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Abstract: Time-resolved near infrared spectroscopy is considered to be a gold standard 
technique when measuring absolute values of tissue optical properties, as it provides 
separable and independent information about both tissue absorption and scattering. However, 
time-resolved instruments require an accurate characterization by measuring the instrument 
response function in order to decouple the contribution of the instrument itself from the 
measurement. In this work, a new approach to the methodology of analysing time-resolved 
data is presented where the influence of instrument response function is eliminated from the 
data and a self-calibrating analysis is proposed. The proposed methodology requires an 
instrument to provide at least two wavelengths and allows spectral parameters recovery 
(optical properties or constituents concentrations and reduced scatter amplitude and power). 
Phantom and in-vivo data from two different time-resolved systems are used to validate the 
accuracy of the proposed self-calibrating approach, demonstrating that parameters recovery 
compared to the conventional curve fitting approach is within 10% and benefits from 
introducing a spectral constraint to the reconstruction problem. It is shown that a multi-
wavelength time-resolved data can be used for parameters recovery directly without prior 
calibration (instrument response function measurement). 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The time-resolved (TR) near-infrared spectroscopy (NIRS) is a diagnostic technique [1–3] 
that uses near-infrared light (600-1000nm) in form of short (femto/pico-seconds in width) and 
low energy pulses at repetition rates of tens of MHz. Light pulses are delivered to the tissue 
surface and a TR detection/acquisition electronic chain, often based on photon counting 
devices measures the time of flight of single photons originating at source pulses and builds a 
distribution of time of flight of photons (DTOF). The measured DTOF shape depends on both 
path-lengths (related directly to photon travel time within tissue) and absorption experienced 
by photons travelling from the source to the detector. 

The time-resolved spectroscopy (TRS) has widely become and is considered a gold 
standard in measurement of tissue optical properties [4,5] as it is able to provide both 
absorption and reduced scattering coefficient of the tissue being imaged. When used at 
multiple wavelengths, the spectral information of the absorption provides absolute 
concentrations of the main tissue constituents such as oxygenated and reduced haemoglobin, 
water, lipid and in some instances cytochrome c oxidase [6,7]. The spectrally resolved 
reduced scattering can additionally provide information about the scatter size and density of 
the medium. Thus, TRS has found many in-vivo applications e.g. confirmation of brain death 
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[8], intraoperative brain monitoring during endarterectomy [9], traumatic brain injury 
monitoring [10], optical mammography [11] or functional brain topography [2]. The 
possibility to measure the reduced scattering is of high importance on studies combining the 
TRS and the diffuse correlation spectroscopy [12–14] where the knowledge of the optical 
properties is required to recover reliable information regarding blood flow/perfusion [13]. 

The DTOF as measured by a TR instrument is affected by the properties of the system 
itself, since the measured distribution represents convolution of both tissue and the instrument 
response to an ideal (infinitely-short) light pulse. The instrument response function (IRF) is 
often measured independently and used directly within parameters recovery algorithms. The 
TR NIRS is mainly based on a recovery algorithm which optimises fitting of the theoretical 
(e.g. semi-infinite medium based) temporal point spread function (TPSF) that is convolved 
with the IRF to the measured DTOF in order to recover bulk tissue properties [15]. This is the 
typical approach as the de-convolution of the IRF from the DTOF is undesirable as it is 
known to amplify the noise within the signal [16]. 

Multiple channel DTOFs can be also used in a tomographic recovery approach, where the 
measured distributions are parametrized with photon travel path sensitive parameters such as 
total intensity, statistical moments [17], time of arrival windows [18] or Mellin-Laplace 
transform [19,20]. Using this approach, a numerical model of the problem is used to calculate 
the Jacobian (spatial sensitivity distributions) allowing the mapping of the changes in data 
measured on the surface to the change of absorption and scattering properties within the 
discretized tissue model. The utilisation of a gradient based method, such as those involving 
Jacobians, allow solving of the inverse problem to recover the unknown spatial distributions 
of the tissue optical properties, and as such must also consider the IRF. As such, in the 
moments based methods, statistical moments of the DTOF and IRF are subtracted [17], 
whereas the time windows approach requires convolving of the TPSF with the IRF [18] and 
the Mellin-Laplace reconstruction uses measurements on a reference optical phantom with 
known properties to calibrate the tissue data [19]. 

