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Abstract

This paper proposes a novel nonparametric approach to model and reveal dif-

ferences in the geochemical properties of the soil, when these are described

by space-time measurements collected in a spatial region naturally divided

into two parts. The investigation is motivated by a real study on a space-

time geochemical dataset, consisting of measurements of potassium chloride

pH, water pH, and percentage of organic carbon collected during the grow-

ing season in the agricultural and forest areas of a site near Brno (Czech
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Republic). These data are here modelled as spatially distributed functions of

time. A permutation approach is introduced to test for the effect of covari-

ates in a spatial functional regression model with heteroscedastic residuals.

In this context, the proposed method accounts for the heterogeneous spatial

structure of the data by grounding on a permutation scheme for estimated

residuals of the functional model. Here, a weighted least-squares model is

fitted to the observations, leading to asymptotically exchangeable, and thus,

permutable residuals. An extensive simulation study shows that the pro-

posed testing procedure outperforms the competitor approaches that neglect

the spatial structure, both in terms of power and size. The results of mod-

elling and testing on the case study are shown and discussed.

Keywords: Functional data, Geostatistics, Nonparametric inference,

Functional regression, Edge effect on soil.

1 Introduction

Functional data analysis (FDA (Ramsay & Silverman, 2005); (Ramsay, Hooker,

& Graves, 2009)) is a powerful set of methodologies for analysing complex

data structures such as curves or images. Unlike multivariate statistics, FDA

treats the curves as single data objects, atoms of the analysis, instead of a

sequence of discrete observations (Ramsay & Silverman, 2005). FDA covers

a lot of statistical areas, such as times series analysis (Fraiman, Justel, Liu,

& Llop, 2014), change point detection (Aue, Gabrys, Horváth, & Kokoszka,

2009), or regression models ((Ramsay & Silverman, 2005); (Reiss, Huang,

& Mennes, 2010)). Most FDA methods strongly rely on the assumption of
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independence among observations. In the presence of spatial dependence,

applying these methods is somewhat inappropriate and the analysis could

fail because of consistency problems (Horváth & Kokoszka, 2012). The spa-

tial dependence needs to be properly treated; for this purpose, the clas-

sical geostatistical methods can be extended to the functional framework

((Menafoglio, Secchi, & Dalla Rosa, 2013); (Menafoglio & Secchi, 2017);

(Bernardi, Sangalli, Mazza, & Ramsay, 2017)).

In these days functional geostatistical theory is well-developed, meth-

ods like ordinary kriging (Giraldo, Delicado, & Mateu, 2011) or universal

kriging ((Caballero, Giraldo, & Mateu, 2013); (Menafoglio, Grujic, & Caers,

2016)) have been successfully applied to functional data. To model the spa-

tial trend in functional data, spatial coordinates and non-spatial predictors

can be combined by kriging with external drift, as in (Ignaccolo, Mateu,

& Giraldo, 2014). Methodologies for modelling spatial anisotropy have also

been extended to the case of functional data. For instance, Bernardi, Carey,

Ramsay and Sangalli (2018) proposed to model anisotropy by means of re-

gression with partial differential regularization. Methods like clustering have

also been adapted to the spatial functional setting; Romano, Cozza and Verde

(2011) propose to cluster such data based on a kernel variogram estimator.

However, other inferential settings – e.g. those for testing – are yet to be

fully developed.

In general, testing for significance in the context of functional geostatis-

tics can be handled via either parametric or nonparametric methods. The

nonparametric approach appears particularly promising, as it allows for min-

imal assumptions on the data generative model. In this context, permutation
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tests have been recently successfully developed, leading to flexible approaches

for testing in FDA ((Pini & Vantini, 2017); (Abramowicz et al., 2018)).

The idea behind the permutation scheme, in the context of a two popula-

tion test, is as follows (see, e.g., Pesarin & Salmaso, (2010)). Under the null

hypothesis of equality in distribution of the populations, the distribution of

the two samples is the same as the distribution of any two samples obtained

upon permuting the populations. A test statistics computed for the original

sample (e.g., the difference of the means) should thus have the same distribu-

tion as that calculated from any permutation of the data. Hence, the evidence

against H0 is provided by values of the test statistic under permutations that

are statistically different from the one obtained on the original sample ((Pe-

sarin & Salmaso, 2010); (Marozzi, 2002)). Due to the large number of all

possible permutations (a factorial of the sample size) it would be hardly

feasible to consider all possible rearrangements of data. Instead, the per-

mutation distribution of the test statistic can be approximated with Monte

Carlo methods, by randomly generating a subset of permutations ((Fortin &

Jacquez, 2000); (Lindgren, 2010); (Pesarin & Salmaso, 2010)). The permuta-

tion approach requires only very general assumptions on the data’s distribu-

tion (Marozzi, 2002); in the permutation framework the classical assumption

of independence of observations is relaxed to their exchangeability under the

null hypothesis ((Good, 2013); (Myllymäki, Mrkvička, Grabarnik, Seijo, &

Hahn, 2017)), that is, the distribution of data is asked to be invariant under

permutations (Kim, Fay, Feuer, & Midthune, 2000).

In the framework of linear models, it is not possible to directly observe

exchangeable quantities under the null hypothesis, unless the model only con-
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tains a single covariate. The permutation scheme can be adapted in different

ways to obtain approximate exchangeability. Freedman and Lane (1983)

proposed to permute the estimated residuals from the model under the null

hypothesis (also referred to as the reduced model); ter Braak (1992) proposed

to permute residuals of the full model; other authors ((Oja, 1987); (Manly,

2018)) propose to permute other quantities, such as the covariates’ values,

or the responses. Anderson and Robinson (2001) compared Freedman and

Lane’s methodology and other approaches by a simulation study, concluding

that the Freedman and Lane permutation scheme gives the best empirical

results in terms of the power and the size of the test. From a theoretical

point of view, since the estimated residuals of the null model are asymp-

totically exchangeable, the obtained test is asymptotically exact. Winkler,

Ridgway, Webster, Smith and Nichols (2014) have applied this approach into

the multivariate case of testing for differences between two sets of images,

Abramowicz et al. (2018) have adapted the aforementioned permutation

scheme to testing in functional regression model for knee movement.

