∈ [[0, n]])

be defined as in Theorem 2.1. Let T ∈ S ′(R,C) such that Supp T̂∩(R\[−1, 1]) 	= ∅.
One can find a sequence (Nn)n≥1 of strictly positive integers such that the sequence
([Y T

n ])n≥0, where

Y T
n = 1√

2π

( Nn∑
k=0

(
n∑

m=0

(−i)mcm 〈T , hm〉 Jm,Nn ,k

)
e1−2k/Nn

)
,

is a T -superoscillating for which any bounded open set ]− T, T [ is a superoscillation
set.

Proof The sequence of distributions-functions
(∑M

m=0〈T , hm〉 [hm])M≥0 converges
to the distribution T in S ′(R,C) (see [22], Theorem 2.2). Hence, for any M ∈ N,
the sequence of restrictions

(∑M
m=0〈T , hm〉 [hm]|]−T,T [

)
M≥0 converges to T ]−T,T [ in

D ′(] − T, T [,C). For any m ∈ N, one can find, repeating the arguments leading to
(12), then (13) in the proof of Theorem 2.1, a strictly increasing sequence of strictly
positive integers (NM,n)n≥1 such the sequence of functions (YM,n)n≥1 in T (R,C)

defined as

Y T
M,n = 1√

2π

⎛
⎝

NM,n∑
k=0

(
M∑

m=0

(−i)mcm 〈T , hm〉 Jm,NM,n ,k

)
e1−2k/NM,n

⎞
⎠ ∀ n ≥ 1

converges uniformly on [−M, M] towards
∑M

m=0〈T , hm〉 hm , hence is such the
sequence of distributions-functions ([YM,n]|]−M,M[)n≥1 (as a sequence with entries in
D ′(] − M, M[,C)) converges in D ′(] − M, M[,C) towards the distribution-function∑M

m=0〈T , hm〉 [hm]|]−M,M[. One can then use the Cantor diagonal process and take
for example Mn = n, Nn = Mn,n for any n ≥ 1 in order to conclude.

If one wishes to reformulate within the frame of distributions Proposition 3.1,
keeping track the method (relying on Fubini’s theorem) used in Sect. 3 in order to
formulate and prove Proposition 3.1 within the frame of the Schwartz space, one
needs first to introduce for any s ≥ 0 the following adhoc Gelfand-Shilov-Gevrey



subspace ofS (R,C) through the Hermite development of its elements:

SGev,−1−s(R,C) :=
{
� ∈ S (R,C) ;

∞∑
m=0

|〈�, hm〉|2[(m!)1+s]2rm

< +∞ ∀ r > 0

}

= {
� ∈ S (R,C) ; sup

m∈N
|〈�, hm〉| |(m!)1+s | rm

< +∞ ∀ r > 0
}

=
{
� ∈ S (R,C) ;

(
z ∈ C �→

∞∑
m=0

〈�, hm〉 zm
)

= O(eε|z|1/(1+s)
) ∀ ε > 0

}

(note that 1/(1 + s) ∈]0, 1]). The C-vector space SGev,−1−s(R,C) is equipped here
with its topology of projective limit of weighted �2

C
(N)-spaces. The Fourier transform

f �→ f̂ realizes a continuous automorphism ofSGev,−1−s(R,C) since it admits each
Hermite function hm as an eigenvector (with corresponding eigenvalue (−i)m

√
2π ).

Similarly, for each s′ ≥ 0, let us define the following C-vector space of Gevrey-
ultra-distributions S ′

Gev,s′(R,C) which elements are the formal series

T =
∑
m≥0

tm [hm] (tm ∈ C),

where
∑

m≥0 tm zm is a Gevrey series with order s′ ≥ 0. Note that

S ′
Gev,s′(R,C) =

{
T =

∑
m≥0

tm [hm] ;
∞∑

m=0

|tm |2
[(m!)s′ ]2 rm < +∞ for some r > 0

}
.

The vector space S ′
Gev,s′(R,C) is equipped here with its inductive limit of weighted

�2
C
(N)-vector spaces. When s′ = 1+ s, the spaceS ′

Gev,1+s(R,C) stands for the dual
of SGev,−1−s(R,C), the duality being realized as

〈 ∞∑
m=0

tm [hm] ,

∞∑
m=0

〈�, hm〉 hm

〉
=
∑
m≥0

tm 〈�, hm〉〈[hm], hm〉 =
∑
m≥0

tm 〈�, hm〉,
(21)

according to the fact that the system {hm ; m ≥ 0} is an Hilbertian basis of
L2(R,C). The space S ′

