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1.1
Introduction

Modern field studies yield diverse types of observations, in the form of highly het-
erogeneous and high-dimensional data. In this context, environmental observations
are routinely available in the form of functional or distributional data. For instance,
these kinds of variables are found in climatic investigations, where complex data are
regularly collected at different sites in the study region. Examples are temperature
profiles along the year, or the precipitation distributions, which are key to character-
ize and classify the domain of interest from the climatic viewpoint.
In these cases, the object of the analysis is often infinite-dimensional, i.e., it would

need an infinity of point evaluations to be fully characterized. In some cases, it is
constrained, e.g., when distributional data are concerned. In fact, the full interpreta-
tion and statistical treatment of such kinds of complex data poses relevant challenges
for geoscience applications.
In this broad context, a relatively large body of recent literature has been devot-

ed to the mathematical foundations of geostatistics for complex data, with particular
reference to data embedded in Hilbert spaces and Riemannian manifolds. We here
focus on the approach developed within the area ofObject Oriented Spatial Statistics
(O2S2, [1]), which was developed starting from the works [2, 3, 4]. The foundation-
al idea of the approach is to interpret data as objects: the atom of the geostatistical
analysis is the entire object, which is seen as an indivisible unit rather than a col-
lection of features. In this view, the observations are interpreted as random points
within a space of objects – called feature space – whose dimensionality and geom-
etry should properly represent the data features and their possible constraints. The
O2S2 approach follows the funding ideas of Object Oriented Data Analysis (OO-
DA, [5]), and generalizes the theory of functional geostatistics developed from the
seminal works of [6, 7, 8], mainly for functional data in L2.
Amongst the challenges related to the spatial analysis of complex data, we here
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focus on the problems of spatial prediction. Similarly as in classical geostatistics
[e.g. 9], in O2S2 the latter problem is addressed by formulating optimal unbiased
predictors linear in the data. We here review the mathematical framework for kriging
Hilbert and manifold data, in stationary or non-stationary settings, and discuss the
estimators that can be used for the mean and the covariance structure.
The remaining of this Chapter is organized as follows. Section 1.2 introduces the

main definitions and assumptions which may be formulated to perform a geostatis-
tical analysis of Hilbert-space valued random fields. Section 1.3 describes a global
approach to Kriging, interpreted as optimal linear combinations of the data. Here,
we show an example of application to climate data, and thoroughly discuss on the
importance of selecting an appropriate feature space for the analysis. In Section 1.4,
we briefly review an alternative approach to Kriging, which arises when the predic-
tor is interpreted in a more general sense, grounding on the theory of measurable
linear transformations. Interestingly, this general theory allows to draw connections
between several different formulations of functional Kriging available in the litera-
ture. Section 1.5 introduces the methodologies to perform geostatistical analysis of
manifold-valued random fields, based on the local-approximation property of such
spaces. Here, for illustration we consider the case of positive definite matrices, that
is used to analyze and predict the field of covariance matrices between temperature
and precipitations in a region of Canada.

1.2
Definitions and assumptions

We call (Ω,F,P) a probability space and H a separable Hilbert space, endowed
with operations (+, ·), and an inner product 〈·, ·〉. The space H will indicate the
feature space for the geostatistical analysis: we will consider the data as realizations
of random points in H. In several cases in this chapter, the space H will represent
a space whose elements are real-valued functions defined over a compact interval.
Nevertheless the theory presented in this Chapter is entirely general, and may involve
manifold data, as we shall show in Section 1.5.
In the following, we denote by χ a random element in H, that is a measurable

function defined on (Ω,F,P) and valued inH, χ : Ω→ H. We indicate a realiza-
tion of χ – that is a non-random element ofH – with the symbol χ, i.e., χ = χ(ω),
for ω ∈ Ω. We call L(H,H1) the Banach space of continuous linear operators on
H in H1. We say that two random elements χ1,χ2 are equivalent (indicated by
χ1 =H χ2, or χ1 = χ2 for short) if χ1 = χ2 almost surely.
Given a set of locations s1, ..., sn in a spatial domainD ⊂ Rd (usually d = 2, 3),

we denote by χs1 , ..., χsn the set of observations collected at these locations, that
form our dataset of spatially dependent objects. As in classical geostatistics [e.g., 9],
we assume this dataset to be a partial observation of a random field {χs, s ∈ D} on
(Ω,F,P) inH. The latter is defined as a collection of random elements χs, indexed
by a continuous spatial vector s varying inD.
In this chapter, we will always assume that, for all s ∈ D, the elementχs, satisfies
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E[‖χs‖2] < ∞. Under the latter assumption, one can define the expected value of
the field in terms of Bochner integral as

ms =

∫
Ω
χs(ω)P(dω), s ∈ D. (1.1)

In H, the expected value (1.1) can be equivalently defined as the element ms of H
such that, for any x ∈ H, 〈x,ms〉 = E[〈x,χs〉]. The elementsms, s ∈ D, describe
the first order structure of the field.
The second order structure can be fully characterized through the spatial covari-

ance function C, that associates with each pairs of locations (s1, s2), the cross-
covariance operator between the random elements at those locations, i.e.,

C : D ×D → L(H,H) (1.2)
(s1, s2) 7→ {C(s1, s2) : H → H, x 7→ E[〈(χs1 −ms1), x〉(χs2 −ms2)]}.

A global measure of spatial dependence is provided by the trace-covariogram, that
is the real-valued function that associates with any pair of locations (s1, s2) the trace
of the corresponding cross-covariance operator C(s1, s2), i.e. C : D×D → R such
that

C(s1, s2) =
∞∑
k=1

〈C(s1, s2)ek, ek〉 = E[〈χs1 −ms1 ,χs2 −ms2〉], (1.3)

where {ek, k ∈ N} is any orthonormal basis of H, and the second equality was
proven in [2]. Note that the function C is well-defined, since C(s1, s2) is a trace-
class Hilbert-Schmidt operator [10], thus the series converges absolutely for any or-
thonormal basis {ek, k ≥ 1} of H and the sum does not depend on the choice of
the basis [11, Theorem 1.24]. The trace-covariogram fulfills all the properties of a
classical covariogram (e.g., it is a symmetric, positive-definite function, [9]). It was
defined in the context of L2 data in [8], and then generalized to object data in any
separable Hilbert spaceH in [2].
The trace-covariogram is strictly related with a counterpart of the classical vari-

ogram, named trace-variogram, that is defined as the function 2γ : D ×D → R+

that maps any pair of locations (s1, s2) as

2γ(s1, s2) = E[‖χs1 − χs2‖
2]− ‖ms1 −ms2‖2. (1.4)

The trace-variogram fulfills classical properties, such as being a conditionally nega-
tive definite function [e.g., 2].
On these premises, definitions of stationarity can be stated for the random field
{χs, s ∈ D}. In particular, we here focus on definitions of second-order stationarity
in a strong sense (Definition 1.2.1) and in a global sense (Definition 1.2.2). The
interested reader can find weaker definitions of stationarity in [2].