In this work we extend the approach of Abramowicz et al. (2018) to the

space-time setting. The research is motivated by a real-world case of interest

in geology and chemistry. The data consist of measurements of potassium

chloride (KCl) pH, water pH and percentage of organic carbon in a site which

is naturally divided into two parts, agricultural and forest, with different

geochemical properties. The phenomenon known as the edge effect has been

studied for decades, and is connected with margins of fields, meadows, or

forests (Schröder & Fleig, 2017). It is accompanied by specific features, such

as different variability in yield and utilization of cultures (Pechanec, Vávra,
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Hovorková, Brus, & Kiliánová, 2014), a change of the water management

regime, water-retention capacity, or different lighting conditions between the

edge and the central part of the site. From the agricultural point of view, the

edge effect is rather problematic since it has negative effect on the production

due to the change of conditions at borders with other landscapes. On the

contrary, from the ecological and landscaping point of view, the edge effect

is a vitally important element. The edges of the site, left untreated, are an

important part of the landscape in terms of the biological diversity.

In this setting, two main questions arise: Do the aforementioned two

types of soil have different chemical properties? Do the measurements differ

according to the type of soil? To face these challenging research questions,

a permutation testing procedure based on a spatial regression model is here

proposed. To deal with the nature of spatial observations, which depend

on their spatial coordinates and are likely to be heterogeneous by virtue of

their geographical closeness, we propose to permute the residuals of spatial

regression model and not the observations themselves. For this purpose,

the permutation scheme by Freedman and Lane is adapted here. In the

paper, emphasis shall be given to the exchangeability of residuals, since this

assumption can be easily violated whenever the data are heteroscedastic.

The paper is structured as follows: Section 2 provides a detailed descrip-

tion of geochemical properties of the analysed real-world dataset, as well as

a mathematical formulation of the problem. In Section 3, spatio-temporal

models under homoscedasticity and heteroscedasticity assumptions are de-

fined. For each case, a permutation-based test for the effect of covariates in

functional regression model with spatial covariates is introduced. In the last
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part of Section 3, a model validation through a permutation-based test for

homoscedasticity is described. Results of a simulation study for the empirical

size and power of tests for the effect of covariates are reported in Section 4.

In Section 5, all proposed methods are applied to the available geochemical

data. The conclusions are discussed in Section 6.

2 Data description

This study is based on the data resulting from the analysis of soil samples,

collected in the growing seasons (March-October) of the years 2015 and 2016

at a site located near Brno, Czech Republic. Its total area is 9131.4 m2.

Its surface is formed by brown earth and cambisol. The altitude of the site

ranges from 524.3 m to 529.3 m (mean altitude 526.8 m). The slope ranges

from 0.05◦ to 16.32◦ with mean 2.7◦. The surface of the site is oriented to

the south-west. Agricultural soil covers 60.5 % of the area, 16 % is covered

by beech trees. The remaining part of the site is covered mainly by spruces

and fixed coniferous forest.

The site contains 11 sampling points equally distributed on a straight line,

perpendicular to the border between the field and the forest. The sampling

points are located every 3 meters, the total length of the studied site is 30

meters. It is naturally divided in two parts by the central sampling point,

the ecotone. The soil samples were taken 5 cm beneath the surface.

The analysis of samples was conducted in certified laboratories. Carbon

samples were carried out through the method of oxidation of the sample

chromium mixture and subsequent measurement on a spectrophotometer.
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Following the methodology of the Central Institute for Supervising and Test-

ing in Agriculture, Czech Republic (Zb́ıral et al., 2011), combustion tubes

have been replaced by 100 ml glass flasks, heated on a heating plate instead

of using a steam distiller. The measured values represent an amount of oxi-

disable carbon in weight percentage of dry matter. The active soil reaction

was determined using a pH meter in soil water suspension with a glass ion-

selective electrode after previous shaking of the suspension on a horizontal

mechanical shaker for one hour followed by one hour rest. Just before the

measurement itself, the suspension was briefly stirred with a glass bar (Zb́ıral

& Honsa, 2010).

The main goal of this study is to compare the chemical properties (pH

KCl, pH H2O and percentage of organic carbon) of field (A) and forest (B).

The dissimilarities between field and forest could be investigated from be-

haviour of their probability distributions. In particular, we aim at testing

the hypothesis

H0 : F(A) ∼ F(B) againstH1 : F(A) 6∼ F(B), (1)

where F(A),F(B) denote the distribution of pH KCl, pH H2O, or percentage

of organic carbon, in field and forest, respectively.

Using state-of-the-art permutation tests, the hypothesis would be tested

by (i) randomly reassigning the data to the two groups and (ii) comparing

the distributions of the random reassigned samples with the original ones.

Under the null hypothesis, the distributions of the two groups should not

differ when the data is permuted. However, such a permutation procedure
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grounds on the key assumption that the data are exchangeable under the

null hypothesis. This assumption may be clearly violated in the case of

spatial data, since they are likely to depend on their coordinates. Instead of

permuting the data directly, a spatial trend will be here fitted to the data

and the estimated residuals from this model, assumed to be approximately

exchangeable, will be permuted instead. The model and procedure is formally

introduced in Section 3.

The measurements taken from each sampling locations shall be modelled

as functions of time distributed over a one-dimensional spatial domain. Raw

monthly measurements were turned into functional observations, through

a projection over a cubic B-spline basis with knots at data points (i.e., 8

knots). The data were smoothed using the penalized residual sum of squares

criterion with the smoothing parameter λ = 10 selected via the generalized

cross-validation (Ramsay & Silverman, 2005).

The measurements taken at the ecotone were excluded from the dataset.

Indeed, the ecotone is a sampling point having neither properties of forest,

nor of field soil and, moreover, its influence disappears at around 3 meters

away. The measurements from growing seasons in 2015 and 2016 do not

differ from the geochemical point of view, therefore the data can be analysed

together.

