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Abstract 21 

We rely on various Global Sensitivity Analysis (GSA) approaches to detect the way 22 

uncertain parameters linked to diverse conceptual geological models influence spatial 23 

distributions of hydraulic heads in a three-dimensional complex groundwater system. We 24 

showcase our analyses by considering a highly heterogeneous, large scale aquifer system 25 

located in Northern Italy. Groundwater flow is simulated considering alternative conceptual 26 

models employed to reconstruct the spatial arrangement of the geomaterials forming the 27 

internal makeup of the domain and characterizing the distribution of hydraulic conductivities. 28 

For each conceptual model, uncertain factors include the values of hydraulic conductivity 29 

associated with the geomaterials composing the aquifer as well as the system boundary 30 

conditions. We explore the relative influence of parametric uncertainties to steady-state 31 

hydraulic head distributions across the set of conceptual models considered by way of three 32 

GSA methodologies, i.e., (a) a derivative-based approach, which rests on the Morris indices; 33 

(b) the classical variance-based approach, grounded on the evaluation of the Sobol’ indices; 34 

and (c) a moment-based GSA, which takes into account the influence of uncertain parameters 35 

on multiple (statistical) moments of a given model output. Due to computational costs, Sobol’ 36 

and moment-based indices are obtained numerically through the use of a model-order reduction 37 

technique based on the polynomial chaos expansion approach. We find that the sensitivity 38 

measures considered convey different yet complementary information. The choice of the 39 

conceptual model employed to characterize the lithological reconstruction of the aquifer affects 40 

the degree of influence that uncertain parameters can have on modeling results. 41 

  42 
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1. INTRODUCTION 43 

Modeling flow and transport processes in complex aquifers is prone to uncertainty, due 44 

the (unknown) spatial distribution of medium properties (e.g., hydraulic conductivity) and the 45 

conceptual and mathematical model adopted to describe the behavior of the system. Global 46 

Sensitivity Analysis, GSA, is a powerful tool to enable quantification of the influence of 47 

uncertain model inputs on an output of interest, y (Razavi and Gupta, 2015; Song et al., 2015; 48 

Pianosi et al., 2016, and references therein). As compared to local sensitivity analysis (Saltelli 49 

et al., 2005), GSA measures the relative contribution of uncertain model factors (as well as 50 

their combined effects) to a global metric representing the variability of model output y. 51 

Common purposes of GSA techniques comprise (i) screening of model parameters, i.e., 52 

identification of input variables having limited influence on y; (ii) ranking of model parameters, 53 

i.e., ordering model input parameters according to their relative influence on y; and (iii) 54 

providing information to drive probabilistic risk analyses and/or parameter estimation through 55 

model calibration. 56 

A variety of approaches has been proposed to perform GSA. These comprise derivative-57 

based (Morris, 1991; Malaguerra et al., 2013; Campolongo et al., 2007), variance-based (Sobol, 58 

1993, 2001; Sudret, 2008; Fajraoui et al., 2011; Sochala and Le Maȋtre, 2013), regression-based 59 

(Box and Draper, 1987; Sudret, 2008) and moment-independent (Borgonovo et al., 2011; 60 

Pianosi and Wagener, 2015) techniques. Dell’Oca et al. (2017) proposed a moment-based 61 

approach to GSA. These authors rely on new metrics, termed AMA indices, that quantify the 62 

relative contribution of each uncertain model parameter to the main features (as rendered by 63 

the statistical moments) of the probability density function of model output y. One of their main 64 

findings is that relying on classical variance-based GSA methods, with the implicit assumption 65 

that the uncertainty of y is fully characterized by its variance, can lead at best to an incomplete 66 

picture of the system response to model parameter uncertainties. The proposed methodology is 67 
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illustrated by Dell’Oca et al. (2017) and Maina and Guadagnini (2018) on relatively simple test 68 

cases. 69 

Local and global (mainly variance-based) sensitivity analyses have been performed to 70 

assess the degree of influence of uncertain parameters on groundwater flow and transport 71 

models at the field/regional scale (Laloy et al., 2013; Rajabi et al., 2015; Deman et al., 2015; 72 

Kerrou et al., 2017; Rajabi and Ketabchi, 2017; Chen et al., 2018). All of these studies consider 73 

the presence of a unique conceptual/mathematical model describing the behavior of the system. 74 

Dai et al. (2017) apply a variance-based GSA approach to assess the relationship between 75 

uncertainties arising from several alternative conceptual models and their corresponding input 76 

parameters and boundary conditions. 77 

An exhaustive analysis of the ability, efficiency and practical applicability of diverse GSA 78 

procedures to identify the most relevant inputs in complex heterogeneous three-dimensional 79 

systems whose hydrogeological make-up is reconstructed through differing conceptual 80 

modeling strategies is still lacking. This is precisely the objective of this study. We do so by 81 

comparing sensitivity analysis results obtained through (a) a derivative-based approach, 82 

grounded on the widely used Morris indices; (b) the classical variance-based approach which 83 

rests on the evaluation of the Sobol’ indices; and (c) the novel moment-based GSA of Dell’Oca 84 

et al. (2017), which can provide information on multiple statistics of the probability distribution 85 

of the output variable of interest. As a test bed, we consider a large scale aquifer system located 86 

in Northern Italy (see Section 2). The area is highly heterogeneous and is characterized by the 87 

presence of high-quality water springs interacting with the groundwater system. The spatial 88 

distribution of geomaterials forming the internal makeup of the subsurface and of the associated 89 

hydraulic attributes, as well as boundary conditions are highly uncertain. In this context, we 90 

investigate the way the joint analysis of multiple GSA metrics can contribute to ranking the 91 

importance of uncertain factors of multiple origins on the response of the aquifer system, as 92 
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given by the steady-state distribution of hydraulic heads. As an additional distinctive element, 93 

we also explore the way parametric uncertainties are influential to hydraulic head distributions 94 

across the set of alternative conceptual models that can be employed to characterize the 95 

lithological reconstruction of the aquifer (and ultimately the spatial distribution of aquifer 96 

hydraulic conductivity). 97 

2. STUDY AREA 98 

The study area (see Fig. 1) is part of the high-medium Alluvial Po Plain in Northern Italy 99 

and encompasses a planar surface of about 785 km2. It is located in the area comprised between 100 

the two main rivers (Adda and Serio) in the region and hosts activities linked to agricultural 101 

