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Abstract

In this paper, we introduce the Green Vehicle Routing Problem with capaci-
tated Alternative Fuel Stations (AFSs), a more realistic variant of the Green
Vehicle Routing Problem where the capacity of the AFSs is addressed. Two
Mixed Integer Linear Programming formulations, one based on arc-variables
and one on path-variables are presented. In order to reduce the computa-
tional time required to solve the problem, two variants of an exact cutting
planes method are proposed. Computational experiments have been carried
out on both some benchmark instances and challenging realistic instances for
which the capacity of the AFSs is a crucial issue.
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1. Introduction

Nowadays, finding solutions to reduce environmental pollution is becoming
a crucial issue. Recent statistical studies have remarked that from 2010 to
2017 the rate of atmospheric CO2 increased of about 5% (www.co2.earth).
In particular, the transport sector produces about 23% of the global CO2

and this rate is expected to double in 2050. It is not surprising that recent
rules imposed by the European Commission tend to incentivize the use of
Alternative Fuel Vehicles (AFVs), i.e., vehicles that use alternative fuel (e.g.,
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methane, electricity), instead of traditional Internal Combustion Engine Ve-
hicles (ICEVs).

Besides a significant reduction of both the harmful emissions and the fos-
sil fuels dependency, the use of the AFVs allows reaching Limited Traffic
Zones, providing, among other things, more efficient door-to-door distribu-
tion services. Although the purchase cost of AFVs is still higher compared
to that of ICEVs, its operating cost is by far lower. For example, a study
carried out by [12] shows that the operating cost of a conventional diesel
truck (e.g., Isuzu N-Series) is about $0.23/miles against $0.09/miles of an
electric propulsion one (e.g., Navistar E-star).

However, the very limited driving range still represents the Achilles’ heel
for the AFVs. In fact, they require several stops at Alternative Fuel Stations
(AFSs) along their route. Moreover, since AFSs are not widespread across
the territory, refueling stops should be a priori planned to prevent drivers to
remain stuck along their routes.

An emerging topic which is attracting the attention of many academics is
the Green Vehicle Routing Problem (GVRP). The GVRP, introduced in the
literature by the seminal work of [10], refers to the problem of routing a fleet
of AFVs, based at a common depot, to serve a set of customers, minimizing
the total travel distance. During the trips, the AFVs can be refueled, even
more than once, at AFSs and each time, to their full capacity.

Each AFV, fully refueled, leaves the depot and returns to it, within a
maximum duration that can depend on many factors, among which, for in-
stance, the working conditions of drivers. For each customer, a service time
is a-priori known. Similarly, a refueling time to take into account stops at
each AFS is specified. No cargo capacity nor service time windows at the
customers are considered.

Since fuel consumption is assumed to be linearly proportional to the travel
distance, the maximum distance an AFV can travel without refueling can be
easily derived from its tank capacity.

In the traditional GVRP, it is implicitly assumed that the number of
AFVs can be simultaneously refueled at the same AFS is unlimited. Firstly,
such an assumption is unrealistic since, in real life, each AFS owns only a
limited number of refueling pumps. Therefore, we introduce a variant of
the GVRP where the number of refueling pumps available in each AFS is
considered. Under this new assumption, queues at AFSs may occur and
must be considered in the model. Indeed, a possible queuing at an AFS
may increase the actual refueling time, yielding to infeasible routes. This

2



could happen especially when the refueling times are high (e.g., in the case
of electric vehicles) and/or when the maximum route duration is very tight.

Figure 1: Scenario in which the AFS capacity is not a crucial issue

Figure 1 refers to a situation, frequently arising in urban contexts, where
AFSs are perfectly integrated in the customers area. In such a case, a limited
number of fueling pumps per station does not represent a crucial issue. On
the contrary, Figure 2 shows a realistic scenario related to an area in the
northern Italy concerning the horizontal stretch of highway among the cities
of Asti, Alessandria and Tortona. In such a scenario, the AFS capacity may
become a crucial issue because the AFVs require to refuel before reaching
the customers area. Therefore, overlaps among AFVs at the same AFS may
frequently occur.