3 Problem formulation

In this section, a functional linear model for the spatial data described in

Section 2 is introduced, and the testing procedure is proposed.
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3.1 Model specification

Denote by D ⊂ Rd the spatial domain of interest. For the purpose of our

study, we set d = 1. However, the procedure here detailed would also be valid

in two- or three-dimensional study regions. Let s be a point in D and denote

by Xs(t) the geochemical property under study (e.g., pH KCl) at location

s ∈ D at time t ∈ T , with T = [3, 10] (t = 3 means measurement in March,

t = 10 in October). In the following, we always assume that Xs(·) is an

element of the Hilbert space of squared-integrable function L2(T ) (or L2 for

short). We call {Xs(t), t ∈ T, s ∈ D ⊂ Rd} the functional random field of

the time-varying geochemical property, defined on L2. Following (Menafoglio

et al., 2013), we assume for the random field the model

Xs(t) = ms(t) + δs(t), s ∈ D, t ∈ T, (2)

where ms(t) is a drift and δs(t) are residuals – realisations of a zero-mean

random process. The drift captures a spatially non-constant mean variation.

We here represent the drift by a linear model

ms(t) =
L∑
l=0

βl(t)fl(s), s ∈ D, t ∈ T, (3)

where βl(t), l = 0, . . . , L, are unknown functional parameters independent of

the spatial location and fl(s), l = 0, . . . , L, are known functions of the spatial

variable s ∈ D. Assuming the drift to be constant over the whole spatial

domain leads to a stationary setting in the sense of Menafoglio et al. (2013).
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Using a matrix notation, model (2) can be rewritten into the form

X = Fβ + δ, (4)

where X = (Xs1(t), . . . ,Xsn(t))′, t ∈ T , are functional observations at spa-

tial points s1, . . . , sn ∈ D, F = (fl(si)) is a known n × (L + 1) design ma-

trix, β = (β0(t), . . . , βL(t))′, t ∈ T , are unknown functional parameters,

and δ = (δs1(t), . . . , δsn(t))′, t ∈ T , are spatially correlated residuals with

a global variance-covariance matrix Σ, the symbol ′ meaning transposition.

Recall that, in the context of functional spatial processes, ((Delicado, Gi-

raldo, Comas, & Mateu, 2010); (Menafoglio et al., 2013)), Σ can be defined

as

Σij = Cov(Xsi ,Xsj) = E[〈Xsi −msi ,Xsj −msj〉], i, j = 1, . . . , n. (5)

Note that this definition of a variance-covariance matrix is associated with

a well-defined global measure of spatial dependence (see, e.g., (Menafoglio et

al., 2013); (Menafoglio & Petris, 2016)), that can be fully described through

the trace variogram of the field {Xs, s ∈ D}:

γ(h) =
1

2
Var

(
δsi(t)−δsj(t)

)
=

1

2
E[‖δsi(t)−δsj(t)‖2], si, sj ∈ D, h = ‖si − sj‖D , t ∈ T,

(6)

where ‖.‖ represents the L2 norm (Abramowicz et al., 2018) and ‖.‖D the

norm over D. The representation of the spatial dependence through the

trace-semivariogram allows for the global inference on the model coefficients

proposed in this work, as we show in Section 3.2. A more local perspective
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on the parameter inference (e.g., aimed to identify intervals within which the

hypothesis is rejected, similarly as in (Pini & Vantini, 2017)) is outside the

scope of this work, and would instead require a more local measure of spatial

dependence, i.e., the full cross-covariance operator (see, e.g., (Menafoglio &

Petris, 2016)).

In view of our case study, we assume that the residuals are heteroscedastic,

and that their spatial variance-covariance matrix Σ is diagonal. Although

the extension of the proposed procedure to non-diagonal matrices can be

envisioned, it requires further technical developments.

In the following, we denote by W a matrix of weights set to W = Σ−1.

We further define ε = W1/2δ, as

εsi = w
1/2
ii δsi , i = 1, . . . , n. (7)

Clearly, one has Cov(ε) = I, and {εsi} that are exchangeable. In principle,

one may specify any model for the weights wii, without substantial modifi-

cations of the method here proposed. In the following, we shall assume that

wii are constant within the groups, and possibly different between groups.

As shown in (Menafoglio et al., 2013), if the design matrix is of full column

rank, i.e. rank(F) = L+1 ≤ n, and the variance-covariance matrix is known

and of full rank, i.e. rank(Σ) = n, the functional parameters β can be

estimated through the weighted least-squares (WLS) estimator

β̂WLS = (F′WF)−1F′WX . (8)

12



The WLS estimator is unbiased and associated with the variance-covariance

matrix Var(β̂WLS) = (F′WF)−1.

In view of the application, the residuals δ will be considered either ho-

moscedastic and uncorrelated, i.e. Σ = σ2I, where I is the identity matrix

and σ2 is an unknown parameter, or heteroscedastic and uncorrelated, i.e.

Σ = W−1, where W is an unknown diagonal matrix.

In case Σ = W−1, the diagonal matrix W is estimated from residuals and

a two-step procedure to estimate the functional parameters can be applied.

In particular, the OLS model is fitted to the observations, obtaining the

estimated residuals δ̂, by which the weight matrix W is estimated. Then,

the functional parameters β are estimated by the WLS estimator using Ŵ

in formula (8). The estimation of the variance-covariance matrix Σ will be

discussed in Section 3.3.

3.2 Tests for the effect of covariates

The hypothesis (1) can be reinterpreted in the context of the functional re-

gression model introduced in Section 3.1, by using group indicators as covari-

ates and testing for the significance of the associated (functional) parameters.

In this section we thus discuss the problem of testing for the significance of

functional parameters in model (3), i.e.,

H0 : β1(t) = . . . = βL(t) = 0 ∀t ∈ T, against

H1 : βl(t) 6= 0 for some l ∈ {1, . . . , L} and some t ∈ T.
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This hypothesis can be equivalently written in a matrix form as

H0 : Cβ = 0 ∀t ∈ T against H1 : Cβ 6= 0 for some t ∈ T, (9)

where C is an L× (L+ 1) block matrix of the form C = (0|I), where 0 is an

L-dimensional vector of zeros and I is an (L× L) identity matrix.