(84%) and urban (16%) sectors. A main feature of the area is the presence of high-quality water 102 

springs. These natural springs are key environmental drivers and constitute treasures around 103 

which local economies thrive, forming a unique ecosystem with remarkable appeal for tourism 104 

and leisure activities. They also constitute the main water supply for agriculture, which is an 105 

important anthropogenic activity in the area. Figure 1b depicts the major hydrogeological 106 

features of the area, together with the general pattern of the ground surface elevation and the 107 

location of the springs. 108 

Groundwater resources within the Po plain are mostly located in the continental and 109 

marine layers of Plio-Pleistocene age. The quaternary sedimentary sequence is overall 110 

regressive and is formed by (from bottom to top) (i) basal turbiditic sands and clays, (ii) a 111 

prograding fluvio-deltaic sedimentary wedge, and (iii) continental sediments (Regione Emilia-112 

Romagna, ENI-AGIP, 1998; Regione Lombardia, ENI-AGIP, 2002). In Section 3 we propose 113 

three alternative models for the reconstruction of the hydrogeological architecture of the study 114 

area on the basis of geological-stratigraphic data collected at 189 locations (available at 115 

http://www.geoportale.regione.lombardia.it/download-dati) and hydro-geological sections 116 

available from previous studies (Maione et al., 1991; Beretta et al., 1992; Regione Lombardia, 117 
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ENI-AGIP, 2002). As an example, Figure 2 depicts a North-South (SECT 1) and an East-West 118 

(SECT 2) vertical cross-section whose planar location is indicated in Fig. 1. The system has an 119 

average thickness of about 120 m (with stratigraphic data available up to a depth of about 300 120 

m in some areas) and comprises a surface (locally semi-confined) and a deep (confined-121 

semiconfined) aquifer. The surface aquifer has a thickness of about 60 m and is mainly formed 122 

by compact/fractured conglomerate (fluvio-glacial Mindel) deposits in the Northern area and 123 

by fluvio-glacial gravels and sands (Riss-Wurm) intercalated by lenses of clay with variable 124 

planar/lateral extent in the Southern zone. The deep aquifer is formed by alternating coarse 125 

clastic (fractured conglomerates in the Northern area) sediments and clays whose degree of 126 

continuity and relative thickness vary in space. In the median portion of the plain, the thickness 127 

of the modeled system is characterized by a significant reduction controlled by the subsurface 128 

geological structure (e.g., Maione et al., 1991). 129 

Additional available data include: precipitation and temperature collected at 5 130 

meteorological stations, rivers’ water level monitored at 3 hydrometric stations, as well as 131 

pumping rates and piezometric levels recorded at 120 pumping/monitoring wells (see Fig. 1b). 132 

Average groundwater flow is from North to South, the Adda river generally draining water 133 

from the aquifers and the Serio river recharging and draining the aquifer in the Northern and 134 

Southern sectors, respectively. 135 

3. METHODOLOGY 136 

3.1 Spatial distribution of Geomaterials and associated hydraulic conductivities 137 

The analysis of available sedimentological information allows identifying a set of fn  = 138 

5 main geomaterials (facies/classes) which constitute the geological makeup of the system. 139 

Each geomaterial, denoted as iM  (i = 1, ..., 5), is listed in Table 1 together with the 140 

corresponding volumetric fraction, if , encountered within the study area. The experimental 141 

directional (indicator) variogram, ( )i sα αγ  (sα being spatial separation distance, α = h, or v 142 
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indicating horizontal or vertical direction, respectively) has been evaluated for each facies and 143 

interpreted through a maximum likelihood (ML) approach with an exponential model, i.e., 144 

( ) ( )1 exp 3i i is s rα α α αγ σ  = − −  , iσ  and irα  respectively representing variogram sill and 145 

directional range of sedimentological class i. ML estimates of the variogram sill iσ  (not shown) 146 

virtually coincide with their theoretical counterparts ( )1i if f− . ML estimates ( ˆirα ) of irα  are 147 

listed in Table 1 for all facies. The degree of correlation along the horizontal direction, as 148 

quantified by ˆi
hr , attains its largest values for classes 3 and 4, suggesting the occurrence of 149 

horizontally elongated features where gravel and compact conglomerates are dominant. Class 150 

4 and 5 are highly correlated along the vertical direction, showing that the compact and 151 

fractured conglomerates tend to form relatively thick layers. 152 

To reconstruct the three-dimensional distribution of geomaterials, we discretize the 153 

aquifer system of extent 23 km (East-West direction) × 48 km (North-South direction) × 475 154 

m (depth) through blocks of uniform size 100 m × 200 m × 5 m, according to the information 155 

and computational resources available, for a total of CN  = 5.2 millions voxels. Conditional 156 

Indicator Kriging (e.g., Isaaks and Srivastava, 1990) yields fn  × CN  values of ,i jI  (with 157 

,
1

1,
fn

i j
i

I j
=

= ∀∑ ), corresponding to the estimated probability that a given geomaterial class iM  158 

resides within block j (i.e., the volumetric percentage of iM  within block j). 159 

Here, we propose a further elaboration of the multiple continua concept, hereafter called 160 