In this work, we introduce a variant of the traditional GVRP, i.e., the
GVRP with Capacitated AFSs (GVRP-CAFS) where only a limited number,
ηs, of refueling pumps are available at an AFS s. Therefore at most ηs AFVs
can simultaneously refuel in s. The GVRP-CAFS fits well in two main kinds
of scenario. The first one is that where all AFSs belong to the company
that wants to route the AFVs. The second scenario is the one where the
AFSs are public but the companies can reserve in advance the use of the
refueling pumps of each AFS, in order to avoid unpredictable waiting times
at the AFSs due to the fact that all pumps are busy. Of course, also a hybrid

3



Figure 2: Scenario in which the AFS capacity plays a crucial role

scenario where the companies can use both public AFSs and their private
ones is possible.

The main contributions of this paper are:

• the introduction of a more realistic variant of the GVRP

• an Arc based Mixed Integer Linear Programming model;

• a more efficient Path based Mixed Integer Programming formulation;

• the modeling of (also multiple) time windows associated with refueling
pumps;

• two variants of an exact cutting planes approach for the Path based
model;

• the generation of a benchmark set of challenging instances for the
GVRP-CAFS.

The rest of the paper is organized as follows. Section 2 describes the
state-of-the-art contributions on the GVRP and its variants while, Section
3 states the GVRP-CAFS. Section 4 introduces an Arc based mathematical
formulation of the GVRP-CAFS while Section 5 proposes a Path based model
and its linearization. Section 6 describes the two variants of the exact cutting
planes method for solving the GVRP-CAFS in a reasonable amount of time.
In section 7, a set of benchmark challenging instances is introduced and
numerical results are discussed. Finally, Section 8 draws some conclusions
and outlines future research directions.
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2. Literature review

The problem of efficiently routing a fleet of AFVs is currently under
investigation and many contributions already exist in the literature, as proven
by several surveys on the topic (e.g., [21], [8] and [3]).

The GVRP belongs to the general class of Vehicle Routing Problems
(VRPs) and it was introduced in the literature by the work of [10] in which
the authors mathematically model it via Mixed Integer Linear Programming
(MILP). They also design two construction heuristics: a Modified Clarke and
Wright Savings algorithm and a Density-Based Clustering algorithm. Nu-
merical comparisons are also proposed and discussed on a set of benchmark
instances ad hoc generated for the GVRP. In the same year, [16] proposed
a bi-objective GVRP, including advancements on the way of estimating the
CO2 emissions. For solving the benchmark instances, they apply the NSGA-
II evolutionary algorithm.

In [11], the GVRP is addressed under the hypothesis that the fleet is made
up by only electric vehicles. Therefore, they consider the possibility of using
different recharging technologies, each associated with a specific cost. Both
constructive and improving heuristics are designed and embedded in a Simu-
lated Annealing framework. Both user and operator costs, together with the
environment state, are introduced in the GVRP by [17] and a neuro-fuzzy
approach is proposed for solving this problem. In [27], the Electric Vehi-
cle Routing Problem with Time Windows (EVRPTW), i.e., the problem of
routing a fleet of electric vehicles, is mathematically formulated, considering
that each customer also defines a time window for being served, each vehicle
has a limited cargo capacity and the need of being recharged at the stations
during the trips. For EVRPTW, the authors also design a meta-heuristic
that combines a Variable Neighborhood Search together with a Tabu Search.
A set of benchmark instances are also ad hoc generated for the new problem.
EVRPTW is addressed as a VRP with intermediate stops and an Adaptive
Neighborhood Search is proposed in [28]. Instead, in [7], a new variant of
the EVRPTW, introducing the possibility of partially recharging the vehi-
cles at the station, is addressed. Therefore, a time-effective MILP model is
proposed and large-sized instances are also solved via a matheuristic, i.e., a
Variable Neighborhood Search combined with the Local Branching method.
In [15], the authors propose a modeling framework for electric vehicle service
systems, proving that dynamic routing policies can maximize the through-
put and guarantee a system stability by incorporating also information on
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the vehicle arrival and service as well as on the routing processes. Recently,
two new variants of the EVRPTW have been proposed in the literature.
One variant concerns the problem of sizing a fleet of mix (or heterogeneous)
electric vehicles together with their routing, i.e., the Electric Fleet Size and
Mix Routing Problem with Time Windows and Recharging Stations [14].
For such a new variant, the authors propose both a branch-and-price algo-
rithm and a hybrid heuristic that combines an Adaptive Large Neighborhood
Search with an embedded local search and a labeling procedure for intensifi-
cation. Another variant is related to the routing of a mix fleet made up by
conventional, plug-in hybrid and electric vehicles [13]. The authors propose
a metaheuristic that integrates the genetic algorithm framework with a local
and large neighborhood search.