When the variance-covariance matrix is of the form Σ = σ2I, one can use

the test statistic

TOLS =

∫
T

1

σ̂2

(
Cβ̂OLS

)′ [
C(F′F)−1C′

]−1 (
Cβ̂OLS

)
dt, (10)

where

σ̂2 =
1

n

n∑
i=1

‖δsi(t)‖2 (11)

A decision about the hypothesis (9) can be formulated by means of a per-

mutation test, the global p-value of the TOLS test being computed via the

adaptation of the Freedman and Lane scheme (1983) to functional data

(Abramowicz et al., 2018). In this setting, the TOLS distribution under per-

mutations is estimated with a Monte Carlo technique, by evaluating it over

a high number of permuted datasets, obtained by randomly permuting the

residuals δ̂ estimated from the model under the null hypothesis. If H0 is

true, the distribution of TOLS is asymptotically invariant under permutations

since permutations are applied to the estimated residuals, which are only

asymptotically exchangeable. The resulting global p-value is obtained as the

proportion of permutations leading to a value of the TOLS statistic that is

higher than or equal to the one of observed data.
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For a general diagonal variance-covariance matrix Σ, the testing proce-

dure needs to be modified to account for the spatial structure of the residuals,

which are no longer asymptotically exchangeable. In this case, a test statistic

accounting for the covariance structure of the residuals can be defined as

TWLS =

∫
T

(
Cβ̂WLS

)′ [
C(F′ŴF)−1C′

]−1 (
Cβ̂WLS

)
dt, (12)

where β̂WLS is the weighted least-squares estimator of functional parameters

β obtained by plugging in Ŵ = Σ̂
−1

into formula (8). In this work, we

propose to consider for the permutation scheme the standardized residuals

ε, which can be obtained from the estimated residuals δ̂ as ε̂ = Ŵ1/2δ̂.

Assuming the homoscedasticity within groups and heteroscedasticity between

groups, the variance σ2
(j) in the jth group can be estimated via the sample

variance within this group, similarly as in equation (11). The estimated

standardized residuals ε̂ are then randomly permuted and the corresponding

permuted responses are used similarly as in the previous case.

The permutation scheme is described in detail in Algorithm 1. This

algorithm is a new proposal for the case of heteroscedasticity among obser-

vations. Note that the testing procedure based on the TWLS statistic could

be considered for more general forms of the variance-covariance matrix Σ,

provided that this is properly estimated from the data. The algorithm for

homoscedastic functional data can be found in the supplementary material.
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Algorithm 1 Freedman and Lane permutation scheme in case Σ = W−1.

1. Estimate the residuals δsi(t) of the model under H0;

Xsi(t) = β0(t) + δsi(t). Obtain β̂0(t), δ̂si(t), i = 1, . . . , n.

2. Estimate the exchangeable residuals ε from δ̂ by ε̂ = Ŵ1/2δ̂.

3. Permute the estimated exchangeable residuals ε̂s1(t), . . . , ε̂sn(t), obtain-
ing ε̂∗si(t), i = 1, . . . , n.

4. Compute the permuted responses X ∗ through the fitted reduced model

and the permuted estimated residuals δ̂
∗

= Ŵ−1/2ε̂∗, as X ∗si(t) =

β̂0(t) + δ̂∗si(t), i = 1, . . . , n.

5. Estimate the functional parameters β of the full model from the per-

muted responses X ∗ by WLS by plugging-in Ŵ. Obtain β̂
∗
WLS.

6. Compute the test statistic T∗WLS as

T∗WLS =
∫
T

(
Cβ̂

∗
WLS

)′ [
C(F′ŴF)−1C′

]−1 (
Cβ̂

∗
WLS

)
dt.

3.3 Assessment of model assumptions

We here discuss a possible approach to the assessment of the model assump-

tions introduced in Sections 3.1 - 3.2, particularly those related with the

spatial covariance structure of the residuals. The spatial dependence among

residuals can be measured using the covariance function (also known as a

trace-covariogram (Menafoglio & Secchi, 2017)), Cov(δsi(t), δsj(t)), or the

semivariogram defined in equation (6). Its empirical counterpart ((Menafoglio

& Secchi, 2017); (Menafoglio et al., 2013)) is given by

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi(t)− δsj(t)‖2, (13)
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where N(h) is the set of all pairs of observations at a distance approximately

h and |N(h)| is its cardinality. More detailed information regarding the

variography can be found in ((Cressie, 1993); (Menafoglio & Secchi, 2017) or

(Menafoglio et al., 2013)).

As in the scalar case (Cressie, 1993), the shape of the trace-variogram

can be used to determine the viability of the assumption that Σ is diagonal.

Indeed, uncorrelated residuals δsi are associated with a pure nugget model,

i.e., a constant trace-variogram function.

In the presence of uncorrelated residuals one has also to check the as-

sumption of their homoscedasticity, as this determines their exchangeability.

The test of homoscedasticity can be formulated as test (1), where under the

alternative hypothesis the two distributions differ because of a difference in

variance. For this reason, we employ a test based on the same permutations

as before, but with a test statistic specifically aiming at detecting differences

in variance. Note that, using multiple comparison principles, the test can be

extended to the case of more populations.

Let δsi(j)(t), i = 1, . . . , nj, j = A,B, be the two groups of residual func-

tions from model (2)-(3), with i being the unit index and j the population

index. Let σ2
(A) and σ2

(B) be the global variances (constant over T ) of these

two populations, i.e., σ2
(j) = E[‖δsi(j)‖2]. The latter can be estimated as

σ̂2
(j) =

1

nj

nj∑
i=1

‖δ̂si(j)(t)‖2, si ∈ D, i = 1, . . . , nj, j = A,B, t ∈ T. (14)

Note that, by construction, the overall residual sample mean is zero; further,

the residual sample mean within groups is zero if dummy variables are in-
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cluded among covariates (i.e., in a functional ANCOVA setting). The goal

is now to test the hypothesis

H0 : σ2
(A) = σ2

(B) againstH1 : σ2
(A) 6= σ2

(B). (15)

For this purpose, we propose as a test statistic the absolute value of the

log-proportion of variances:

TVar =

∣∣∣∣log

(
σ̂2
(A)

σ̂2
(B)

)∣∣∣∣. (16)

To perform the test, we consider a permutation scheme similar to the one dis-

cussed in Section 3.2. Under H0, residuals are approximately exchangeable,

and the permutation procedure of Abramowicz et al. (2018) can be applied.