Definition 1.2.1 A process {χs, s ∈ D} is said to be strongly second-order station-
ary if the following conditions hold:
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(i) E[χs] = m, for all s ∈ D ⊆ Rd (spatially constant mean);
(ii) E[〈χs1 −m, ·〉(χs2 −m)] = C(s1 − s2) for all s1, s2 ∈ D ⊆ Rd (spatial

covariance function depending only on the increment vector).

Definition 1.2.2 A process {χs, s ∈ D} is said to be (globally) second-order sta-
tionary if the following conditions hold:

(i) E[χs] = m, for all s ∈ D ⊆ Rd (spatially constant mean);
(ii’) E[〈χs1 − m,χs2 − m〉] = C(s1 − s2) for all s1, s2 ∈ D ⊆ Rd (trace-

covariogram depending only on the increment vector).

Second-order stationarity thus concerns a spatial homogeneity in the first and second
order structure of the field. It should be noted that stationarity does not imply the ex-
istence of a directional homogeneity, which concerns the concept of isotropy instead.
Indeed, a strongly second order stationary field is said to be isotropic if condition (ii)
is reinforced by the following condition (iii)

(iii) E[〈χs1−m, ·〉(χs2−m)] = C(‖s1−s2)‖d), for all s1, s2 ∈ D ⊆, ‖·‖d being
the norm on Rd (spatial covariance function depending only on the distance
between locations).

A globally second order stationary field is said to be isotropic if condition (ii’) is
reinforced by the following condition (iii’)

(iii’) E[〈χs1 − m,χs2 − m〉] = C(‖s1 − s2‖d) for all s1, s2 ∈ D (trace-
covariogram depending only on the distance between locations).

Both strong and global second-order stationarity are of interest from the application-
oriented viewpoint. Indeed, themethods introduced in Sections 1.3.1, 1.3.2 rely upon
the assumption of global stationarity, while the methods devised in Section 1.4 as-
sume the stronger condition of strong second-order stationarity (and Gaussianity).
We finally remark that, although assuming isotropy greatly simplifies the notation, it
should not be considered as essential for the development of the methods described
in the next sections.

1.3
Kriging prediction in Hilbert space: a trace approach

A key goal of a typical geostatistical analysis is to perform spatial prediction at a
target (unobserved) location. As long as one-dimensional Euclidean fields are con-
cerned, classical geostatistics literature advocates the use of a kriging predictor, that
is the Best Linear Unbiased Predictor (BLUP)χ∗s0 =

∑n
i=1 λ

∗
i ·χsi , whose weights

minimize the variance of prediction error under the unbiasedness constraint [e.g., 9].
In fact, in the scalar case, no ambiguity exists in the definition of linear predictor, as
this can can be equivalently interpreted either as a linear combination of the obser-
vations, or as a linear transformation of the vector of observations. Instead, when the
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feature spaceH is an infinite-dimensional Hilbert space, several possible definitions
of kriging are available. In this section, we focus on the so-called trace-approach,
that defines the kriging predictor as the best linear combination of the data, as pre-
sented in [8] for the stationary L2 setting, and further generalized in [2] for possibly
non-stationary Hilbert data.

1.3.1
Ordinary and Universal Kriging in Hilbert spaces

Given s1, ..., sn inD and the observations of the field χs1 , ..., χsn at these location,
we look for the best linear unbiased predictor χ∗s0 =

∑n
i=1 λ

∗
i ·χsi for χs0 , where

the weights λ∗1, ..., λ∗n solve the minimization problem

min
λ1,...,λn∈R

E

∥∥∥∥∥χs0 −
n∑
i=1

λi · χsi

∥∥∥∥∥
2
 subject to E

[
n∑
i=1

λi · χsi

]
= E[χs0 ].

(1.5)

In the presence of second-order stationarity, one may employ an ordinary (trace-
) kriging predictor, while for non-stationary data, universal (trace-) kriging may be
employed instead. We here consider universal kriging in H, following [2], since
ordinary kriging is obtained as a special case.
We represent the elements of the field {χs, s ∈ D} as χs = ms + δs, wherems

is the drift – which describes a possibly non-constant mean variation – whereas δs
is assumed to be a globally second-order stationary and isotropic random field with
zero-mean and trace-covariogramC . Following the approach of universal kriging for
scalar data, we describe the drift term through a linear model with scalar regressors

ms =
L∑
l=0

fl(s) · al, s ∈ D, (1.6)

where f0(s) = 1 for all s ∈ D, fl, l = 1, ..., L, are known over the entire domain
and al, l = 0, ..., L are (possibly unknown) coefficients in H. Note that the sta-
tionary case is obtained when L = 0 as in that case the mean is spatially constant.
Further, the spatial variation is assumed to be entirely captured by the regressors
{fl, l = 1, ..., L}, since the coefficients do not depend on the location s ∈ D. Note
that other approaches to model the non-stationarity of the mean are possible, e.g.,
based on (scalar or functional) covariates collected together with the data (i.e., the
kriging with external drift proposed in [? ], and discussed in Chapter ZZZ (Ignaccolo
et al.)).
In our setting, the unbiasedness constraint in (1.5) reads
n∑
i=1

λifl(si) = fl(s0), l = 0, ..., L,

which is included in the minimization functional throughL+1 Lagrange multipliers.
Hence, problem (1.5) becomes that of minimizing, w.r.t. λi, ζl, i = 1, ..., n, l =
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0, ..., L,

Φ =
n∑
i=1

n∑
j=1

λiλjC(‖si − sj‖d) + C(0)− 2
n∑
i=1

λiC(‖si − s0‖d)

(1.7)

+ 2
L∑
l=0

ζl

(
n∑
i=1

λifl(si)− fl(s0)

)
.