Overlapping Continua (OC) model to evaluate hydraulic conductivity at each voxel of the 161 

domain. The OC model is grounded on the concept that the system can be viewed as formed 162 

by a collection of media of differing properties coexisting in space. The idea is that each voxel 163 

j of the numerical grid represents a finite volume within which all geomaterials (or facies) can 164 

coexist, each associated with a given volumetric fraction. Hydraulic conductivity at block j is 165 
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evaluated as a weighted mean of facies conductivities, ik . In Section 4 we analyze the impact 166 

on hydraulic head patterns of two variants of OC, according to which hydraulic conductivity is 167 

computed as a weighted arithmetic ( _OC A
jK ) or geometric ( _OC G

jK ) mean of ik  as 168 

_
,

1

fn
OC A
j i j i

i
K I k

=

= ∑ ; ,_

1

f
i j

n
IOC G

j i
i

K k
=

= ∏  (1) 169 

Outcomes of this model are compared against corresponding results obtained with a 170 

Composite Medium (CM) approach (e.g., Winter et al., 2003; Guadagnini et al., 2004 and 171 

references therein) where each block of the numerical model is considered to be formed by a 172 

single geomaterial with conductivity CM
j iK k=  (index i identifying the facies attributed to cell 173 

j). The spatial distribution of geomaterials is estimated according to the procedure described 174 

by Guadagnini et al. (2004) and based on conditional indicator Kriging. These authors start by 175 

considering facies 1M , assigning indicator I = 1 to locations where 1M  is observed and I = 0 176 

otherwise. The region occupied by 1M  is delineated by imposing to the kriged field a threshold 177 

corresponding to the value of 1f , to reconstruct a spatial distribution of 1M  which is consistent 178 

with the observed volumetric fraction. This procedure is repeated for ( fn  − 1) facies, 179 

progressively removing at each iteration the portion of the aquifer already assigned to a given 180 

class in the previous step. 181 

3.2 Groundwater flow model 182 

The widely tested numerical code MODFLOW-2005 (Harbaugh, 2005) is employed to 183 

simulate steady-state groundwater flow within the domain described in Section 3.1. Inactive 184 

cells are inserted to reconstruct the topographic surface of the area and the bottom of the 185 

system, resulting in about one million active cells. Recharge terms included in the study 186 

comprise infiltration from precipitation, irrigation and percolation from channels in the non-187 

urban zones, or aqueduct and sewage system losses in the urban sector. Since exhaustive and 188 
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up-to-date records detailing the exact location of the pumping wells are not available, for the 189 

illustration of our approach we assign the total water withdrawal within a given municipality 190 

to a system of wells located at the center of the municipality itself. Springs are simulated as 191 

drains so that their outflow-rate is proportional to the difference between hydraulic head and 192 

elevation of ground level. Dirichlet boundary conditions are set along the rivers, this choice 193 

relying on results of previous studies, showing that both rivers have a direct hydraulic 194 

connection with the groundwater system (Maione et al., 1991). Neumann boundary conditions 195 

are set along the Northern boundary of the model (see Fig. 3) on the basis of the hydrological 196 

study of the Serio basin (located North of the study area) performed by Rametta (2008), as also 197 

discussed in Session 3.3. 198 

3.3 Sensitivity analysis 199 

In Section 4 we analyze the impact of the uncertainty in the conceptual model (the two 200 

variants of OC versus CM), boundary conditions and hydraulic parameters on the groundwater 201 

system response, as quantified in terms of steady-state hydraulic heads obtained at a sub-set of 202 

39 wells, whose locations are depicted in Fig. 3, covering the full investigated area. We place 203 

our GSA before model calibration. As such, each conceptual model is characterized by the 204 

same weight and the interval of variability of model parameters is possibly largest. As such, 205 

the GSA here performed is mainly keyed to (i) improving our understanding of the behavior of 206 

each of the candidate models, in terms of the relevance of each model parameter on the target 207 

model output, and (ii) identifying parameters which might be of limited influence in the context 208 

of a subsequent model calibration (e.g., Liu et al., 2006; Hutcheson and McAdams, 2010). The 209 

uncertain model inputs associated with (a) hydraulic conductivity values ( ik , with i = 1,…, 5) 210 

of the five geomaterials composing the subsurface, (b) the total flow rate entering the domain 211 

from the Northern boundary, and (c) the Dirichlet boundary conditions set along the rivers are 212 

collected in a N-dimensional vector p. Entries of the latter are independent and identically 213 
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distributed (i.i.d.) random variables, ip  (with i = 1,…, N; N = 7), each characterized by a 214 

uniform probability density function, pdf. This modeling choice rests on the idea of assigning 215 

equal weight to each value of the distribution. The (random) parameter space is then defined 216 

as min max, =  Γ p p  where minp  and maxp  indicate vectors respectively containing lower ( min
ip217 

) and upper ( max
ip ) bounds of parameter variability intervals, as listed in Table 2. The choice of 218 

min
ip  and max

ip  (i = 1,…,5) is based on typical hydraulic characteristics of each geomaterial 219 

class. With reference to boundary conditions, Rametta (2008) estimated a total incoming flow 220 

rate in the area of interest equal to 6p  = 9.65 m3/s. Since this estimated value is affected by 221 

uncertainty and the spatial distribution of 6p  is unknown, we consider the incoming flow rate 222 

as uniformly distributed along the Northern domain boundary and set min
6 60.5p p= ×  and 223 

max
6 61.5p p= ×  (resulting in a coefficient of variation of about 30%). The support of the 224 

Dirichlet boundary condition ( 7p ) has been defined considering that the river stage may vary 225 

between the river bottom and the banks’ elevation. 226 

We applied three methodologies, characterized by differing degrees of complexity, to 227 

quantify the impact of uncertainty in p on model-based hydraulic heads. 228 

The Morris indices (Morris, 1991; Campolongo et al., 2007) rely on the evaluation of 229 

incremental ratios, denoted as elementary effects, and are computed for each uncertain quantity 230 

ip  along r trajectories in the parameter space Γ. The elementary effect of ip  computed along 231 

trajectory  m, ( )pi
EE m , is defined as 232 

( ) ( ) ( )1,...., ,...,i N
pi

f p p p f
EE m

+ ∆ −
=

∆
p

 (2) 233 

Here, ( )f p  is the model output, and ∆  is a fixed increment evaluated as described by 234 