The global p-value of test (15) is computed as the proportion of permutations

leading to a value of TVar higher than the one observed on the data. The test-

ing process is described in Algorithm 2. Its results can be used to establish

which permutation strategy to use to test the significance of the functional

parameters among those detailed in Section 3.2. Note that the proposed sta-

tistical inference concerning homoscedasticity is only approximate due to its

definition on the estimated residuals.

4 A simulation study

In this section, we report the results of a simulation study intended to eval-

uate the empirical size and power of the proposed permutation-based global

tests for significance of the effect of covariates in the spatial regression model
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Algorithm 2 The permutation scheme for the homoscedasticity

test (15).

1. Sort function’s indices as 1, 2, . . . , nA︸ ︷︷ ︸
group A

, nA + 1, nA + 2, . . . , nA + nB︸ ︷︷ ︸
group B

.

2. Permute the estimated residuals δ̂si(j)(t), j = A,B, i = 1, . . . , n, from
both groups together. Obtain

δ̂∗s1(t), . . . , δ̂
∗
snA

(t)︸ ︷︷ ︸
group A

, δ̂∗snA+1
(t), . . . , δ̂∗snA+nB

(t)︸ ︷︷ ︸
group B

3. Using the rearranged functions δ̂∗si(j)(t), j = A,B, estimate the group

variances σ̂∗2(A) = 1
nA

∑nA

i=1 ‖δ̂∗si(A)(t)‖
2 and

σ̂∗2(B) = 1
nB

∑nA+nB

i=nA+1 ‖δ̂∗si(B)(t)‖2.

4. Compute the test statistic T ∗Var =

∣∣∣∣log

(
σ̂∗2
(A)

σ̂∗2
(B)

)∣∣∣∣.
discussed in Section 3. In the following, we consider two simulation scenar-

ios. First, the empirical size and power of TOLS and TWLS are assessed for a

simple functional linear model with one covariate. Second, the empirical size

of both tests is evaluated for a model with more covariates. The studies are

designed based on the real-world applications presented in Section 5.

4.1 A simple model with an indicator

The first simulation study is based on a functional linear model with one

covariate. To evaluate the empirical size and power of tests TOLS and TWLS,

a hypothesis of no effect of the covariate is tested. The nominal size of the

test is set to α = 0.05. We consider sample sizes n = 20, 40, 200 and 500.

The data are divided into two groups, A with a variance σ2
(A) and B with
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σ2
(B) = kσ2

(A), k = 3, 9. The sample sizes of A and B are chosen as follows:

unbalanced design I, where nB = 3nA, balanced design II with nA = nB,

and unbalanced design III, such that nA = 3nB. For each scenario, 2000

simulations are performed. In each case, the model is built as

Xs(j)(t) = β0(t) + r · β1(t)soil(s) + δs(j)(t), s ∈ D, t ∈ [3, 10], (17)

where j = A,B,

soil(s) =

 0 for group A,

1 for group B,
(18)

and r ∈ [0, 5] controls the severity of the deviation between the means of

groups A and B.

Figure 1: The true β0(t) and β1(t) curves (black) and their estimates (grey)
for the simple model with an indicator (17). For the sake of clarity, only 25
estimates are shown.

The residuals’ generation is inspired by the geochemical data described

in Section 2 and further analysed in Section 5. Denote by {φq, q = 1, . . . , 10}

the B-spline basis used to represent the data, and by c = (c1, . . . , c10)
′ the

corresponding coefficient vector (see Section 2). Throughout the simulations,
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the residuals of the i-th simulation are built on the same B-spline basis

expansion {φq, q = 1, . . . , 10} as

δs(t) =
10∑
q=0

c∗iq φq(t), t ∈ T, (19)

where the basis coefficients c∗iq are drawn from a multivariate normal distri-

bution with zero-mean and a variance-covariance matrix Sc. For the group

A, the matrix Sc was set to the sample variance-covariance matrix of c. To

ensure heteroscedasticity, the variance-covariance matrix for the group B was

multiplied by a scalar a, i.e., S
(B)
c = a · S(A)

c , a = 3, 9. Next, the simulated

residuals were added to the drift model – whose true functional parameters

β0(t), β1(t) are displayed in Figure 1 – eventually obtaining the functional

observations Xs(j)(t), j = A,B.

The results of the simulations for the size of tests TOLS and TWLS are

presented in Table 1; the power functions are shown in Figure 2. One can

see that, for the balanced design II, the TOLS and TWLS tests show similar be-

haviour regarding the size and the power of the tests; here, the empirical size

of both tests is close to the nominal one α = 5 %. In case of the unbalanced

design I (nB = 3nA and σ2
(B) = kσ2

(A), k = 3, 9), the TOLS test is very conser-

vative for each considered sample size. Its empirical size varies from 0.2 %

to 1.3 % (95% confidence intervals: (0.1,0.5), (0.9,1.9), respectively). In con-

trast, for the unbalanced design III (nA = 3nB and σ2
(B) = kσ2

(A), k = 3, 9),

the TOLS test is, for each sample size n, very liberal. The empirical size ranges

from 12.4 % to 23.9 % (95% confidence intervals: (11.0,13.9), (22.1,25.8), re-

spectively). In general, under heteroscedasticity, TWLS performs better than
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TOLS whenever the design is unbalanced. The empirical size of TWLS is close

to the nominal size α = 5 % in the majority of cases. However, for design

III and small sample size n = 20 or 40, the empirical size of TWLS is slightly

higher than the nominal one, maximal empirical size of the TWLS test being

9.6 % (95% confidence interval: (8.4,11.0)). This effect relates to the de-

sign III where it is necessary to estimate high variance (kσ2
(A), k = 3, 9) from

relatively very small number of observations (nB = n/4).

Focusing on the size of the difference among group variances (σ2
(B) being

3 or 9 times higher than σ2
(A)), we can see that, as k increases, the empirical

power of both TOLS and TWLS converges to 1 for bigger difference among

group means (compare the power functions for k = 3 and k = 9 in Figure 2).

In case of design III, the TOLS test may be mistakenly considered as more

powerful than TWLS. However, this is only the consequence of the highly

liberal behaviour of the TOLS. As one could naturally expect, the power of

both tests increases with higher sample size n, as can be seen in every plot

in Figure 2.