Denote by Σ ∈ Rn×n the variance-covariance matrix of the observations (in the
trace sense), whose (i, j)-th element is Σi,j = C(‖si − sj‖d) for i, j = 1, ..., n,
C(‖si − sj‖d) appearing in (1.5). Indicate with F = (fl(si)) ∈ Rn×(L+1)

the design matrix of the linear model (1.6), by ~λ = (λ1, . . . , λn)T the vector of
weights and ~ζ = (ζ0, . . . , ζL)T the vector of Lagrange multipliers. Call ~σ0 =
(C(‖s1−s0‖d), ..., C(‖sn−s0‖d)T the vector of (trace-) covariances between the
observations and the target, and ~f0 = (f0(s0), ..., fL(s0))T the vector of regressors
at the target location (both appearing in (1.5)). With this notation, and under usual
assumptions on the sampling design – namely Σ positive definite and F of full rank
– the functional (1.7) admits a unique minimum, found by solving the linear system(

Σ F
FT 0

)( ~λ
~ζ

)
=

(
~σ0

~f0

)
. (1.8)

The latter system is easily found by equating to zero the differential of Φ w.r.t. the
λ’s and the ζ’s.
The variance of the prediction error (i.e., the value of (1.7) at the optimum) is

called universal kriging variance, and is obtained as

σ2
UK(s0) = C(0)−

n∑
i=1

λ∗iC(‖si − s0‖d)−
L∑
l=0

ζ∗l fl(s0) (1.9)

=
n∑
i=1

λ∗i γ(‖si − s0‖d) +
L∑
l=0

ζ∗l fl(s0), s0 ∈ D.

The latter quantifies the uncertainty of the prediction and can be used to build pre-
diction bands (e.g., by using the Chebychev inequality). Nonetheless, it should be
noted that it does not consider the variability of the possible estimate of the covari-
ance structure, as the latter is assumed to be known over the entire construction.
Instead, in most cases, the trace-covariogram needs to be estimated as well, and the
estimated covariance is eventually plugged-in in (1.8). Classical geostatistics advo-
cates the estimate of the (trace-)variogram in place of the (trace-)covariogram. The
two functions are linked by the relation

2γ(h) = C(0)− C(h), h ∈ D.

Estimators of the variogram are generally more robust than those of covariogram,
hence preferred.
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To estimate the variogram, a two step procedure is generally employed: (1) esti-
mate an empirical variogram, and (2) fit a parametric model (e.g., spherical, expo-
nential, Matérn) to the estimate at point (1), in order to guarantee that the properties
of a valid variogram (e.g., conditional negative definiteness) are fulfilled. If global
second-order stationarity and isotropy holds true, one can use the method-of-moment
estimator to achieve point (1) [8, 2]

2γ̂(h) =
1

|N(h)|
∑

(i,j)∈N(h)

‖χsi − χsj‖
2, (1.10)

where N(h) = {(i, j) |h − ∆h ≤ ‖si − sj‖d ≤ h + ∆h}, and |N(h)| is its
cardinality. Estimator (1.10) provides an unbiased estimate of the trace-variogram
2γ only if the assumptions of stationarity and isotropy are verified. Otherwise, such
estimator should not be employed, because it considers only the first term of the
variogram definition in (1.4) (i.e., E[‖χs1−χs2‖

2]), while it neglects the additional
term ‖ms1 −ms2‖ (which is null under stationarity). When considering the non-
stationary model here introduced, one can use estimator (1.10) on the residuals δsi ,
i = 1, ..., n, which are a partial observation of a globally-second order stationary
and isotropic process. Nevertheless, these are usually latent, and can be estimated by
difference once the drift has been assessed. Hence, although in principle one could
perform universal kriging without having estimated the drift in advance, whenever
the trace-covariogram is unknown, providing a good estimate of the drift is essential.
Section 1.3.2 will be dedicated to this point. Instead, in case of stationarity (and
isotropy), estimating the drift is not required for the purpose of performing spatial
prediction.

1.3.2
Estimating the drift

The problem of estimating the drift for the spatial model here considered consists
in estimating a linear model in the presence of spatially correlated random errors.
Indeed, under model (1.6), the model for the data is

χsi =
L∑
l=0

fl(si) · al + δsi . (1.11)

To set the notation, we callHn the Hilbert spaceH×· · ·×H, with the inner prod-
uct 〈~x, ~y〉 =

∑n
i=1〈xi, yi〉, for ~x = (x1, . . . , xn)T ∈ Hn, ~y = (y1, . . . , yn)T ∈

Hn. We denote by ~χ = (χs1 , ...,χsn)T ∈ Hn, ~a = (a0, ..., aL)T ∈ HL+1, and
~δ = (δs1 , ..., δsn)T ∈ Hn. In this setting, model (1.11) can be expressed in matrix
form as ~χ = F~a+ ~δ.
The theory of functional linear models was developed under the founding hypoth-

esis of independent and identically distributed residuals. As a consequence, in the
presence of correlated residuals, the ordinary least squares approach developed in
that framework turns out to provide suboptimal results. To properly account for the
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spatial dependence, a generalized least squares criterion (GLS) can be used instead
[2]. The latter seeks to minimize the functional Mahalanobis distance between the
observations and the evaluation of the drift at the sampled locations. That is, the
GLS estimator for vector ~a is found as the solution of the minimization problem

min
~̂a∈HL+1

n∑
i=1

‖[Σ−1/2 ◦ (~χ− F ~̂a)]i‖2, (1.12)

◦ indicating the matrix multiplication inH, that is [A~x]i =
∑m
j=1Aij · xj , for i =

1, ..., q, with ~x ∈ Hm, A ∈ Rq×m. If rank(F) = L + 1 ≤ n and rank(Σ) = n,
problem (1.12) is well-posed and its unique solution is found as [2]

~̂a
GLS

= (FTΣ−1F)−1FTΣ−1 ◦ ~χ. (1.13)

Estimator (1.13) was proved to be the best linear unbiased estimator for ~a. However,
it depends on the matrix Σ, hence on the trace-covariogram, which can be estimated
only once the residuals have been assessed, and the latter residuals can be only com-
puted by difference based on the drift estimate. To jointly assess the residuals and the
trace-(co)variogram, one can then resort to an iterative algorithm, initialized, e.g., to
the OLS estimate of the drift. Such algorithm usually converges within 5 iterations,
although theoretical arguments on its convergence are yet to be proved. Having com-
puted the drift and the trace-variogram, the universal kriging system can be solved
by plugging-in the estimated variance-covariance matrix in (1.8).