Campolongo et al. (2007). To avoid effects of the starting point in the parameter space on the 235 
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sensitivity analysis (Morris, 1991), we evaluate pi
EE  for r trajectories, and compute the Morris 236 

index as 237 

( )*

1

1 r

p pi ij
EE j

r
µ

=
= ∑  (3) 238 

This methodology is computationally efficient because it requires a relative low number 239 

of forward model simulations, i.e., ( )1r N + . In our application we obtain stable results with r 240 

= 30 (i.e., 240 model runs). Note that *
pi

µ  cannot quantify the joint effect of uncertainty of 241 

model inputs on the uncertainty of ( )f p . This type of information can be obtained by relying 242 

on the Sobol’ (Sobol, 1993, 2001; Sudret, 2008; Formaggia et al., 2013 and references therein) 243 

and AMA (Dell’Oca et al., 2017; Ceriotti et al., 2018) indices. 244 

It can be shown (Sobol, 1993) that if the model response ( )f p  belongs to the space of 245 

square integrable functions, then the following expansion holds 246 

( ) ( ) ( ) ( )
10 , ,..., 1

1 1
, ,...,

i i j N

N

p i p p i j p p N
i i j N

f f f p f p p f p p
= ≤ < ≤

= + + + +∑ ∑p   (4) 247 

where 0f  is the expected value of ( )f p  and { } { }( )
1 ,..., 1,..., 1,...,

sp p sf p p N⊆  are orthogonal 248 

functions with respect to a probability measure. The total variance, [ ]V f , of ( )f p  can then 249 

be decomposed as 250 

[ ]
1, ,...,

1 1
i i j N

N

p p p p p
i i j N

V f V V V
= ≤ < ≤

= + + +∑ ∑   (5) 251 

where 
ipV  is the contribution to [ ]V f  due solely to the effect of ip , and 

1,..., sp pV  is its 252 

counterpart due to interaction of model parameters belonging to the subset { }1,..., sp p . The 253 

Sobol’ indices, 
ipS  and 

1,..., sp pS  are defined as 254 

[ ]
i

i

p
p

V
S

V f
= ; 

[ ]
1

1

,...,
,...,

s

s

p p
p p

V
S

V f
=  (6) 255 
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respectively quantifying the contribution of only ip  and the joint effect of { }1,..., sp p  on [ ]V f256 

. The total contribution of ip  to [ ]V f  is quantified by the total Sobol’ index 257 

, , , ,...,
,

.....
i i i j i j k i N

T
p p p p p p p p p

j j k
S S S S S= + + + +∑ ∑  (7) 258 

The AMA indices (introduced by Dell’Oca et al., 2017) allow quantifying the expected 259 

variation of a given statistical moment [ ]M f  of the pdf of ( )f p  due to conditioning on 260 

parameter values. These are defined as 261 

[ ] [ ] [ ]

[ ] [ ]

1 [ | ] 0

AMA
[ | ] 0

pi

pi

i

pi

pi

i i

p

i i

M f M f p dp if M f
M f

M
M f M f p dp if M f

ρ

ρ

Γ
Γ

Γ
Γ

 − ≠
= 
 − =


∫

∫
 (8a) 262 

[ ] [ ] [ ]

[ ]

1

,...,1

1

1

,...,1

1 ,..., 1

1 ,..., 1

1 [ | ,..., ] ... 0

AMA ,...,
[ | ,..., ] ... 0

s

p ps

s

s

p ps

s p p s

p p

s p p s

M f M f p p dp dp if M f
M f

M
M f p p dp dp if M f

ρ

ρ

Γ
Γ

Γ
Γ

 − ≠
= 
 =


∫

∫
263 

 (8b) 264 

Here, AMA
ipM  (8a) and 

1
AMA ,...,

sp pM  (8b) correspond to the AMA indices associated 265 

with a given statistical moment M and related to variations of only ip  or considering the joint 266 

variation of { }1,..., sp p , respectively; 
pi

ρΓ  is the marginal pdf of ip , 
1,..., sp pρ Γ  being the joint 267 

pdf of { }1,..., sp p ; and 1[ | ,..., ]sM f p p  indicates conditioning of the (statistical) moment M 268 

on known values of parameters 1,..., sp p . Note that AMA
ipV , i.e., the AMA index related to 269 

the variance (M = V) of ( )f p , coincides with the principal Sobol’ index 
ipS  only if the 270 

conditional variance, [ | ]iV f p  is always (i.e., for each value of ip ) smaller than (or equal to) 271 

its unconditional counterpart [ ]V f . If [ | ]iV f p  can undertake values that are larger than 272 
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[ ]V f  while varying ip , then AMA
ipV >

ipS . Note also that, in this latter case, AMA
ipV can 273 

be either smaller or larger than 
i

T
pS , depending on the relative impact of the interaction terms 274 

1,..., sp pf . In Section 4 we further analyze the difference amongst AMA
ipV  and the Sobol’ 275 

indices by means of the considered test scenario. 276 

The numerical evaluation of Sobol’ and AMA indices can be time consuming and can 277 

become unfeasible in complex settings, such as the one here assessed. These metrics are 278 

evaluated in Section 4 relying on a surrogate model based on the generalized Polynomial Chaos 279 

Expansion (gPCE) (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maȋtre and 280 

Knio, 2010). This technique consists in approximating ( )f p  by a linear combination of 281 

multivariate orthonormal Legendre polynomials, i.e., ( )ψ x p  282 

,

0
1 1

,
1

( ) ( ) ( ) ...;