Table 1 here.

4.2 A more complex model

In this simulation scenario, the tests TOLS and TWLS are evaluated through

a functional linear model with three covariates – an indicator function, simi-

larly as in Section 4.1, a linear function of distance, and an interaction term

of these two. In total, 2000 simulations were run for a sample size n = 200.
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Figure 2: The empirical power of tests TOLS (solid line) and TWLS (dashed
line) under different k = σ2

(B)/σ
2
(A) and design. The mean difference among

groups is modelled as r ·β1(t). The dot-dashed horizontal line represents the
nominal size of the test – α = 0.05.

Again, inspired by the case study from Section 5, the model is built as

Xs(j)(t) = β0(t)+r·β1(t)soil(s)+β2(t)dist(s)+r·β3(t)soil(s)·dist(s)+δs(j)(t),

(20)
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where s ∈ D, t ∈ [3, 10]. The term dist(s) denotes the distance from the

ecotone, such that dist(s) = 3, 6, . . . , 3nj, j = A,B. The true functional

parameters β0(t), . . . , β3(t) are presented in Figure 3. The simulation study

is performed for the same setting as in the previous case. Moreover, we here

also consider the situation when σ2
(A) = σ2

(B).

We aim at examining the empirical size of tests TOLS and TWLS for the

global null hypothesis H0 : β1(t) = β2(t) = β3(t) = 0 and comparing it to

the empirical size for the indicator model (17). The results (Table 2) suggest

that the tests behave similarly for both simple model with an indicator (17)

and the more complex model (20). In the presence of heteroscedasticity, the

TOLS approach in model (20) is, compared to the results for model (17),

less conservative for design I, and even more liberal for design III. Under

homoscedasticity, the empirical size of both tests is close to the nominal one

α = 5 %. The TWLS, despite being applied to homoscedastic data, gives

results comparable to the (proper) TOLS approach. Some discussion about

the precision of the OLS and WLS functional parameter estimates can be

found in the supplementary material.

The results from the simulation studies from Sections 4.1 and 4.2 sug-

gest that the TWLS approach introduced in this paper is capable of handling

complex functional regression model and heteroscedasticity at the same time.

Concerning the either liberal or conservative behaviour of TOLS, our results

are consistent with those obtained, in the scalar case, by Huang, Xu, Calian

and Hsu (2006).

Table 2 here.
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Figure 3: The estimates β̂l(t), l = 0, 1, 2, 3, (grey lines) for the complex
model (20), where n = 200, design I (nB = 3nA) and σ2

(B) = 3σ2
(A). Black

lines represent the true functional parameters βl(t). For the sake of clarity,
only 25 estimates are shown.

5 Application to geochemical data

In this section, we present the application of the models and methods intro-

duced in Section 3 to the smoothed data of the potassium chloride pH data,

H2O pH, and the percentage of organic carbon, illustrated in Section 2.

5.1 Modelling potassium chloride and water pH

The potassium chloride (KCl) dataset contains 20 functional observations,

10 for the field and 10 for the forest soil. For the KCl pH data we consider
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the model

XKCl
s (t) = β0(t) + β1(t) · soil(s) + δs(t), s ∈ D, t ∈ [3, 10], (21)

where the interval T = [3, 10] denotes months from March to October, D is a

set of sample spaces and soil(s) is an indicator function for the type of soil,

taking value 0 for observations from the field and 1 from the forest soil, i.e.

soil(s) =

 0 for field sample spaces,

1 for forest sample spaces.
(22)

The functional parameter β0(t), for each t, represents the mean pH KCl for

the field observations, whereas β1(t) can be interpreted, for each t, as the

difference between pH KCl from field and forest part of the site.

The fitted model (21) for the drift using the OLS estimation procedure,

together with the variogram of residuals, are displayed in Figure 4. The

residuals show a pure nugget structure, and thus, they can be considered

spatially uncorrelated (Cressie, 1993).

Figure 4: Left: the fitted model (21) for the drift; right: the variogram of
the residuals from the model (21).
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As the next step, the homoscedasticity of residuals from the field and

forest is verified. Let j = A,B denote the field and forest part of the site,

respectively. The hypothesis of homoscedasticity is tested using the permu-

tation procedure from Section 3.3. The global p-value of the test – estimated

from 1000 random permutations – is equal to 0.001 and, consequently, the

hypothesis of homoscedasticity among residuals is rejected. In fact, although

the residuals are spatially uncorrelated, the spatial position influences resid-

uals in terms of their variance. Hence, such residuals are not exchangeable

over the spatial domain D and the inferential procedure based on TOLS would

not be correct.

We thus consider the heteroscedastic setting, and decompose the residuals

δs(j)(t) as σ(j)εs(t), j = A,B, where σ(j) is the standard deviation for the

j-th type of soil, and εs(t) are approximately exchangeable over D. We also

assume that the standard deviations are constant on the corresponding part

of the spatial domain.

The variances σ2
(j), j = A,B, are estimated as in (14). Their estimates

are σ̂2
(A) = 14.36 and σ̂2

(B) = 3.32. Notice that the variance of the field soil is

more than 4 times higher than that of the forest soil.

Estimated the data variances under heteroscedasticity, model (21) is fitted

to the observations through the weighted least-squares method. The quality

of the fit can be assessed by the (normalized) root mean squared error RMSE

(NRMSE)

RMSE =

√√√√ 1

n

n∑
i=1

‖Xsi(t)− X̂si(t)‖2, NRMSE =
RMSE

‖X̄ (t)‖
, (23)
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and by the R-squared

R2 = 1−
∑n

i=1 ‖Xsi(t)− X̂si(t)‖2∑n
i=1 ‖Xsi(t)− X̄ (t)‖2

, (24)

where X̂si(t) are the fitted values and X̄ (t) is the functional mean. For the

model (21), RMSE = 2.973 (NRMSE = 0.074) and R2 = 0.707.