Gev,s(R,C) embeds continuously in S ′
Gev,1+s(R,C) =

[SGev,−1−s(R,C)]′.
When T ∈ S ′

Gev,s(R,C), it follows fromCauchy-Schwarz inequality together with
the estimates (6) that for any ε > 0 and n ≥ 1 + ε, for any � ∈ SGev,−1−s(R,C),



∑
m≥0

|tm | |〈�, hm〉|
∫ ∫

R2
exp
((1 + ε

2

)λ2

2n

)
|hm(λ)| |hm(x)| dλ dx

≤ C�

√√√√∑
m≥0

|tm |2
(m!)2s

rm

√∑
m≥0

|〈�, hm〉|2 [(m!)1+s]2 (4r)−m

×
∫ ∫

R2
e−λ2/4−x2/2+2(|λ|+|x |) dλ dx < +∞. (22)

One can now state here the pendant of Proposition 3.1.

Proposition 4.4 Let s ≥ 0 and T = ∑
m≥0 tm [hm] ∈ S ′

Gev,s(R,C) ↪→
[SGev,−1−s(R,C)]′. Then for any � ∈ SGev,−s−1, one has

〈T , �〉

= 1√
2π

lim
T →+∞

[
lim

n→+∞
( ∞∑

m=0

(−i)m cm tm 〈�, hm 〉
∫ T

−T

( n∑
k=0

Jm,n,k e1−2k/n(x)
)

hm (x) dx
)]

.

(23)

Proof Taking into account (22), it follows from Fourier inversion formula and
Lebesgue’s theorem that for any � ∈ S ′

Gev,−s−1(R,C), one has

〈T ,�〉= 1√
2π

lim
T →+∞

( ∞∑
m=0

(−i)m tm 〈�, hm〉
∫ T

−T

(∫

R

eixλ hm(λ) dλ

)
hm(x) dx

)
.

The result follows then from (2), together with a second application of Lebesgue’s
theorem, which can be used here since (22) and estimates (11) are valid for n large
(provided x ∈ [−T, T ] with T > 0 fixed). ��
Remark 4.5 Since the Fourier transform realizes an automorphism of SGev,−1−s

(R,C), one can define naturally the Fourier transform T̂ of T thanks to the usual
rule 〈T̂ ,�〉 = 〈T , �̂〉. What is unclear is the notion of spectrum �[T ] for such an
ultra-distribution, that is the support of T̂ . What Proposition 4.4 says is that given
any T in S ′

Gev,s(R,C) (s ≥ 0), it is in some sense possible to approximate it with
distribution-functions associated to generalized trigonometric polynomial functions
with spectrum in [−1, 1].

As for the “persistence” Theorem 3.3, we do not know for the moment how to refor-
mulate it in the setting of tempered distributions or (most probably) ultra-distributions
of the Gevrey type introduced previously in this section. Given an ultra-distribution
T = ∑

m≥0 tm [hm] in S ′
Gev,s(R,C) with s > 0, a natural suggestion in order to

exploit the formal relation

T =
∑
m≥0

tm [hm] = ex2/2
DT
[[e−x2 ]],



where DT = ∑
m≥0 tm (d/dx)m (formally) as we did in Sect. 3 is to appeal now

(s > 0 instead of s = −1/2 < 0, for example s = 1/2) to the concept of Borel
resummation. The formal Borel transform z �→ B̂1/s(z) := ∑

m≥0

(
tm+1/�(1 +

ms)
)

zm of the symbol of DT defines an holomorphic function about the origin and
Borel type resommationmethods rely on the additional hypothesis of 1/s- summability
along a specific direction [32] : namely that for such direction θ ∈ S

1, the sum of the
Borel transform B̂1/s about the origin extends as an holomorphic functionwith growth

in O(e|z|1/s
) to a sector �θ with aperture in ]0, π [ which is bisected by θ , see [12]

or [10] for related functionals and the dualizing role of the Laplace transform. If ρs

denotes the ramification operator which consists in replacing z by zs on the Riemann
surface of the logarithm, then

ρ1/s ◦
[1

s

∫

θR+
B̂1/s(u) e−u1/s/z u1/s−1 du

]
(z)

stands for a “resummation” resummθ [ f ] of the symbol f =∑m≥0 tm zm , namely

t0 + resummθ [ f ](z) = t0 +
∑
m≥0

tm+1 zm+1.

This leads to an asymptotic development of f in 1/z approaching the origin pre-
cisely along the direction θ . We plan to come back to these questions (e.g. clarify
resummθ (DT ) and its action on the entries (yn)n≥1 of a [g]-superoscillating sequence)
for a future project.