A more efficient MILP formulation is proposed in the work of [4] in which
the AFSs are only implicitly considered. In this way, the authors prove that
the total number of variables and constraints are significantly reduced with
regard to the traditional formulation of the problem. In addition, the number
of variables is further reduced by pre-computing, for each pair of customers,
an efficient subset of AFSs, i.e., the ones may be actually used in an optimal
solution. Also, in [18], a new mathematical formulation of the GVRP is pro-
posed, by adapting the Miller Tucker Zemlin (MTZ) capacity and subtour
elimination constraints already proposed for the Traveling Salesman Prob-
lem. An exact solution approach, based on a branch-and-bound algorithm,
is designed and a Simulated Annealing approach is used for finding upper
bounds.

A two phase heuristic approach is proposed in [25]. The authors firstly
build a set of feasible routes through the combination of a randomized route-
first cluster-second heuristic with an optimal AFSs insertion procedure. Then,
such a route is given in input to a set partitioning model for assembling a
GVRP solution. Very recently, in [1], a Variable Neighborhood Search heuris-
tic is designed for the GVRP showing that it is competitive with the other
already existing heuristics.

Four variants of the traditional EVRPTW are introduced and addressed
in [9]. In particular, assuming that only full battery recharges are allowed,
in the first variant, at most a single recharge per route is permitted while,
this constraint is relaxed in the second variant. Moreover, the two variants
are studied under the hypothesis that partial recharges are also permitted.
For each variant, the authors propose an exact branch-and-price-and-cut al-
gorithm.
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In [22], a GVRP with simultaneous pickups and deliveries and with also
time windows is addressed, introducing a comprehensive modal emission
model for taking into account both the fuel consumption and the emissions.
An extension of the traditional GVRP is introduced in [23] in which the fleet
is made up by hybrid vehicles, i.e., vehicles that can switch from the elec-
tric mode to the traditional fuel at any time during their trips. The author
mathematically formulates the problem of routing such a fleet for minimiz-
ing the total travel distance and also penalizing the use of the traditional
fuel. For this problem, the author also designs a Large Neighborhood Search
based matheuristic. A variant of the EVRP is proposed in [26] considering
nonlinear charging functions.

A new mathematical formulation of the GVRP is described in [20], based
on the Reformulation-Linearization Technique. In order to fix some binary
variables of the formulation, the authors also describe some pre-processing
conditions. Computational results are compared with the ones obtained by
both [10] and [18] on the only small/medium-sized instances. While, in [6],
the problem introduced in [7] is addressed via a three-phase matheuristic
in which a feasible solution is firstly found by solving the MILP modeling
a GVRP with capacity and time windows constraints. Secondly, such a
solution becomes the input of the EVRPTW with partial recharges, by fixing
some routing variables coherently. In the third phase, the EVRPTW with
partial recharges, starting from that feasible solution, is solved via a Variable
Neighborhood Search with a Local Branching method.

Very recently, in [2], a new exact algorithm for solving the GVRP is
proposed. In particular, the authors model the G-VRP as a set partitioning
problem in which the columns are feasible routes, i.e., simple circuits on a
properly built multigraph. The proposed approach is suitable to solve to
optimality also instances with up to 110 customers. The concept of paths in
the G-VRP has been introduced in [5] where a path-based formulation and
a matheuristic based on it have been proposed.