The effect of the type of soil on KCl pH is tested using the permutation

scheme for spatial heteroscedastic data described in Section 3.1, based on

1000 permutations, obtaining a p-value equal to 0. The type of soil has

indeed a significant influence on the potassium chloride pH, which tends to

be more acidic in the forest part than in the field part of the site (the mean

KCl pH ranging from 3.23 to 3.29 in the forest soil, and from 4.03 to 4.12 in

the field soil, see Figure 5).

For the H2O pH measurements, 20 functional observations were given,

evenly distributed at the field and forest part of the site. We consider the

same model as for the KCl pH. A preliminary test on the variances in the

two groups shows that the setting is homoscedastic in this case (p-value =

0.122). The behaviour of H2O pH appears however similar to that of KCl pH,

as shown by the test based on TOLS. The latter allows to conclude that the

mean H2O pH is significantly different at field (range 4.93-5.00) and forest

(range 3.65-3.83) part of the site (p-value = 0). The detailed analysis of this

dataset is given in the supplementary material.
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Figure 5: The KCl pH data. Left: original functional observations (black:
field, green: forest) and the fitted model (21) (red). Right: A view of data
in space at fixed t0 (specified by a vertical line in the figure on the left). The
points indicate the section of the curves at t0, for clarity connected by lines.

5.2 Modelling the percentage of carbon

Unlike in previous datasets, the carbon measurements are unbalanced – 15

functional observations, from which 10 were measured in the field and 5 in

the forest soil. We model the percentage of carbon as

XC
s (t) = β0(t)+β1(t) ·soil(s)+β2(t) ·dist(s)+δs(t), s ∈ D, t ∈ [3, 10], (25)

where dist(s) denotes the distance of the sampling point from the ecotone,

such that dist(s) = 3, 6, 9, 12, 15. Unlike the case of the pH observations, the

soil type indicator itself is here insufficient in capturing the spatial trend in

the data. The variography results again suggest that the data are not spa-

tially correlated (not shown). The test for equality of variances for field and

forest part of the site leads to the global p-value of the test (16) equal to 0.055,

thus we cannot reject the hypothesis of equality of variances. However, in the

light of the simulation results, we opt for considering a heteroscedastic mod-

29



elling setting, the latter being more robust than that based on homoscedastic

assumptions (see Section 4). We thus fit model (25) by WLS (RMSE = 2.945,

NRMSE = 0.083 and R2 = 0.857). Further, we consider a permutation test

based on the standardized errors εs(t) = δs(j)(t)/σ(j), with σ̂2
(A) = 10.85 and

σ̂2
(B) = 4.06.

Based on the heteroscedastic permutation test for the significance of co-

variates, we conclude that the percentage of carbon is significantly affected

by the covariates (p-value = 0), again displaying a significant difference be-

tween soil and forest groups: the mean percentage of carbon is approximately

1.4 times higher in the forest compared to the field and it decreases approx-

imately 0.04 % per 3 m with increasing distance from the ecotone at both

parts of the site. Figure 6 reports the results for the estimated model (25).

Figure 6: The percentage of carbon data, WLS model (25). Left: original
functional observations (solid lines) and fitted model (dashed lines). Each
colour represents the observation from a specific sample point. Right: a view
of data in space at fixed t0 (specified by a vertical line in the figure on the
left). The points indicate the section of the curves at t0, for clarity connected
by grey lines. The fitted values are for clarity connected by a dashed red line.
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6 Discussion and conclusion

In the framework of permutation tests for spatio-temporal functional mod-

elling, a testing procedure suitable for spatially heteroscedastic functional

data is introduced. We propose to fit a functional regression model to the

data, where the residuals are allowed to be characterized by heterogeneous

variances across groups. We thus extended the permutations schemes of

(Freedman & Lane, 1983) and (Abramowicz et al., 2018), to the standard-

ized errors of the model, assumed to be approximately exchangeable. With

the purpose of assessing the homoscedasticity assumption, we also proposed

a permutation-based test for equality of variances in two groups of data. The

proposed model and testing procedures can be easily extended to any number

g ≥ 2 of groups. In this case, the mean term would be associated with g− 1

dummy variables, and the testing procedure could be performed (jointly) on

the associated coefficients, similarly as detailed in this work. In this more

general situation, heteroscedasticity among groups may be expected; tests

for heteroscedasticity could be developed by using an ANOVA-like setting,

or multiple pairwise tests with appropriate level corrections.

The proposed model allows to account for more general drift terms than

that used in the case study. This methodology could be also considered for

larger areas, provided that one is able to distinguish groups in data (e.g. by

type of soil, or possibly identied via a clustering procedure), or to quantify the

landuse types through one or more effective covariates. As usual in statistical

practice, an effective model formulation is here seen as a crucial point for a

successful use of the proposed methodology.
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The testing procedure developed in this work is applicable to larger

datasets as well, although it may clearly become computationally demand-

ing for large datasets. In the literature, permutation schemes of similar

structure have been successfully applied to datasets of relatively large size.

For instance, in (Campos-Sánchez, Cremona, Pini, Chiaromonte, & Makova,

2016) several functional datasets of size larger than 1000 were considered. In

our context, computations were relatively fast. For example, for the datasets

of size n = 500 considered in the simulation study the testing procedure in

Algorithm 1 run, on average, in 10 seconds, on a standard laptop (Windows

10 Home machine equipped with AMD Ryzen 7 2700U, 2.2GHz, 8GB RAM).

The simulation studies showed that the introduced test performs well

concerning its size and power, especially in the case of unbalanced designs.

In contrast, if the non-constant variance in the data is neglected and an

ordinary least-squares approach is applied, the test is either too liberal or

too conservative, whenever the two populations in data have unequal sample

sizes. Based on simulations, the empirical size of the OLS test (10) could be

more than 10 times smaller, or almost 5 times greater than the nominal one.

However, for the balanced design, the OLS test works well even in the pres-

ence of heteroscedasticity. Our results are consistent with previous studies

pointing out that the effect of heteroscedasticity is stronger for unbalanced

designs ((Box et al., 1954); (Moder, 2010)). In fact, one should pay close at-

tention to the specific spatial structure of the data during the model fitting,

especially in the unbalanced design.