( ) ( ); ( ) ( ) ,

i i j

p

i

N NN

i i j i

N

i x i
i

f f

p f d

β ψ β ψ

ψ ψ β ψ ρ

= ∈ℑ = > ∈ℑ

Γ
=

Γ

≅ + + +

= ∏ =

∑ ∑ ∑∑ ∑

∫

x x x x
x x

x x x p

p p p

p p p p
 (9) 283 

where { }1,..., NN
Nx x= ∈x  is a multi-index expressing the degree of each univariate 284 

polynomial, , ( )
ii x ipψ ; β x  are the gPCE coefficients; ρΓp  is the pdf of p; iℑ  contains all indices 285 

such that only the i-th component does not vanish; ,i jℑ  contains all indices such that only the 286 

i-th and j-th components are not zero, and so on.  287 

Coefficients β x  in Eq. (9) are calculated through an approach based on a regression 288 

method (Sudret, 2008). The latter requires evaluating the full model and its gPCE 289 

approximation at a number of points in the parameter space, Г, and then minimizing the sum 290 

of the square of the differences between these two solutions. Here, accurate results have been 291 

obtained truncating the gPCE at order 4 (not shown), requiring 2437 simulations performed 292 

using a quasi- Monte Carlo sampling technique (see e.g., Feil et al., 2009; Fajraoui et al., 2012; 293 
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Maina and Guadagnini, 2018, and references therein). In this study we use Legendre 294 

polynomials in Eq. (9). These are orthonormal with respect to the uniform pdf 295 

( ) 1max min

1

N

i i
i

p pρ
−

Γ
=

= −∏p . Note that, if prior information on uncertain parameters are available, 296 

the approach can still be employed upon relying on different parameter distributions. For 297 

instance, Jacobi and Hermite polynomials are associated with beta and Gaussian pdfs, 298 

respectively (Xiu and Karniadakis, 2002; Sudret, 2008). 299 

4. RESULTS AND DISCUSSION 300 

As an example of the main features of the conductivity fields obtained with the three 301 

conceptual models described in Section 3, Fig. 4 depicts the spatial distribution of the natural 302 

logarithm of hydraulic conductivity, Y, along a longitudinal cross section obtained by setting 303 

1k  = 10-7 m/s, 2k  = 10-6 m/s, 3k  = 10-3 m/s, 4k  = 10-5 m/s, and 5k  = 10-2 m/s, corresponding to 304 

the mean values of log ik  associated with the intervals of variability listed in Table 2. 305 

As already discussed in Section 3, in CM (Fig. 4a) only one geomaterial resides in each 306 

cell. Therefore, this modeling concept may lead to the occurrence of blocks characterized by 307 

very different Y values that can be close (or contiguous) across the system. The adoption of OC 308 

leads to a smoother spatial distribution of Y. We further note that the two diverse averaging 309 

strategies described in Section 3.1 can significantly affect the spatial distribution of Y. The 310 

domain is (on average) more permeable and less heterogeneous when the arithmetic rather than 311 

the geometric mean operator is employed. This aspect is further elucidated by Fig. 5 where the 312 

sample pdfs of YOC_A = lnKOC_A and YOC_G = lnKOC_G  (corresponding to the fields related to the 313 

cross-sections depicted in Figs. 4b and 4c, respectively) are plotted in natural (Fig. 5a) and 314 

semi logarithmic (Fig. 5b) scale. Also shown for comparison are (i) Gaussian distributions 315 

having the same mean and variance as the sample pdfs and (ii) the sample pdf of Y evaluated 316 

for CM (and related to the field linked to the cross-section in Fig. 4a). As expected, the mean 317 
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of YOC_A is larger than the mean of YOC_G, because the arithmetic mean operator tends to assign 318 

increased weight to large ik  values as compared to the geometric mean operator. We note that 319 

YOC_G values are associated with a larger variance than their YOC_A counterparts. This 320 

notwithstanding, the tails of the YOC_G distribution decay following a (nearly) Gaussian pdf, 321 

while the distribution of YOC_A displays a long left tail. In other words, even as the YOC_A field 322 

is (overall) less heterogeneous than YOC_G, it is characterized by a significant occurrence of low 323 

values. 324 

Figure 6 depicts (i) the Morris indices *
ipµ  (Fig. 6a); (ii) the normalized Morris indices 325 

(Fig. 6b), defined as * * *

1
i i i

N

p p p
i

µ µ µ
=

= ∑ ; (iii) the principal, 
ipS  (Fig. 6c) and total, 

i

T
pS  (Fig. 6d), 326 

Sobol’ indices, as well as (v) the AMA indices linked to the mean, AMA
ipE  (Fig. 6e), variance, 327 

AMA
ipV  (Fig. 6f), and skewness, AMA

ipγ  (Fig. 6g), computed at all 39 target locations for 328 

CM and considering all seven uncertain model inputs ip . Note that each well is associated 329 

with an Identification Number (ID) that increases from North to South to facilitate the 330 

interpretation of the results (see also Fig. 3). Corresponding results for settings associated with 331 

the OC modeling strategies (termed as OC_A and OC_G, when considering the arithmetic or 332 

geometric averaging operator, respectively) are depicted in Figs. 7 and 8.  333 

The diverse GSA metrics considered yield different yet complementary information. 334 

For all conceptual models, *
ipµ  and AMA

ipE  tend to decrease from North to South, 335 

suggesting that the mean behavior of the groundwater levels is more affected by uncertainty in 336 

model parameters in the Northern than in the Southern investigated area. Values of AMA
ipE , 337 

quantifying the impact (on average) of uncertain inputs on hydraulic heads are in general quite 338 

low for OC_A and CM while they can be significant (> 20%) for OC_G. 339 
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All considered indices indicate that 2k  and 4k  have a limited (and in some cases 340 

negligible, as further discussed below) influence in any of the conceptual models analyzed. 341 