1.3.3
An example: trace-variogram in Sobolev spaces

We here discuss through an example the key importance of the choice of the ambient
space for the (geo)statistical analysis of functional or object data. Although there
are cases in which a natural ambient space is available (e.g., suggested by dynamical
equations governing the system), the choice of the feature space for the analysis is
indeed a crucial modeling step. As a way of example, Figure 1.1 shows a set of
spatially dependent curves, simulated from two random fields {χ(m)

s , s ∈ D},m =
1, 2,D = [0, 2]× [0, 3]. The latter fields were built in [2] by combining in different
ways the same set of independent, zero mean, second-order stationary and isotropic
scalar random fields {ξs,j , s ∈ D}, j = 1, . . . , 7, as

χ(1)
s =

7∑
k=1

ξs,kek; χ(2)
s =

25∑
k=19

ξs,k−18ek, (1.14)

where {ek, k ≥ 1} denotes the Fourier basis. A detailed description of the simu-
lation setting is provided in [2, , Supplementary material]. Figure 1.1 evidences the
very different patterns displayed by the two groups of curves. Indeed, the realizations
associated with the field {χ(2)

s , s ∈ D} show a much higher amplitude variability
(i.e., along the vertical direction) than those associated with the field {χ(1)

s , s ∈ D}.
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Figure 1.1 Spatially dependent curves simulated from the fields {χ(1)
s , s ∈ D} (left panel)

and {χ(3)
s , s ∈ D}, (right panel). Modified from [2].

This is due to the fact that the second field is built upon a higher order truncation of
the basis, and involves only the 10th to 12th frequencies, while only the first 3 fre-
quencies are included in the construction of the first field.
Despite these apparent diversities between the two fields, no difference exists in

their spatial dependence structure if the fields are embedded in the space L2 of
square-integrable functions. Indeed, straightforward computations yield, for m =
1, 2,

2γ
(m)
L2 (si, sj) = E[‖χ(m)

si −χ
(m)
sj ‖

2
L2 ] =

Nm∑
k=1

E
[
|ξ(m)
si,k
− ξ(m)

sj ,k
|2
]

=
7∑
k=1

2γξk ,

γξk indicating the variogram of the scalar field of coefficients {ξs,k, s ∈ D}, k =
1, ..., 7. Instead, when modeling the data as objects in the Sobolev space H1 – i.e.,
the space of functions in L2 whose derivatives (in a weak sense) are in L2 – one can
capture the diverse behavior of the fields, through the geometry of the space. The
latter choice entails the use of a norm based not only on point-wise evaluations, but
also on the differential properties of the elements. In such a case, the variogram is
indeed different in the two fields, being

2γ
(1)
H1 = 2γ

(1)
L2 +

7∑
k=2

⌊
k

2

⌋2

π22γξk =
7∑
k=1

(
1 +

⌊
k

2

⌋2

π2

)
2γξk ;

2γ
(2)
H1 = 2γ

(2)
L2 +

25∑
k=19

⌊
k

2

⌋2

π22γξk−18
=

25∑
k=19

(
1 +

⌊
k

2

⌋2

π2

)
2γξk−18

.
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Figure 1.2 Empirical trace-variograms in L2 (on the left) and H1 (on the right). Modified
from [2].

Notice that, for k = 1, . . . , 7, the weights associatedwith the variogram 2γξk depend
on the frequency associated with ξk, a greater weight being assigned to a higher
frequency.
Figure 1.2 shows the empirical trace-variograms estimated inL2 (Figure 1.2a) and

in H1 (Figure 1.2b) from a sample of 100 observations χ(m)
s1 , ..., χ

(m)
s100 from each

field {χ(m)
s , s ∈ D},m = 1, 2, the same sites s1, ..., s100 being uniformly sampled

in D. Although the shapes of the variograms are quite similar in the two cases, the
orders of magnitude of the horizontal asymptotes — twice the global variance of the
process — are significantly different. Indeed, the variogram 2γ

(2)
H1 (in red) assumes

much higher values than 2γ
(1)
H1 (in blue), since the random field {χ(2)

s , s ∈ D}
has a much higher energy. Indeed, in dynamical system theory, the square of the
Sobolev norm of the state (i.e., ‖χs‖2) coincides with (twice) the energy of the sys-
tem. Hence, the ambient space for geostatistical analysis not only provides the feature
space for the object data, but implies a precise physical meaning for the measure of
stochastic variability: the global variance represents (twice) the mean energy of the
system, while the trace-variogram (twice) themean energy of the increments between
two states.
In conclusion, one should pay close attention to the choice of the feature space

for the analysis. The latter should be guided by the dataset structure, the possible
physical laws governing the system and by the purposes of the analysis.

1.3.4
An application to non-stationary prediction of temperatures profiles

We here show an example of application of the trace-approach to non-stationary en-
vironmental data. Following [2], the data we consider are daily mean temperature
profiles, collected during 1980 at 27 locations in the Maritime Provinces of Canada
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Figure 1.3 Canada’s Maritime Provinces Temperatures dataset, year 1980. From left to
right: map of Maritime Provinces and sampled locations; 6 fitted temperature curves;
empirical estimate of the trace-variogram. Modified from [2].