From the application viewpoint, the set of testing methodologies intro-

duced was used to study geochemical functional data on KCl pH, H2O pH,
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and on the percentage of carbon. A balanced heteroscedastic, balanced ho-

moscedastic and unbalanced heteroscedastic model, respectively, were fit to

the data. Significance testing on of the functional regression parameters en-

ables to conclude that (i) KCl pH is affected by the type of soil and the

variability is different with respect to the soil type; (ii) values of H2O pH

depend on the type of soil, but the variability is not significantly different for

field and forest part of the site; (iii) the percentage of carbon is associated

with a more complex spatial model, depending not only on the soil type, but

also on the distance from the ecotone, with increasing values when getting

closer to the ecotone.

The results of the analysis are supported from the geochemical point of

view. Indeed, a lower mean pH for both KCl and H2O in the forest area may

be due to a presence of fallen needles and their acidic character. As a conse-

quence of its cumulation on the surface, it leaks into lower layers and the soil

pH decreases. On contrary, in the agricultural area, a higher soil pH is indi-

cation of the agrotechnology in general, fertilization, a method of harvesting,

etc. The behaviour of the organic carbon may be a confirmation of the edge

effect. The amount of carbon is proportional to the water-retention of the

soil. It is supposed to be highest in places with optimal hydro-pedological

conditions, such as the ecotone. The results of the statistical analysis of the

percentage of carbon from the Section 5.2 are in agreement with this claim.

As we move to agricultural soil, less water is retained in the soil. One of

the factors could be a bare surface which, indeed, is sensitive to the changes

of temperature and to the evaporation during the day, month, or season.

Another cause may be the human activity which extracts carbon from the
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soil and has a negative impact on soil microorganisms, which contribute to

the binding and prediction of soil carbon. Towards the forest, the behaviour

of organic carbon is linked to the type and age of the forest. Moreover, due

to the shadow and low pH caused by fallen needles, the soil microorganisms

become less active. As we compare field and forest parts of the site, the

different amount of carbon in general may be caused by a different degree

of natural processes and cultivation. According to the results, the amount

of carbon in forest soil has more variability than in agricultural soil (esti-

mated forest variance is more than twice as high), presumably due to greater

diversity of forest soils and the occurrence of humus.

Additional information and supporting material for this article is available

online at the journal’s website.
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design I II III
n k 3 9 3 9 3 9
20 OLS 1.3 0.3 6.0 5.9 13.1 23.9

(0.9,1.9) (0.1,0.7) (5.0,7.1) (5.0,7.0) (11.7,14.7) (22.1,25.8)
WLS 6.2 5.5 6.8 7.0 8.0 9.6

(5.2,7.3) (4.6,6.6) (5.8,8.0) (6.0,8.2) (6.9,9.3) (8.4,11.0)
40 OLS 1.2 0.2 4.9 5.4 12.5 21.5

(0.8,1.8) (0.1,0.5) (4.0,5.9) (4.5,6.5) (11.1,14.0) (19.8,23.4)
WLS 5.7 4.5 5.5 6.5 6.1 8.2

(4.8,6.8) (3.7,5.5) (4.6,6.6) (5.5,7.7) (5.1,7.2) (7.1,9.5)
200 OLS 1.2 0.3 5.2 4.7 13.1 20.3

(0.8,1.8) (0.1,0.7) (4.3,6.3) (3.9,5.7) (11.7,14.7) (18.7,22.1)
WLS 6.5 5.4 5.8 5.4 5.5 6.9

(5.5,7.7) (4.5,6.5) (4.9,6.9) (4.5,6.5) (4.6,6.6) (5.9,8.1)
500 OLS 1.1 0.5 4.9 4.6 12.4 19.9

(0.7,1.6) (0.2,0.9) (4.0,5.9) (3.8,5.6) (11.0,13.9) (18.2,21.7)
WLS 5.8 6.5 5.4 5.3 5.6 6.2

(4.9,6.9) (5.5,7.6) (4.5,6.4) (4.4,6.3) (4.7,6.7) (5.2,7.3)

Table 1: The empirical sizes (in percentages) together with the 95% confi-
dence intervals of tests TOLS and TWLS for model (17) under different con-
ditions. The nominal size of tests was set to α = 5 %. The sample size is
denoted by n, the data are divided in two groups A and B, such that: un-
balanced design I: nB = 3nA, balanced design II: nA = nB and unbalanced
design III: nA = 3nB. The difference among group variances is achieved
through k = 3, 9, such that σ2

(B) = kσ2
(A).
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model k 1 3 9
design I
(17) OLS 5.2 (4.3,6.3) 1.2 (0.8,1.8) 0.3 (0.1,0.7)

WLS 5.7 (4.8,6.8) 6.5 (5.5,7.7) 5.4 (4.5,6.5)
(20) OLS 6.2 (5.2,7.3) 2.5 (1.9,3.3) 2 (1.5,2.7)

WLS 6.5 (5.5,7.7) 5.4 (4.5,6.5) 5.6 (4.7,6.7)
design II
(17) OLS 5.2 (4.3,6.3) 5.2 (4.3,6.3) 4.7 (3.9,5.7)

WLS 5.4 (4.5,6.5) 5.8 (4.9,6.9) 5.4 (4.5,6.5)
(20) OLS 4.3 (3.5,5.3) 6.3 (5.3,7.5) 7.3 (6.2,8.5)

WLS 4.1 (3.3,5.1) 5.7 (4.8,6.8) 6.4 (5.4,7.6)
design III
(17) OLS 5.6 (4.7,6.7) 13.1 (11.7,14.7) 20.3 (18.6,22.1)

WLS 6.0 (5.0,7.1) 5.5 (4.6,6.6) 6.9 (5.9,8.1)
(20) OLS 4.3 (3.5,5.3) 15.6 (14.1,17.3) 24.7 (22.9,26.6)

WLS 5.0 (4.1,6.0) 6.5 (5.5,7.7) 5.9 (5.0,7.0)

Table 2: The empirical sizes (in percentages) together with the 95% confi-
dence intervals of tests TOLS and TWLS for models (17) and (20) and sample
size n = 200. The data are divided in two groups A and B, such that: un-
balanced design I: nB = 3nA, balanced design II: nA = nB and unbalanced
design III: nA = 3nB. The relationship among group variances is modelled
via k = 1, 3, 9, such that σ2

(B) = kσ2
(A).
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