Although all the above cited works clearly show a real interest in the
GVRP, to the best of our knowledge, no contributions have been already
proposed for including the capacity of the AFS such as the limitation on the
number of AFVs that can be simultaneously refueled at the same station.
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Table 1: Nomenclature of the GVRP-CAFS
Set Meaning
I set of customers
F set of AFSs

N = I ∪ F ∪ {0} set of nodes
A = (i, j),∀i, j ∈ N set of arcs

Parameter Meaning
0 depot
m number of available AFVs
v average AFV speed
Q maximum fuel capacity for each AFV
r fuel consumption rate

Dmax distance an AFV can travel without refueling
Tmax maximum route duration
tij travel time to go from node i to node j
dij travel distance between node i and node j
ps refueling time at AFS s ∈ F
pi service time at customer i ∈ I
ηs number of fueling pumps at AFS s ∈ F

3. Notation and assumptions

Similarly to the GVRP, the GVRP-CAFS is formally represented on a
complete directed graph G = (N,A), where the set N of nodes contains the
set I of customers to be served, the set F of AFSs and the depot, denoted
by 0. For each arc (i, j) ∈ A, a travel time tij as well as a distance dij are
known. Each AFV can perform a route starting from the depot and ending
at it, without exceeding the maximum duration Tmax. The time ps spent at
each AFS s to fully refuel an AFV to its maximum capacity Q is considered,
independently of the amount of fuel needed. If the depot is also an AFS, as
in the instances of [10], it is indicated by s0. Moreover, it is assumed that
each AFV leaves the depot fully refueled and the time spent for the initial
refuel, pstart, has to be subtracted from Tmax. Similarly, for each customer
i ∈ I, the service time pi is given. A fictitious service time p0 = 0 is assigned
also to the depot, when it is not considered as an AFS. For each AFV, the
average speed v is also given. Since the fuel consumption is assumed to be
linearly proportional to the travel distance through a rate r, the maximum
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distance Dmax an AFV can travel without refueling is computed as Q/r.
Finally, for each AFS s ∈ F , a limited number ηs of fueling pumps is given,
i.e., a limitation on the number of AFVs can be simultaneously refueled at
s.

Table 1 summarizes all the sets and parameters introduced for describing
the GVRP-CAFS.

4. An Arc Based Formulation for the GVRP-CAFS

We model the capacity constraint on the AFSs introducing a node for
each fueling pump at each AFS. Therefore, we introduce ηs fueling pump
nodes ∀s ∈ F . In order to allow that the same fueling pump can be used q
times, we introduce q clones (i.e., dummy copies) of the node representing
it. If only one refuel per route is necessary, an upper bound on q is given by
dm
ηs
e. More generally, if µ is the maximum number of refuelings necessary

per route, an upper bound on q is given by dµm
ηs
e.

The additional notation used in formulating the GVRP-CAFS is defined
as follows.

• Φs: ordered set of fueling pumps at AFS s

• Π = ∪s∈FΦs

• F̃h: ordered set of clones of fueling pumps h, ∀h ∈ Π

• F̃ last
h = F̃h \ {last(F̃h)}, ∀h ∈ Π (where operator last( ) selects the last

element of the set considered).

• F̂ = ∪h∈ΠF̃h

• N̂ = I ∪ F̂ ∪ {0}

• Ω = {i ∈ N̂ , j ∈ N̂ : i 6= j, d0i+dij+dj0 ≤ Tmax v, dij ≤ Dmax and @s ∈
F : i ∈ F̃h1 , j ∈ F̃h2 , h1, h2 ∈ Φs} (the last condition corresponds re-
quiring that i and j are not clones of fueling pumps of the same station).

The variables of the problem are now described.