(data source: Natural Resources of Canada; http://atlas.nrcan.gc.ca/).
Raw data were smoothed by using a Fourier basis of 65 elements, obtaining the set
of curves displayed in Figure 1.3.
For illustration purposes, we performed the geostatistical analysis in L2, using

on the spatial domain a geodesic distance, since coordinates are given in latitude
and longitude. The graphical inspection of the trace-semivariogram estimated from
the data suggests the presence of a non-constant drift model. Indeed, the empirical
estimate does not show any apparent finite sill (i.e., horizontal asymptote, see Figure
1.3, right panel). To select the drift model, we considered the polynomial models of
degree 2 in the coordinates, and sought the one minimizing the kriging prediction
error, assessed by leave-one-out cross-validation [2]. On this basis, we found as
optimal model

m(s, t) = a0(t) + a1(t)y + a2(t)x2 + a3(t)y2 + a4(t)xy,

for s = (x, y) = (Longitude, Latitude), t ∈ T = [0, 366].
Figure 1.4 displays the estimate of the drift for the days of summer solstice and the

winter solstice. Note that we may have chosen any day of the year for such repre-
sentation: the theory here presented allows obtaining joint and consistent estimates
(and predictions) for all the days of the year. The maps in Figure 1.4 have a clear
climatical interpretation, as they represent the presence of currents from the Ocean,
whose circulation causes a change in the gradient of temperature along the year. In
Figure 1.5 we represent the universal kriging maps for the same days considered in
Figure 1.4. From the analysis of the maps one can conclude that the drift term tends
to drive the estimates in the colder seasons (panel of December), whereas during the
summer season (panel of June), the temperature map displays evident local patterns,
due to the peculiar geographical configuration of the area – particularly for the Bay
of Fundy. Although the spatial patterns evidenced during the year tend to be dif-
ferent, the universal kriging predictor allows to properly capture them, thanks to its
flexibility.

http://atlas.nrcan.gc.ca/
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Figure 1.4 Estimated trace-semivariogram from the residuals (top panel) and estimated
drift for the Summer Solstice (21st June; bottom-left panel) and the Winter Solstice (21st
December; bottom-right panel). The drift maps are extracted from the drift temperature
profiles estimated in L2. In the top panel, (geodesic) distances are given in kilometers.
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Figure 1.5 Universal kriging maps for the Summer Solstice (21st June) and the Winter
Solstice (21st December), extracted from the temperature profiles predicted via universal
kriging in L2.
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1.4
An Operatorial viewpoint to kriging

In this section we briefly review a second approach to kriging, namely the operatorial
ordinary kriging. Here, the kriging predictor is build upon a linear transformation of
the vector of data XΛ

s0 = Λ~χ, for some linear operator Λ : Hn → H.
The development of such classes of predictors is motivated by the observation that,

despite its simplicity, predictor χ∗s0 =
∑n
i=1 λi · χsi does not provide, in general,

the best linear unbiased transformation of the vector of observations. The operato-
rial viewpoint was firstly considered in [7] in Reproducing Kernel Hilbert Spaces
(RKHSs), that are functional spaces whose elements are more regular than gener-
al Hilbert spaces (see also Chapter WWW (Nerini et al)). These authors addressed
the problem of finding the best predictor over the class of linear unbiased Hilbert-
Schmidt transformations of the observations, of the form χBs0 =

∑n
i=1Biχsi ,

where Bi : H → H are linear Hilbert-Schmidt operators and H a RKHS. Al-
though all finite-dimensional Hilbert spaces are RKHS, other widely-used spaces,
such as the space L2, need not be a RKHS. In [4], a more general theory was intro-
duced based upon the idea of working with measurable linear transformations instead
of linear Hilbert-Schmidt operators: in this particular setting, these authors showed
that the operatorial kriging problem is well-posed for any separable Hilbert spaceH.
We now formally introduce the latter predictor, and discuss its relation with the

other kriging predictors here discussed.
Given two separable Hilbert spaces,H1,H2, we denote by L a Borel-measurable

map from (H2,B(H2)) to (H1,B(H1)),B(Hi) being the Borel σ-algebra ofHi,
for i = 1, 2. Given a measure µ on (H2,B(H2)), we say that L is a measurable
linear transformation with respect to µ (µ-mlt), if L is linear on a subspace DL ∈
B(H2) with µ(DL) = 1.
Given a set of locations s1, ..., sn and the observation of the process at these lo-

cations, χs1 , ...,χsn , we consider the operatorial ordinary kriging predictorχ
Λ∗

s0 =
Λ∗~χ for χs0 . Here, Λ∗ : Hn → H is a measurable linear transformation with
respect to the law µ~χ of ~χ, and minimizes

E[‖χs0 − χ
Λ
s0‖

2] subject to E[χΛ
s0 ] = m, (1.15)

over all Λ : Hn → H a µ~χ-mlt and where in the objective functional χΛ
s0 stands for

χΛ
s0 = Λ~χ.
To tackle this problem, throughout the section we assume {χs, s ∈ D} to be a

Gaussian random field on (Ω,F,P) in (H,B(H)), that is, we assume that all its
finite-dimensional laws are Gaussian in H. Recall that a random element in H is
Gaussian if 〈x,χ〉 has a Gaussian distribution for every x ∈ H. Note that this as-
sumption is crucial for the validity of the results here presented, because a full char-
acterization of the properties of mlts is only available under Gaussianity. We further
assume that the field is strongly second-order stationary; we call m its (spatially-
constant) mean, and C its (stationary) spatial covariance function, defined as in (1.2).
Under this assumptions, the ordinary kriging problem can be shown to be well-

posed [4]. To state such result, we need the following further notation. We call
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1 : H → Hn the linear operator acting on x ∈ H as 1x = (x, ..., x)T , and
1′ its adjoint. We denote by µ~χ0

= N
(
m~χ0

, C~χ0

)
the law of the random vector

~χ0 =
(
χs0 , ~χ

T
)T

in Hn+1, with expected value m~χ0
=
(
m, (1m)T

)T and
covariance operator C~χ0

: Hn+1 → Hn+1. The latter can be expressed in block
form as

C~χ0
=

(
Cχs0

Cχs0
~χ

C~χχs0
C~χ

)
.

Here C~χ indicates the covariance operator of ~χ, i.e., (C~χ~x)i =
∑n
j=1 C(si−sj)xj ,

for ~x ∈ Hn, i = 1, ..., n, and C~χχs0
is the cross-covariance operator between ~χ

and χs0 , i.e., C~χχs0
~x =

∑n
j=1 (s0, sj)xj , for ~x ∈ Hn.

The following Theorem 1.4.1 – proved in [4] – states that the operatorial ordinary
kriging problem is well-posed.

Theorem 1.4.1 ([4]) Under the previous assumptions and notation, (1.15) admits a
unique minimizer χΛ∗

s0 = Λ∗~χ, where Λ∗ is the µ~χ-mlt solving{
ΛC~χ − Cχs0

~χ + ζ1 1′ = 0;

Λ 1− I = 0,
(1.16)

with 1x = (x, x, ..., x)T , for x ∈ H, I : H → H the identity operator and ζ1
a µχ0

-mlt that represents the Lagrange multiplier associated with the unbiasedness
constraint. Moreover, for x ∈ Hn, one has

Λ∗x = M∗x+ L(x− 1M∗x), (1.17)

where M∗ is the µ~χ-mlt defined, for x ∈ Hn, as M∗x = (1′C−1
~χ 1)−11′C−1

~χ x,
and L is the µ~χ-mlt of conditional expectation that acts on x ∈ Hn as Lx =
Cχs0

~χC
−1
~χ x.