TR tomography (functional and absolute imaging) and curve fitting methodologies that 
are not sensitive to the IRF are highly desired, as it will minimise the propagation of error 
throughout the analysis and parameter recovery. As proposed in [21], bulk tissue optical 
properties can be recovered without accounting for the IRF using a subtraction time-resolved 
method where source-detector distance derivative of the statistical moments of a DTOF are 
sufficient to allow fast and direct calculation of tissue absorption and scatter. A system with a 
carefully designed source-detector configuration is therefore capable of measuring the 
derivatives of the moments directly. In systems in which the IRF shape does not change 
significantly with respect to wavelength, the IRF can be considered as spectrally invariant. 
Based on this, a new approach is proposed to allow “self-calibrating” DTOFs that are 
measured at multiple (Nλ ≥ 2) wavelengths (λ), and utilising Fourier Transformation of TR 
data to the frequency domain [22]. As the DTOF frequency components can be used directly 
into well-established frequency domain (FD) based reconstruction [23], this will allow 
recovery of both absorption and reduced scattering spatial distributions simultaneously. In 
this work, it is demonstrated that the normalization of the frequency components of TR data 
by e.g. the first frequency and utilising a spectral derivative approach provides information 
that are independent on the system characteristics and hence the IRF. 

In this work, a new method is presented that is able to self-calibrate the TR data, outlining 
the utilization of the spectral data within the frequency domain. Comparisons to the curve 
fitting algorithm show small differences in the recovered parameters between the two 
methods, albeit removing the need of using the IRF in the parameters recovery process. 

2. Methodology 

This section covers the theory of self-calibrating time-resolved spectroscopy and outlines how 
self-calibrated data can be used in parameter recovery algorithms. Please refer to [22] for 
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A key requirement of the proposed method is that the IRFs at multiple wavelengths, for a 
given system, have the same shape and characteristics; that is the system response function is 
spectrally independent. As such the time resolved response functions, as transformed into the 
frequency domain, will have the same frequency components contributing to the signal, up to 
some frequencies as determined by the noise level. These properties are observed on data 
from instruments developed at Politecnico di Milano (POLIMI) and Nalecz Institute of 
Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences (IBIB) 
[24,25] which are shown in Fig. 1. As evident in Fig. 1(c-f), it is shown that for both systems, 
the IRF frequency components become noisy and exhibit spectral variation at around 10 GHz. 

One condition that should be fulfilled is that the relative positions of IRF maxima is 
needed to be known a-priori to correct the phase shift accordingly (i.e. align the maxima in 
time). Otherwise, the phase shift of frequency components as shown in Fig. 1(e-f) will not be 
consistent. Both of the presented TR instruments utilised in this work, differ by the way 
which the multi-wavelength measurement is implemented. The POLIMI instrumentation [24] 
exploits the information and characteristic of the light source, where white laser pulse is first 
filtered and conventional time-resolved detection is used sequentially on these filtered 
wavelengths. The IBIB instrument [25] also uses white super-continuum pulse laser but 
wavelength selection is implemented at the detection side: data at all wavelengths is detected 
in parallel through a polychromator and multi-channel time-resolved detection system. 

To ensure that the IRFs are aligned at maximum values in time, either appropriate 
compensation on the hardware side can be implemented or by ensuring that the measured 
DTOFs are shifted in time in post-processing to align the IRFs at maxima. As shown in Fig. 
1(c-f) an IRF is wavelength independent and does not undergo phase-wrapping for a wide 
range of frequencies up to ~10 GHz and ~4 GHz for POLIMI and IBIB instruments 
respectively. Therefore, within the given frequency range it is assumed that: 
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where Nω  is a normalization frequency, typically being the first nonzero frequency, as used 

in this work. The measured DTOF represents the convolved tissue and the instrument 
response in time and frequency domains such that: 
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where the k(λ) represents hardware dependent amplitude calibration factor and * is the 

convolution function. This amplitude calibration factor k(λ) can thus be cancelled out by 
normalizing the DTOF in the frequency domain as follows: 
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with the IRFs in Eq. (3) used in its wavelength independent form as introduced in Eq. (1). 
Finally, by normalising Eq. (3) with respect to the DTOF at λN (i.e. by 
DTOF(ω,λN)/DTOF(ωN,λN)) cancels out the IRFs and leads to: 
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2.3 Parameters recovery 

The normalised spectral time-resolved data in Eq. (4) provides a complex-valued function in 
R2 domain (frequency and wavelength). In this work, this function is transformed to two data 
surfaces (natural logarithm of amplitude and angle of complex values). Thus, the parameters 
recovery is now a real-valued surface fitting problem discretized at each measured 
wavelengths and frequencies spanned from the lowest frequency component (greater than 0) 
up to the phase wrapping frequency as calculated from the measured DTOFs. As such, the 
recovery problem is now constrained in both wavelength and frequency. The proposed 
parameters recovery procedure is summarized in Algorithm 1. 