5 Extrapolation of Band-Limited Signals with Finite Energy by Means
of eλ-Superoscillating Sequences

Let T,� two strictly positive constants and HT , H� be the closed subspaces of the
Hilbert space L2 = L2(R,C) defined as

HT = { f ∈ L2 ; f = 0 dx − almost everywhere on Rx \ [−T, T ]}
H� = { f ∈ L2 ; f̂ = 0 dλ − almost everywhere on Rλ \ [−�,�]},

where

f̂ = lim
L2

T →+∞

(∫ T/2

−T/2
f (x) ei(·)x dx

)

denotes the L2-spectrum of f . The union of subspaces H� for � > 0 defines the
(non-closed in L2, though each H� is closed) subspace BL2(R,C) of band-limited
signals. It is well known that if sinc denotes the sinus cardinal function

sinc : x ∈ R �−→ sin(πx)

πx
,



one has the following identity

∑
�∈Z

[
sinc

(�

π

(
x − �

π

�

))]2 = 1 ∀ x ∈ R. (24)

Moreover the Nyquist–Shannon theorem (see for example [30]) ensures that any ele-
ment in H� admits a continuous representative x ∈ R �→ f (x) which extends as an
entire function of z ∈ C and is such that for any K ∈ N

∗

sup
x∈R

∣∣∣ f (x) −
K∑

�=−K

f (�π/�) sinc
(�

π

(
x − �

π

�

))∣∣∣

≤
( ∑

|�|>K

| f (�π/�)|2
)1/2

sup
x∈R

( ∑
|�|>K

[
sinc

(�

π

(
x − �

π

�

))]2)1/2

≤
( ∑

|�|>K

| f (�π/�)|2
)1/2

sup
x∈R

(∑
k∈Z

[
sinc

(�

π

(
x − �

π

�

))]2)1/2

≤
( ∑

|�|>K

| f (�π/�)|2
)1/2

. (25)

We have in addition the following tolerance with respect to the fact that the band-
limited condition fails to be exactly fulfilled : for any f ∈ L2 such that f̂ ∈ L1 (but f
is not assumed anymore to belong to H�), f still admits a continuous representative
f : R → C (which fails now in general to extend as an entire function of t ∈ C) such
that, for any K ∈ N

∗,

sup
x∈R

∣∣∣ f (x) −
K∑

�=−K

f (�π/�) sinc
(�

π

(
x − �

π

�

))∣∣∣

≤
( ∑

|�|>K

| f (�π/�)|2
)1/2 + 1

π

∫

|λ|>�

| f̂ (λ)| dλ. (26)

This is true, in particular, when f is still band-limited, but such that Supp( f̂ ) ⊂
[−�̃, �̃] with �̃ > �, which may happen in practical situations since the threshold
� cannot in general be precisely localized, �̃ standing in this case as a rough upper
estimate of the true �.

Take here T = 1 (up to a dilation of f by 1/T which forces to change � into T �).
Given f ∈ H� such that f0 = Proj⊥H1

[ f ] is known, the inductive procedure initiated
at f0 and ruled by

fk+1 = f0 + (1 − χ[−1,1]) × Fourier inverse
[
χ[−�,�] f̂k

]
∀ k ∈ N

inspired the extrapolation method developed by R.W. Gerchberg and A. Papoulis
[25,29]. The singular value decomposition of the compact normal operator S�

1 from
L2([−1, 1],C) into itself



S�
1 : ϕ �−→

∫ 1

−1
ϕ(x) sinc

(�

π
((·) − x)

)
dx,

in particular the behavior of the decreasing sequence

1 = ‖S�
1 ‖ = λ�

1,0 > λ�
1,1 ≥ λ�

1,2 · · · ... > 0

of its eigenvalues (more specifically the careful analysis of the slope of the discrete
decreasing function n �→ λ�

1,n starting from n = 0), together with the so-called
prolate eigenfunctions (see [33]) plays a central role in the stability of an Hilbertian
algorithmic approach. Other ways in order to face such extrapolation problem (which
is not well-posed, but conditionally stable only, see in particular [11], VIII.31 for
appropriate references) are based for example on the use of Carleman’s interpolation
technics as in [11] or either the Cauchy transform as in [20].

We propose here an alternative approach inspired by the concept of superoscillating
approximations.

Theorem 5.1 Let � > 0, f ∈ H� with continuous representant still denoted as f ,
and (ν j ) j≥0, (μ j ) j≥0 be two strictly increasing sequences of strictly positive integers
such that μ3

j = o(ν2j ) when j tends to +∞. For any j ∈ N, let

f j : x

�−→ 1

2ν j

ν j∑
k=0

(
ν j

k

)( μ j∑
�=−μ j

( � �

π
+ 1
)ν j −k(

1 − � �

π

)k
sinc

(�

π

(
x − �

π

�

)))
f (1 − 2k/ν j ).