We refer the interested reader to [4] for the proof of Theorem 1.4.1. We note
however that (1.16) can be expressed in matrix form as(

Λ ζ1
)( CX 1

1′ 0

)
=
(
CXs0X I

)
, (1.18)

which as the very same form as (1.8), but in an operatorial setting. Moreover, a
second key element of Theorem (1.4.1) is the explicit expression for the optimal µ~χ-
mlt Λ∗ in (1.17). The latter involves two parts: the first related with an operatorial
version of the generalized least squares estimator for the mean function, analogue to
that described in Section 1.3.2; the second part exploits the operator of conditional
expectation L of χs0 given ~χ, applied to the estimated residuals. As showed in
[12, 13], the latter operator L is the µ~χ-mlt that allows to obtain the conditional
expectation E[χs0 |~χ] when applied to the centred observations (~χ − 1m), under
the assumption that the meanm is known, i.e.,

E[χs0 |~χ] = m+ L(χ− 1m). (1.19)
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Note that (1.19) has the very same form of the familiar expression of conditional
expectation in the multivariate setting. Hence, (1.17) shows an interesting relation
of the operatorial kriging predictor with the conditional expectation, which has a very
analogous counterpart in the finite dimensional case [9]. Indeed, kriging coincides
with the conditional expectation only when the mean is known (i.e., simple kriging
[4]). In all other cases, it is a plug-in estimator that is built upon the conditional
expectation, by employing the GLS estimate of the mean.
We finally mention that both the operatorial kriging predictor in RKHSs and the

trace-kriging predictor can be seen as particular cases of the operatorial kriging pre-
dictor defined by Theorem 1.4.1. Indeed, the kriging predictor proposed in [7] can be
found by embedding Theorem 1.4.1 in a RKHS. A particular case is then obtained
for finite-dimensional Hilbert spaces, already explored by [7], that are interpreted
as finite-dimensional approximations of the BLUP χΛ∗

s0 . Similarly, in the stationary
Gaussian case, the trace-kriging predictor can be interpreted as the finite-dimensional
approximation of the operatorial kriging predictor within the n-dimensional Hilbert
space generated by the observations. We refer the reader to [4] for further details.

1.5
Kriging for manifold-valued random fields

While spatial statistics of functional data has recently received much attention, as
proved by the many contributions in this book, the extension to the case of non Eu-
clidean data is even a greater challenge because they do not belong to a vector space.
[3] recently proposed a kriging procedure for data belonging to Riemannian man-
ifolds, where local tangent space approximations can be used. Indeed, any Riem-
manian manifold admits an approximation based on a Hilbert tangent space, where
linear geostatistical methods can be developed. Thus, it is possible to use the local
geometry of the manifold to find a data-driven linearization, i.e. looking for the tan-
gent space where the parametric model provides the best possible fit for the available
data. Then, the spatial dependence can be modelled in the tangent space using the
methods for Hilbert spaces described above. In this section, we describe the method
introduced in [3] and we discuss some possible generalisation.

1.5.1
Residual kriging

We first need to introduce some definitions and notations to model data that take
values in a Riemannian manifold. LetM be a Riemannian manifold and, given a
point P inM, let H be the tangent space at the point P , H = TPM. This is a
Hilbert space when equipped with a inner product 〈·, ·〉H in H. Since our aim is to
model the spatial variation in the local tangent space in P , we need a way to map
elements of the tangent space to the manifold and viceversa. Thus, two important
objects are the exponential map and its inverse, the logarithmic map. The exponential
map is a smooth map from TPM toM, which is defined via the geodesics (the
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Figure 1.6 Visual representation of the tangent space in P on a sphere and of the
exponential map of a vector T in the tangent space.

shortest paths between points on the manifold) passing through P : it maps a tangent
vector T ∈ TPM to an element inM by travelling on the manifold, for a unit of
time, along the geodesic starting in P in direction T . Indeed, under some technical
assumptions onM, for every pair (P ;T ) ∈M×TPM, there is a unique geodesic
curve g(t) such that g(0) = P and g′(0) = T . The exponential map ofM in P is
defined as the point at t = 1 of this geodesic, i.e. g(1). We indicate here with expP
the exponential map inP , and with logP its inverse. Figure 1.6 shows a visualisation
of these concepts for the case of a sphere. More details on these definitions and on the
properties of Riemannianmanifolds can be found, e.g., in [14] and a detailed example
for the case of the manifold of positive definite symmetric matrices is discussed in
Section 1.5.2.
For a location s in the spatial domain D, we can now model the random element

Ss, taking value inM, as

Ss(~a, P ) = expP (A(~f(s);~a) + δs). (1.20)

Here,A(~f(s);~a) is a drift term defined in the tangent spaceH, described by a linear
model with ~a = (a0, ..., aL) a vector of coefficients belonging to H and ~f(s) a
vector of scalar regressors:

A(~f(s);~a) =
L∑
l=0

fl(s) · al,

where f0(s) = 1. Instead, {δs, s ∈ D} denotes a zero-mean globally second-order
stationary and isotropic random field in the Hilbert space H, with covariogram C
and semivariogram γ.
Let now s1, ..., sn be n locations in D, and let S1, ...,Sn be the observations

of (1.20) at these locations. The goals are to estimate the parameters P and ~a in
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model (1.20) and to perform spatial prediction at an unobserved location s0. We
denote by Σ ∈ Rn×n the covariance matrix of the array ~δ = (δs1 , ..., δsn)T in
Hn, that is Σij = C(‖si − sj‖2d), and call ~R ∈ Hn the array of residuals Ri =

A(~f(s);~a)− logP (Si). To estimate (P,~a) accounting for the spatial dependence,
the generalized least square (GLS) functional