 
Algorithm 1: Self-calibrating parameter recovery for time-resolved spectroscopy 
   1:   Set Nmax  // the number of usable frequencies 
   2:   for wavelengths λ 
   3:      Shift DTOF(t,λ) in time axis left or right to align IRFs maxima (if needed) 
   4:      Normalize DTOF(t,λ) by its integral 
   5:      Calculate DTOF(ω,λ) – Fourier transform of DTOF(t,λ) 
   6:      Set Nmax to the current phase wrap limit if it is less than the current Nmax 

   7:      Normalize amplitude in frequency at ωN: DTOF(ω,λ) /= |DTOF(ωN,λ)| 
   8:   end for 
   9:   Normalize in wavelength at λN: DTOF(ω,λ) /= DTOF(ω,λN) 
  10:  Fit surface for ln(|DTOF(ω,λ)|) and angle(DTOF(ω,λ)) for Nmax frequencies 
  11:  Set initial recovery parameters 
  12:   while 
  13:      Generate TPSF(ω,λ) for Nmax frequencies 
  14:      Normalize amplitude in frequency at ωN: TPSF(ω,λ) /= | TPSF (ωN,λ)| 
  15:      Normalize in wavelength at λN: TPSF (ω,λ) /= TPSF (ω,λN) 
  16:      Fit surface for ln(|TPSF(ω,λ)|) and angle(TPSF(ω,λ)) 
  17:      Calculate fitting metrics and update recovered parameters 
  18:      if fitting tolerance met; break while; end if 
  19:   end while 

 
The nonlinear fitting problem can be solved for biological tissue using spectrally 

constrained algorithms [26] to provide parameters such as haemoglobin concentrations, water 
content and reduced scatter amplitude and power or absorption and reduced scatter at all 
wavelengths [27]. 

3. Results 

In this section, the proposed method is tested against the well-established curve fitting 
procedure [27] which is conventionally applied separately at individual wavelengths. As for a 
proof of concept, time-resolved curves (TPSFs) are generated using an analytical solution of 
the diffusion equation for a semi-infinite model, which are then convolved with measured 
experimental IRFs from POLIMI as shown in Fig. 1(a-b) and Poisson noise is additionally 
added considering 107 photon counts per curve. The input data are calculated for a semi-
infinite homogenous medium with following properties: oxygenated haemoglobin 
concentration CHbO2 = 54.93 μM, reduced haemoglobin concentration CHb = 13.97 μM, water 
content W = 78%, reduced scattering amplitude Sa = 0.6542 and power Sp = 0.9260 and the 
refractive index of n = 1.4. The exact partial-flux boundary condition is used with the internal 
reflectance using the Groenhuis approximation. Haemoglobin extinction coefficients and 
water absorption spectra are used as integrated in NIRFAST [23] which uses data available at 
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flow completely resulting in decreased StO2 (tissue oxygenation index) while the CHbtot (total 
haemoglobin content) has remained constant. 

4. Discussion and conclusions 

It is shown that data from multi-wavelength TR instruments, where the IRF can be considered 
spectrally invariant, can be utilised as self-calibrating data without the need for measuring and 
accounting for IRFs. This opens a new way of using the TR instrumentation as multi-
frequency high-density diffuse optical tomography devices. Frequency components available 
for the analysis (up to few GHz) travel at significantly different optical path-lengths (that is, 
the penetration depth varies), which is a highly desired property to allow tomographic 
parameter recovery. Moreover, number of available frequency components (typically up to 10 
frequencies) is usually greater than the number of data parameters available using other TR 
based tomographic recovery methods. Additionally, analysing DTOF frequency components 
up to the phase-wrapping limit supports uniqueness in terms of separating absorption and 
scattering properties as shown in Fig. 2. 