Then, for any j sufficiently large (depending on � and on the growth of the sequence
(ν j ) j≥0),

sup
R

‖ f − f j‖ ≤
√ ∑

|�|>μ j

| f (�π/�)|2 + 2π
μ j
√
2μ j + 1

ν j

∫

[−�,�]
| f̂ (λ)| dλ

= o j (1) (as j → +∞). (27)

Moreover, if f ∈ H �̃ with � < �̃ < +∞, one has

sup
R

‖ f − f j‖ ≤
√ ∑

|�|>μ j

| f (�π/�)|2 + 2π
μ j
√
2μ j + 1

ν j

∫

[−�,�]
| f̂ (λ)| dλ

+ 1

π

∫

�<|λ|≤�̃

| f̂ (λ)| dλ = o j (1)

+ 1

π
| f̂ (λ)| dλ (as j → +∞). (28)

Proof Suppose first that f ∈ H�. Let also f denote the continuous representant of
the class in L2(R,C) ( f is known to be in fact the restriction toR of an entire function



in Exp). Fourier inversion formula implies

f (�π/�) = 1

2π

∫

R

f̂ (λ) eiλ �π/� dλ = 1

2π

∫ �

−�

f̂ (λ) eiλ(�π/�) dλ ∀ � ∈ Z.

For any � ∈ Z, for any λ ∈ [−�,�], one has (see (2))

eiλ(�π/�) = lim
j→+∞

1

2ν j

( ν j∑
k=0

(
ν j

k

) (�π

�
+ 1
)ν j −k(

1 − �π

�

)k
ei(1−2k/ν j )λ

)
. (29)

Moreover, as seen in [10], Chapter 3, Theorem 3.1.8 andRemark 3.1.15, the estimation
of the error in (29) is, for j sufficiently large (depending on � and on the growth of
the sequence (ν j ) j≥0)

∣∣∣∣eiλ(�π/�) − 1

2ν j

ν j∑
k=0

(
ν j

k

) (�π

�
+ 1
)ν j −k(

1 − �π

�

)k
ei(1−2k/ν j )�

∣∣∣∣

≤ 2
�

ν j

|�|π
�

= 2
|�|π
ν j

. (30)

This implies for any � ∈ Z, for any such j ∈ N sufficiently large (depending on �
and on the growth of (ν j ) j≥0)

∣∣∣∣ f (�π/�) − 1

2π

∫ �

−�

f̂ (λ)

2ν j

( ν j∑
k=0

(
ν j

k

) ( �π

�
+ 1
)ν j −k(

1 − �π

�

)k
ei(1−2k/ν j )λ

)
dλ

∣∣∣∣

=
∣∣∣∣ f (�π/�) − 1

2ν j

ν j∑
k=0

(
ν j

k

) ( �π

�
+ 1
)ν j −k(

1 − �π

�

)k
f
(
1 − 2k

ν j

)∣∣∣∣

≤ 2|�|π
ν j

∫

[−�,�]
| f̂ (λ)| dλ. (31)

For any such j sufficiently large, it follows from inequalities (31) for−μ j ≤ � ≤ μ j ,
together with inequality (25), Cauchy-Schwarz inequality and formula (24), that

sup
R

∣∣∣∣ f (x) − 1

2ν j

ν j∑
k=0

(
ν j

k

)( μ j∑
�=−μ j

( �π

�
+ 1
)ν j −k(

1 − �π

�

)k
sinc

(�

π

(
x − �

π

�

)))
f
(
1 − 2k

ν j

)∣∣∣∣

≤
√ ∑

|�|>K

| f (�π/�)|2 + 2π
μ j
√
2μ j + 1

ν j

∫

[−�,�]
| f̂ (λ)| dλ.

This is the required inequality (27). When f ∈ H �̃ with � < �̃, one repeats the
argument starting from inequality (26) instead of (25). Note that it remains essential
that f is known for sure to belong toBL2(R,C), which is required each timeone claims
that j can be chosen large enough (namely to ensure (30), hence (31)), depending now
on �̃ instead of �, and still on the behavior of the sequence (ν j ) j≥0. ��



Example 5.2 If one choses, for any j ≥ 0, μ j := 2 j and ν j := 3 j , the required

condition μ
3/2
j = o(ν j ) is fulfilled since log 3/ log 2 ≥ 1.58 > 3/2. One needs (in

order theoretically to extrapolate f uniformly onR) to be able to evaluate exactly (that
is up to an arbitrary precision !) f at all triadic points �/3 j , � = −3 j , ..., 3 j . Chosing
the sequence (ν j ) j≥0 as the sequences of powers such as (3 j ) j≥0 allows indeed the
memorization of the values of f at triadic points in [−1, 1] from the instant where
they have been selected for the first time.
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