This result is consistent with the observation that these parameters correspond to geomaterials 342 

that respectively constitute only about 5% and 15% of the system and are characterized by 343 

intermediate conductivity values. Otherwise, 3k  and 5k , which are linked to the most permeable 344 

facies, affect all metrics computed in most observation points even as facies 5 constitutes only 345 

about 10% of the domain. In particular, amongst facies conductivities, 5k  is identified as the 346 

most relevant parameter for OC_A, 3k  being most influential for OC_G and CM. Moreover, 347 

uncertainty associated with 1k , corresponding to the less permeable facies, significantly affects 348 

model outcomes for OC_G and CM while its effect is negligible in OC_A, despite the high 349 

volumetric percentage (≈ 37%) of facies 1. All these results are consistent with the conceptual 350 

models adopted, OC_A being conducive to a reduction of the importance of the low 351 

conductivity facies while enhancing the effect of highly permeable textures. The effect of the 352 

Adda and Serio river stage (as embedded in 7p ) increases from North to South and is 353 

particularly significant for OC_A. Boundary conditions at the Northern boundary (as embedded 354 

in 6p ) affect mainly the Northern sector of the domain for OC_A, their influence extending 355 

also within the Southern sector for OC_G. The latter result is associated with the combined 356 

effects of the model boundary conditions and the tendency of OC_G to be overall characterized 357 

by relatively low Y values that enhance hydraulic head variations due to inflow changes. With 358 

reference to CM, the impact of 6p  on model outputs significantly varies with the considered 359 

metrics. This aspect is investigated in the following. 360 

As highlighted above, albeit traditional (Morris and Sobol’) and AMA indices provide 361 

overall similar results, outcomes of the diverse metrics not always appear to be mutually 362 

consistent. For example, considering CM one can see that while the analysis of 
ipS  (Fig. 6c) 363 
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would suggest a negligible impact of 2k  and a very limited impact of 4k  and 6p  on model 364 

outputs localized in the Northern area of the system, indices 
i

T
pS , AMA

ipV  and AMA
ipγ (Figs. 365 

6d, f, g) suggest that the impact of 2k , 4k , 6p  is (albeit to a limited extent for 2k  and 4k ) not 366 

negligible in most of the considered target locations. A qualitatively similar observation can be 367 

made for model OC_G with reference to parameters 2k  and 4k  (compare Fig. 8c and Figs. 8d, 368 

f, g). 369 

In order to explain this behavior, we recall that Sobol’ and AMA
ipV  indices are based 370 

on diverse perspectives. Principal, 
ipS , and total, 

i

T
pS , Sobol’ indices rely on the decomposition 371 

of the output variance, [ ]V f , as given by Eq. (5) and allow quantifying the expected reduction 372 

of [ ]V f  due the knowledge of ip . The AMA
ipV  metric evaluates (on average) the distance 373 

between [ ]V f  and the variance conditional to the knowledge of ip , i.e., [ | ]iV f p . Therefore, 374 

differences among 
ipS , 

i

T
pS  and AMA

ipV  are mostly related to the behavior of the conditional 375 

variance iV f p   , as we already mention in Section 3.3. As an example, Figs. 9a-c depicts 376 

the conditional variance iV f p    versus ip  at a selected observation well (ID 32), together 377 

with its unconditional counterpart. Here, the interval of variation of each model parameter has 378 

been normalized to span the range [0, 1] for graphical representation purposes. Conditional 379 

moments are obtained via 2 × 106 runs of the gPCE-based surrogate model. We note that 380 

2V f k   , 4V f k    and 6V f p    for CM (Fig. 9a) can be either smaller or higher than their 381 

unconditional counterparts, depending on the conditioning value ip . This behavior is consistent 382 

with inability of the principal Sobol’ index to detect the effect of 2k , 4k  and 6p  on the model 383 

output variance at this observation well (see Fig. 6c), integration of the conditional variance 384 

over 2k , 4k  and 6p  being close to zero. A similar conclusion can be drawn from Figs. 8c,f and 385 
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Fig. 9c, with reference to parameters 2k  and 4k  for model OC_G. Conversely, 386 

[ ]3V f k V f  <   for most (or all) values of 3k  in both CM and OC_G models. Thus, 
3kS  and 387 

3
AMA kV  yield very similar results. For the same reason 

ipS  (Fig. 7c) and AMA
ipV  (Fig. 7f) 388 

exhibit very consistent features for OC_A, identifying 5k  and 7p  as the most influential 389 

parameters, 5V f k    and 7V f p    being always smaller than the unconditional variance, as 390 

revealed by Fig. 9b. 391 

The impact of the interaction among parameters on the total output variance, as identified 392 

by the total Sobol’ and AMAV indices and corresponding to settings where 
i

T
pS >

ipS , AMA
ipV393 

> 
ipS  and 

1
1

i

N
T
p

i
S

=

>∑ , is in our case mainly relevant for CM and OC_G in the Southern area (see 394 

Figs. 6d and 8d), while being generally limited for OC_A where it is detectable only at a few 395 

target points in the Northern zone (see Fig. 7d). The scatterplot of 
i

T
pS  versus 

ipS  is depicted 396 

in Figs. 10a-c for all target points, parameters and models investigated. Interactions are mostly 397 

detected for 3k  and 5k  for all models. Scatterplots of AMA
ipV  versus 

i

T
pS  (Figs. 10 d-f) reveal 398 

that 
i

T
pS  can be smaller or larger than AMA

ipV , depending on the target point and parameter 399 

considered. This latter behavior is associated with the relative impact of the interaction terms 400 

that can vary for differing model conceptualizations and from one target point to another. 401 