(P̂ , ~̂a) = argmin
P∈M,~a∈HL+1

||Σ−1/2 ~R||2Hn (1.21)

needs to be minimized. When Σ is known, problem (1.21) can be solved iteratively,
by alternatively minimizing the GLS functional in (1.21) with respect to P given
~a and to ~a given P . The minimizer in ~a given P can be explicitly determined as
detailed in Section 1.3.2, i.e.,

~̂a
GLS

(P ) = (FTΣ−1F)−1FTΣ−1 ◦ ~Y (P ), (1.22)

where F ∈ Rn×(L+1) is the design matrix, Fil = fl(si), and ~Y (P ) is the array
~Y (P ) = (logP (S1), ..., logP (Sn))T ∈ Hn. On the other hand, an expression
for the minimizer in P given ~a is not available, in general. The complexity of such
minimization is problem dependent, and may require the development of specific
optimization techniques.
When (P,~a) are known, it is possible to estimate Σ by estimating the semivari-

ogram γ(h), for example following the strategy of Section 1.3.2. That is (i) estimate
the empirical semivariogram from the residuals as

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

||δsi − δsj ||2H ,

and (ii) fit a parametric model to the empirical estimate to obtain a valid model. A
good estimate of the spatial dependence (including the choice of the model semivari-
ogram) is crucial in the applications. Note that, the tangent space being Hilbert, most
of the existing methods in linear geostatistics can be used in this step of the analysis
[see, e.g., 15, 16, and reference therein]. Since in practice both the parameters and
the spatial dependence are unknown, there is the need to resort to a nested iterative
algorithm, where the semivariogram is estimated from the residuals at the current
iteration.
Estimated the parameters of model (1.20) as (P̂ , ~̂a, Σ̂), the kriging prediction

can be performed as follows. In the Hilbert space H, the simple kriging predictor
for δs0 is well-defined and it is obtained as

∑n
i=1 λ

0
i δ̂si , where δ̂si stands for the

estimated residual at si, δ̂si = A(~f(si); ~̂a) − logP̂ (Si), and the vector of krig-

ing weights ~λ0 = (λ0
1, ...,λ

0
n) is found as ~λ0 = Σ̂

−1
~c, with ~c = (Ĉ(||s1 −

s0||d), . . . , Ĉ(||sn − s0||d))T . The spatial prediction of S at the target location s0

is then

Ŝ0 = expP̂ (âGLS0 (P̂ ) +
L∑
l=1

âGLSl (P̂ )fl(s0) +
n∑
i=1

λ0
i δ̂si ,

where ~f(s0) is the vector of covariates given at the location s0.



John Q.Public: The Public Book — Chap. 1 — 2017/7/1 — 12:50 — page 18

18

1.5.2
An application to positive definite matrices

Positive definite matrices are an example of manifold-valued data, the modelling of
positive definite matrices random field being relevant in applications such as Diffu-
sion Tensor Imaging [17] and covariances between meteorological variables [3, 18].
The space PD(p) of positive definite matrices of dimension p is a convex subset of
Rp(p+1)/2 but it is not a linear space: in general, a linear combination of elements
of PD(p) does not belong to PD(p). The tangent space TPPD(p) to the manifold
of positive definite symmetric matrices of dimension p in the point P ∈ PD(p)
can be identified with the space Sym(p), the space of symmetric matrices of dimen-
sion p, which is linear and can be equipped with an inner product. A Riemannian
metric in PD(p) is then induced by the inner product in Sym(p) and the choice
of the inner product in the tangent space determines the form of the geodesic (i.e.
the shortest path between two elements on the manifold) and thus the expression
of the geodesic distance between two positive definite symmetric matrices. A pos-
sible choice for the Riemannian metric is generated by the scaled Frobenius inner
product in Sym(p), which is defined as 〈A,B〉P = trace(P−

1
2ATP−1BP−

1
2 ),

where A,B ∈ Sym(p). This choice is very popular for covariance matrices, be-
cause it generates a distance which is invariant under affine transformation of the
random variables. For every pair (P,A) ∈ PD(p) × Sym(p), there is then a
unique geodesic curve g(t) such that

g(0) = P,
g′(0) = A.

When the Riemannian metric is generated by the scaled Frobenius inner product, the
expression of the geodesic becomes

g(t) = P
1
2 exp(tP−

1
2AP−

1
2 )P

1
2 ,

where exp(C) indicates the exponential matrix of C ∈ Sym(p). The exponential
map of PD(p) in P is defined as the point at t = 1 of this geodesic:

expP (A) = P
1
2 exp(P−

1
2AP−

1
2 )P

1
2 .

Thus, the exponential map takes the geodesic passing through P with “direction”
A and follows it until t = 1. The exponential map has an inverse which is called
logarithmic map and is defined as

logP (D) = P
1
2 log(P−

1
2DP−

1
2 )P

1
2 ,

where log(C) is the logarithmic matrix of C ∈ PD(p). The logarithmic map re-
turns the tangent element A that allows the corresponding geodesic to reach D at
t = 1.
With this structure, it is possible to apply the residual kriging method described

above to positive definite matrix-valued data. [3] show the kriging interpolation for
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Figure 1.7 Left: empirical semivariogram (symbols) and fitted exponential model (solid
line). The geodesic distances in the spatial domain are measured in km. Right: Ordinary
kriging for the (temperature, precipitation) covariance matrix field for the month of January;
green ellipses indicate original data. A covariance matrix S at location s is represented as
an ellipse centered in s and with axis √

σj~ej , where S~ej = σj~ej for j = 1, 2. Horizontal
and vertical axes of the ellipses represent temperature and precipitation respectively.
Modified from [3].

the covariance matrices between temperature and precipitation in Quebec, using data
from Canadian meteorological stations made available by Environment Canada on
the website http://climate.weatheroffice.gc.ca. The 7 meteorologi-
cal stations where all monthly temperature and precipitation data are available from
1983 to 1992 are considered. For each station and for each month from January to
December, these 10-year measures are used to estimate the 2 × 2 covariance ma-
trix between temperature and precipitation, obtaining and separately analysing 12
datasets, each composed by n = 7 spatially dependent sample covariance matrices
(with the previous notation, n = 7 and p = 2). [3] found out that the covariation
between temperature and precipitation changes across the calendar year. We report
here the results obtained for the month of January. Including only a constant term in
the tangent space model (i.e., assuming that the matrix random field has a constant
mean) leads to an estimate of the empirical semivariogram that suggests to move
toward a non-stationary model, as it can be seen in Figure 1.7. The simplest drift
model which guarantees the stationarity of the residuals is found to be the following
linear model depending on longitude:

A(Longitudei,Latitudei) = a0 + aLongLongitudei. (1.23)

A possible meteorological interpretation is associated with the exposition of the re-
gion toward the sea, sincemodel (1.23) accounts for the distance between the location
of interest and the Atlantic Ocean. This is likely to influence temperatures, precip-
itations and their covariability. The estimates of the semivariogram and of the drift
and the kriging prediction can be seen in Figure 1.8.

http://climate.weatheroffice.gc.ca
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(a) Residuals semivariogram (b) Estimated drift (c) Kriging prediction

Figure 1.8 Kriging of the (temperature, precipitation) covariance matrix field during
January, with a drift term depending on longitude. A covariance matrix S at location s is
represented as an ellipse centered in s and with axis √

σj~ej , where S~ej = σj~ej for
j = 1, 2. Horizontal and vertical axes of the ellipses represent temperature and
precipitation respectively. In subfigure (b) and (c) green ellipses indicate the data, blue
ellipses the estimated drift and the kriging interpolation, respectively. In subfigure (a) the
residual empirical semivariogram (symbols) and the fitted exponential model (solid line)
are reported. The geodesic distances in the spatial domain are measured in km. Modified
from [3].

1.5.3
Validity of the local tangent space approximation

The method introduced in [3] relies on a local Euclidean approximation and, al-
beit the choice of the best local approximation is data-driven, a natural question is
if this is suitable to model the data at hand. The authors presented a simulation
study to explore this issue in the case of positive-definite matrices, by evaluating the
performance of the kriging predictor when data are generated from a model differ-
ent from (1.20) (i.e, the local linear approximation is not valid). In particular, they
generate a non stationary matrix field according to a probabilistic model with mean
Gs = expP (A(~f(s);~a)), where P and A(~f,~a) are set parameters. This random
matrix field is obtained through the sample covariance matrices generated by the re-
alizations of a Gaussian random vector field ~v in the following way. Let D ⊂ R2

indicate the common spatial domain of two independent Gaussian random fieldsws,
ys, s ∈ D. Both random fieldsws and ys have zero mean and Gaussian spatial co-
variance with decay φ = 0.1, sill equal to 1 and zero nugget. For s ∈ D, the covari-
ancematrix (between components) of the random vector field~vs = (Gs)

1
2 (ws,ys)

′

is equal to Gs. Then, N independent realizations of the random vector field ~v are
generated and, for s ∈ D, the realization of the manifold-valued random field is
given by the sample covariance matrices

Ss =
1

N − 1

N∑
k=1

(~vs,k−~̄vs)(vs,k−~̄vs)T ∼Wishart2

(
1

N − 1
Gs, N − 1

)
,
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(1.24)

~̄vs being the sample mean in s ∈ D. This simulation process is therefore defined on
the manifold of positive definite symmetric matrices and the parameter N controls
the variability of the the matrix random field S in s. WhenN is large, the data will
be concentrated around the drift (which satisfies the tangent space approximation).
Therefore,N also controls the violation of the tangent space approximation. Wewant
to evaluate the performance of the kriging procedure when applied to these simulated
fields by comparison with the case when data are generated bymodel (1.20). Data are
then generated on an equally spaced 10 × 10 grid, 15 locations are taken as known
and the prediction error p̄ = 1

85

∑85
i=1 d(Ssi , Ŝsi)

2 in the remaining 85 locations
is measured. Here d(., .) denotes the Riemannian distance between two positive
definite matrices [see 3]. This experiment is repeated with different values of the
model parameters. Since the two models are controlled by different parameters, to
compare them on the same footing we can measure the sample marginal variability,
defined as ς = 1

100

∑100
i=1 d(Ssi , Gsi)

2, i.e. the variation of the realization of the
field with respect to the true mean field Gs.
Figure 1.9 compares the performances of the kriging prediction when data are

generated with model (1.24) and when data are generated with the tangent space
model (1.20), for a range of values of the sample marginal variability.
This suggests that the higher the value of the sample marginal variability, the worse

is the relative performance of the kriging predictor between the two cases. This is to
be expected because a high dispersion on the manifold means that no tangent space
can accurately describe the data. However, for low values of the sample marginal
variability the performance of the kriging predictor in the two settings is comparable,
supporting its robustness to the violation of the model provided that the tangent space
approximation is able to describe the observations in a fairly accurate way. More
details on this simulation study can be found in [3].
By way of example, Fig. 1.9b and 1.9c represent two realizations of the matrix

field generated from (1.24) for high and low values of N , respectively, i.e. low or
high values of the sample marginal variability. It can be seen that values of sam-
ple marginal variability where the performance of the kriging predictor gets worse
correspond to random fields too noisy to be of any use in applied scenarios. How-
ever, other examples of manifold-valued data may present cases where the tangent
space approximation is not suitable and a kriging procedure defined directly on the
manifold would be needed. Ordinary kriging for a stationary manifold-valued ran-
dom field can be achieved with a weighted Fréchet mean. For example, [18] used
this approach to estimate the mean from a spatially dependent sample. However, the
optimal choice of the weights for the ordinary kriging predictor is still an open prob-
lem. When the field is non stationary the problem is even more complex since the
non linear nature of the data does not allow the removal of a non-stationary mean
function. A possibility currently investigated by the authors is to model the response
field by segmenting the spatial domain into regions where the field can be assumed to
be stationary and ordinary kriging prediction can be used. The challenge is of course
the identification of the correct scale for these sub-regions and how to deal with the
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(a) Empirical prediction error

(b) Field realization with ς = 2.9 (c) Field realization with ς = 6.7

Figure 1.9 Panel (a): Empirical prediction error as a function of the sample marginal
variability ς , with a local polynomial smoothing added to help visual comparison, for data
generated from the tangent space model (1.20) (black points and solid black line) and
from procedure (1.24) (red points and dashed red line), both with Gaussian covariance
function. Panel (b) and (c): Examples of simulated fields from procedure (1.24) for N = 6

(b) and N = 4 (c) and Gaussian covariance function, with the respective values of sample
marginal variability ς. Modified from [3].

discontinuities that may be introduced in the predicted field, e.g., via randomized
approaches. Alternatively, one can think to extend to this setting locally stationary
models in the same vein as [19].
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