The proposed surface fitting in the frequency domain introduces spectral and frequency 
constraints regardless of the recovered parameters: optical properties or constituents’ 
concentrations. Further, normalization in both frequency and amplitude does not require 
preserving measured DTOFs amplitudes between wavelengths as required by e.g. spectral 
fitting in time domain [32]. Such instrument calibration would be difficult for the systems as 
used in the current research. The absorption and scattering spectra and relations between 
frequencies appropriately constrain the fitting of data as in Fig. 3(b-c). The normalized fitting 
surfaces are always spanned in frequency and wavelength dimensions regardless of the 
required recovery parameters. Hence, the parameters recovery should benefit from these 
constraints as compared to the curve fitting on separate wavelengths as shown in Fig. 4(c). 
However, for in-vivo data as shown in Fig. 6 a variability in the difference of recovered 
values is observed. More experiments should be carried out to better understand the 
underlying mechanism responsible for this variation. 

Recovery of optical properties introduces number of unknowns equal to two times the 
number of wavelengths, which in almost all cases will be greater than recovering directly for 
tissue constituents and scatter amplitude and power. Therefore, spectrally constrained 
recovery benefits from the fewer degrees of freedom, as is shown, to provide more accurate 
parameter recovery using FD data [26]. However, the spectral constraint requires a priori 
knowledge on presence of specific tissue constituents and the extinction spectra of the 
constituents should be unique within the wavelength frame used. 

As shown, Eq. (4) requires exact light transport models and as such, the diffusion 
approximation cannot be used when analysing measured in-vivo data. One option as used in 
this work is to utilise Monte Carlo, e.g. a GPU-accelerated version [30]. However, one might 
consider using the direct radiative transport equation (RTE) solutions in semi-infinite space 
[33] a layered medium [34] or the RTE empirical approximations in time-domain [35] or 
higher order spherical harmonics approximation [36] in the frequency domain as available 
e.g. in the FEM-based NIRFAST package [23]. 

The assumption of the IRF independency of wavelength appears strong. However, lasers 
can generate different pulse shape (the laser IRF). Additionally, an IRF strongly depends on 
properties of detecting fibres/fibre bundles (if used) as well as their varying length and 
numerical aperture (NA) [37]. It may be also dependent on properties of the light coupling 
optics, which influences the effective NA of the setup. Thus, in case of a time-resolved, 
multi-wavelength approach in which multiple lasers, independent optical systems and/or 
fibres are used the method proposed should be used with care. The method can be of use 
especially when a broadband light source is used for which the IRF is relatively independent 
on wavelength and in which a single set of fibres/fibre bundles is used for light delivery and 
detection as in [7,24,25]. However, the usable bandwidth relates directly to the FWHM of a 
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system’s IRF which in turn benefits from a shorter response, and is observed for both tested 
parameter recovery approaches (proposed one and the curve fitting). It is important to note 
that both the FWHM of IRF and the time resolution of a system (which is directly related to 
the detection system), will limit the method. Although there should be very little effect 
regarding FWHM of the IRF, as long as there is enough temporal sampling within this 
FWHM, the proposed algorithms are valid. 

The relative position of maxima of the IRFs is needed to be known and as such, basic 
characterisation of the IRFs will be required. However, the time shifts between wavelengths 
can be fixed in a well-characterised system and the determination of the relative positions of 
maxima is less challenging as compared to the ‘standard’ IRF collection procedure. 
Furthermore, the relative position between the IRF and DTOF is no longer an issue as 
compared to curve fitting. 

The coefficient of variation of IRF(ω,λ) as shown in Fig. 1(c-f) is <3% in amplitude and 
<1% in phase within the usable frequency range. This translates into <5% variability in 
recovered haemoglobins concentrations, <10% in water content, <1% in scattering amplitude 
and <7.5% in scattering power. Comparable variation can also be observed by changing the 
wavelength used for normalization, λN in Eq. (4). The same range of variability has also been 
observed in Fig. 4b where the effects of the added Poisson noise were studied. Therefore, it 
can be argued that for spectral systems, as used in this work, the effects of variability in IRFs 
is within the expected noise level in a practical setting. 

The parameter recovery error using this algorithm can increase to approximately 15% for 
very low absorption cases (e.g. μa = 0.0006 mm−1 at 730 nm). This is as expected since the 
low absorption broadens the DTOF, which in consequence limits number of the usable 
frequencies. Scatter has a minimal effect on the parameters recovery, as changing the reduced 
scattering coefficient primarily shifts the DTOF left or right on the time axis. Similar trend 
can also be observed in the curve fitting. 

The proposed method can be used almost directly in the frequency domain tomographic 
approach [23]. Equation (4) transforms raw, IRF-contaminated time-resolved curves into 
normalized frequency domain data at multiple frequencies and wavelengths. This removes the 
requirement of using the IRF for data calibration priori to parameter recovery and should 
increase the fidelity of quantitative imaging using TR NIRS data. 
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