The degree of symmetry of the pdfs of hydraulic heads, as driven by the skewness, 402 

strongly depends on the considered conceptual model and on the selected observation well. In 403 

most of the observation wells the unconditional pdf is right-skewed for CM and OC_G while 404 

being left-skewed or symmetric for OC_A (not shown). As an example, the unconditional and 405 

conditional skewness obtained for the three considered models are depicted in Fig. 9d-f at 406 
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observation well (ID 32). Conditioning on model parameters affects the shape of the pdf, whose 407 

degree of symmetry can markedly depend on the conditioning value of ip .  408 

In order to provide an overall assessment of model parameter impacts on hydraulic heads 409 

across the domain, we compute the average of each sensitivity index across all 39 locations 410 

considered (the averaging operator is hereafter denoted with symbol ). Figure 11a depicts 411 

i

T
pS  versus *

ipµ  for all model conceptualizations analyzed. These two traditional sensitivity 412 

measures display the following consistent trends (only a few minor differences in term of 413 

ranking of parameter importance can be detected): (i) hydraulic head for all conceptual models 414 

are significantly affected by the uncertainty of 3k  and 5k , while the effects of 2k  and 4k  are 415 

negligible; (ii) the strength of the influence of the uncertainty of 1k  depends on the conceptual 416 

geological model adopted, in particular it is negligible in OC_A; (iii) CM and OC_A are more 417 

affected by the uncertainty in the Dirichlet (as quantified by 7p ) than in the Neumann (i.e., 6p418 

) boundary condition, the opposite behavior being observed for OC_G. 419 

The scatterplot of AMA
ipV  versus AMA

ipE  values is depicted in Fig. 11b. We note 420 

that mean values of hydraulic heads in OC_G are more affected by uncertainty in a few selected 421 

parameters ( 1k , 3k , 5k , and 6p ) with respect to what can be observed for the other models (note 422 

the isolated cluster of green symbols, i.e., diamonds, in Fig. 10b). Conversely, hydraulic head 423 

variance is influenced (on average) in a similar way for all considered models by the input 424 

parameters which are evaluated as most influential (i.e., 3k  for CM and OC_G; and 5k  and 7p  425 

for OC_A). Comparing AMA
ipV  and 

i

T
pS  (Fig. 11c) enables us to further support our 426 

previous observation that both sensitivity measures are able to identify interactions among 427 

parameters, albeit in a different way. Interactions are generally limited for OC_A, these two 428 

averaged metrics displaying a linear trend with unit slope. For CM and OC_G, where 429 
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interaction terms are more relevant, AMA
ipV  tends to be slightly higher than 

i

T
pS  for all 430 

input parameters, with the exception of 3k . 431 

Figure 10d depicts AMA
ipV  versus AMA

ipγ . We note that all points tend to follow 432 

a linear trend with unit slope for CM and OC_A, suggesting that uncertainty on model 433 

parameters affect variance and skewness of outputs in a similar way. Otherwise, considering 434 

OC_G we note that the influence of model parameters decreases for increasing order of the 435 

(statistical) moment of the output distribution, 7p  being an exception to this behavior. 436 

5 Conclusions 437 

This study compares a set of Global Sensitivity Analysis (GSA) approaches to evaluate 438 

the impact of conceptual geological model and parametric uncertainty on groundwater flow 439 

features in a three-dimensional large scale groundwater system. We document that the joint use 440 

of multiple sensitivity indices, each providing a particular insight to a given aspect of 441 

sensitivity, yields a comprehensive depiction of the model responses. In this sense, one 442 

minimizes the risk of classifying as unimportant some parameters which might have a non-443 

negligible impact on selected features of the output of interest. 444 

Our work leads to the following major conclusions. 445 

1. Albeit being based on differing metrics and concepts, the three GSA approaches 446 

analyzed lead to similar and (generally) consistent rankings of parameters which are 447 

influential to the target model outcomes at the set of investigated locations. Otherwise, 448 

the choice of the conceptual model employed to characterize the lithological 449 

reconstruction of the system affects the degree of influence that uncertain parameters 450 

can have on modeling results. 451 

2. When considering the overall behavior of model responses across the set of observation 452 

points, all GSA indices suggest that geomaterials constituting a relatively modest 453 
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fraction of the aquifer (~10÷15%) are influential to hydraulic heads only if they are 454 

associated with large conductivities. Otherwise (i.e., if their conductivity has a low to 455 

intermediate value), these geomaterials are not influential in any of the geological 456 

models considered. 457 

3. The impact of very low conductivity geomaterials (such as those associated with facies 458 

1 in Table 1) depends on the conceptual model adopted even when their volumetric 459 

fraction is significant (~30%). These geomaterials do not influence the variability of 460 

hydraulic heads computed through the OC_A model (Overlapping Continuum scheme 461 

associated with arithmetic averaging of geomaterial conductivities). Otherwise, they 462 

are seen to be remarkably influential for the CM (Composite Medium) model and the 463 

OC_G (Overlapping Continuum scheme associated with geometric averaging of 464 

geomaterial conductivities) model. 465 

4. Uncertainty in the Neumann boundary condition plays only a minor role with respect 466 

to the Dirichlet boundary condition, which strongly controls variability of hydraulic 467 

head, in the CM and OC_A models. The opposite behavior is observed for the OC_G 468 

approach. 469 

5. The moment-based indices AMAE, AMAV, and AMAγ (which quantify the impact of 470 

model parameters on the mean, variance, and skewness of the pdf of model outputs, 471 

respectively) suggest that input parameters which are evaluated as most influential 472 

affect in a similar way mean, variance and skewness of hydraulic heads for the CM and 473 

OC_A approaches. When considering the OC_G conceptualization, we note that the 474 

most influential parameters (i.e., the largest/smallest geomaterial conductivities, and 475 

Neumann boundary conditions) affects the mean of hydraulic heads more strongly than 476 

its variance or skewness. 477 
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6. The degree of symmetry of the pdf of hydraulic heads, as quantified by the skewness, 478 

depends on the considered conceptual model and varies across the domain. 479 

Conditioning on model parameters markedly affects the shape of the pdf of heads, 480 

whose degree of symmetry can strongly depend on conditioning parameter values. 481 

Our results form the basis for future developments tied to efficient parameter estimation 482 

and uncertainty quantification in three ways: (i) parameters which have been identified as 483 

noninfluential to model outcomes (as expressed through their statistical moments of interest) 484 

can be neglected in a stochastic model calibration process and fixed to given values, (ii) 485 

quantification of differing impacts of model parameters on various (statistical) moments of 486 

model outputs can guide stochastic inverse modeling to identify posterior distribution of model 487 

parameters; and (iii) quantification of the way contributions to multiple statistical moments of 488 

model outputs are apportioned amongst diverse conceptual models and their parameters can be 489 

employed in a multimodel context. All of these topics are subject of current theoretical 490 

developments and analyses and will be explored in future studies.  491 
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TABLES 628 

Table 1. List of the fn  = 5 facies (or geomaterial, classes) identified in the area, together 
629 

with their volumetric fraction ( if ); ML estimates of indicator variogram range along the 
630 

horizontal ( ˆi
hr ) and vertical ( ˆi

vr ) directions. 
631 

Mi Description fi (%) ˆi
hr  (m) ˆi

vr  (m) 
1 Clay and silt 36.77 467.4 17.1 
2 Fine and silty sand 4.73 234.6 14.5 
3 Gravel, sand and gravel 32.92 3835.2 17.5 
4 Compact conglomerate, sandstone 14.94 2526.2 26.4 
5 Fractured conglomerate 10.64 877.8 28.1 

 
632 

Table 2. Selected uncertain model inputs and associated intervals of variability, as defined by 
633 

their lower ( min
ip ) and upper ( max

ip ) boundaries. 
634 

Parameter Description min
ip   max

ip  

1p  (m/s) Conductivity of class 1, 1k  10-8 10-5 
2p  (m/s)  Conductivity of class 2, 2k  10-7 10-4 
3p  (m/s) Conductivity of class 3, 3k  10-4 10-2 
4p  (m/s) Conductivity of class 4, 4k  10-6 10-3 
5p  (m/s) Conductivity of class 5, 5k  10-3 10-1 

6p  (m3/s) Neumann boundary condition* 4.83 14.47 

7p  (m) Dirichlet boundary condition 0.0 3.0 
*In terms of total flow rate imposed along the Northern domain boundary 

635 

 636 

 637 

 638 



 
Fig. 1. Location of (a) the study area (shaded zone) within the Po Plain (Northern Italy) and 

(b) hydrometric and meteorological stations, pumping/monitoring wells, available geological 
stratigraphies and springs. 
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Fig. 2. Geological cross-sections (a) SECT 1 (North-South direction), and (b) SECT 2 

(West-East direction), modified from Maione et al. (1991); see Fig. 1 for the location of the 
cross-sections. 
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Fig. 3. Locations at which GSA metrics are evaluated and boundary conditions of the 

numerical model. 
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Fig. 4. Spatial distribution of the natural logarithm of hydraulic conductivity along 
longitudinal cross-section A’A’ (see Fig. 3) for modeling strategies (a) CM, (b) OC_A and (c) 

OC_G. A vertical exaggeration factor of 50 is employed. 
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Fig. 5. Sample pdfs of Y for OC_A and OC_G on (a) natural and (b) semi logarithmic scales. 

Also shown for comparison are Gaussian distributions having the same mean and variance as 

the sample pdfs and (ii) the sample pdf evaluated for the CM model. Results correspond to 

the fields associated with the cross-sections depicted in Fig. 4. 
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Fig. 6. CM approach. (a) Morris *
ipµ , (b) Morris scaled *

ipµ , (c) principal Sobol’ 
ipS , (d) total 

Sobol’ 
i

T
pS  (e) AMA

ipE , (f) AMA
ipV  and (g) AMA

ipγ  indices evaluated at the 39 locations 

depicted in Fig. 3. 
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Fig. 7. OC_A approach. (a) Morris *
ipµ , (b) Morris scaled *

ipµ , (c) principal Sobol’ 
ipS , (d) 

total Sobol’ 
i

T
pS  (e) AMA

ipE , (f) AMA
ipV  and (g) AMA

ipγ  indices evaluated at the 39 

locations depicted in Fig. 3. 

 
 

 

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35

 
 

0 0.5 1 1.5 2

0

5

10

15

20

25

30

35
 

 

AMA
ipE AMA

ipV AMA
ipγ

 

                                                                                                      

 

*

ipµ
*

ipµ ipS
i

T
pS

                                                                                                                           



 
Fig. 8. OC_G approach. (a) Morris *

ipµ , (b) Morris scaled *
ipµ , (c) principal Sobol’ 

ipS , (d) 

total Sobol’ 
i

T
pS  (e) AMA

ipE , (f) AMA
ipV  and (g) AMA

ipγ  indices evaluated at the 39 

locations depicted in Fig. 3. 
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Fig. 9. Conditional (a-c) variance iV f p    and (d-e) skewness if pγ     versus normalized 

ip  at a selected observation well (ID 32; see Fig. 3) for the conceptual models considered. 
The corresponding unconditional moments (horizontal black lines) are also shown. 
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Fig. 10. Scatterplots of 
i

T
pS  versus 

ipS  (a-c) and AMA
ipV  versus 

i

T
pS  (d-f) at all 39 target 

locations for the conceptual models considered. 
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Fig. 11. Scatterplots of sensitivity indices averaged across all 39 target locations. (a) averaged 
total Sobol indices T

iS  versus averaged scaled Morris Index *
iµ ; (b) averaged AMA

ipV  

indices, AMA
ipV  versus averaged AMA

ipE  indices, AMA
ipE ; (c) AMA

ipV  versus 
T
iS ; (d) AMA

ipV  versus averaged AMA
ipγ  indices, AMA

ipγ . Blue circles, red 

triangles, and green diamonds correspond to results obtained via the CM, OC_A and OC_G 
conceptual models, respectively. 
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