• xij: binary variable equal to 1 if a vehicle travels from node i to node
j and 0 otherwise, ∀(i, j) ∈ Ω

9



• yi: fuel level at node i, ∀i ∈ N̂ (if i ∈ F̂ ∪ {0}, it is the fuel level after
refueling);

• τi: arrival time at node i, ∀i ∈ I ∪ F̂ and starting time from the depot
for i = 0

The mathematical programming formulation of the GVRP-CAFS for the
scenario with private AFSs (first scenario of Section 1) is the following:

min
∑

(i,j)∈Ω

dijxij (1)

s.t. ∑
(i,j)∈Ω

xij = 1 ∀ i ∈ I (2)

∑
(i,j)∈Ω

xij ≤ 1 ∀ i ∈ F̂ (3)

∑
(j,i)∈Ω

xji =
∑

(i,j)∈Ω

xij ∀ j ∈ N̂ (4)

∑
(0,j)∈Ω

x0j ≤ m (5)

τj ≥ τi + (pi + tij)xij − Tmax(1− xij) ∀(i, j) ∈ Ω : j 6= 0 (6)

τ0 ≥ pstart (7)

τj ≤ Tmax − (tj0 + pj) ∀j ∈ N : (j, 0) ∈ Ω (8)

yj ≤ yi − rdijxij +Q(1− xij) ∀(i, j) ∈ Ω : j ∈ I (9)

yj = Q ∀j ∈ F̂ ∪ {0} (10)

yi ≥
∑

(i,j)∈Ω:j∈F̂∪{0}

rdijxij ∀i ∈ N̂ (11)
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τh̃+1 ≥ τh̃ + ps − (Tmax + ps)(1−
∑

i∈N̂ :(i,h̃+1)∈Ω

xih̃+1) ∀s ∈ F, ∀h̃ ∈ ∪h∈ΦsF̃
last
h

(12)

∑
i∈N̂ :(i,h̃1)∈Ω

xih̃1 ≥
∑

i∈N̂ :(i,h̃2)∈Ω

xih̃2 ∀h ∈ Π, ∀h̃1, h̃2 ∈ F̃h : h̃1 < h̃2 (13)

∑
i∈N̂,s1∈F̃h1

:(i,h1)∈Ω

xih1 ≥
∑

i∈N̂,s2∈F̃h2
:(i,h2)∈Ω

xih2 ∀s ∈ F, ∀h1, h2 ∈ Φs : h1 < h2 (14)

xij ∈ {0, 1} ∀(i, j) ∈ Ω (15)

yi ≥ 0 ∀i ∈ N̂ (16)

τi ≥ 0 ∀i ∈ N̂ (17)

The objective function is defined in (1) and corresponds to the minimiza-
tion of the total travel distance. Constraints (2) ensure that each customer
is visited exactly once, while constraints (3) imply that each cloned fueling
pump can be visited at most once. The flow conservation constraints (4)
imply that every node j ∈ N̂ , i.e., either a customer or an AFS or the de-
pot, entered by an AFV has to be left by the same AFV. Constraint (5)
imposes that the maximum number of available AFVs is not exceeded. The
arrival time at each node is ruled by constraints (6) that also prevent sub-
tours. Constraint (7) imposes that the starting time from the depot must be
not lower than the time spent for the initial refueling. Constraints (8) ensure
that each vehicle returns to the depot without exceeding the maximum route
duration Tmax. The tank level, upon arrival at each customer, is ruled by
constraints (9). Constraints (10) set the value of the tank level equal to Q
at the departure from the depot and after a visit to a cloned fueling pump.
Constraints (11) guarantee that if either a clone j of a fueling pump or the
depot are visited after a customer i, the tank level at i must be enough to
reach j. Constraints (12) model the capacity constraints ensuring that for
each clone s of a fueling pump, if its next clone, s + 1, is used, the visiting
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time of the latter is postponed at least by the refueling time. Of course, such
constraints are not imposed for the last clone of each fueling pump. On the
other hand, constraints (13) ensure that the clones are used in an increasing
order to avoid equivalent solutions. Similarly, to avoid equivalent solutions in
using the fueling pumps, constraints (14) ensure that also the fueling pumps
are used in an increasing order. Finally, constraints (15)-(17) provide the
variables nature.

This model can be easily extended to the scenario with public AFSs
(second scenario of Section 1) where the fueling pumps reservation has to be
addressed. In this case, to take into account that AFSs are also employed by
other users, a time window [eh, lh] can be introduced for each pump h ∈ Π
where eh and lh are the earliest and the latest time allowed for refueling,
respectively. Moreover, the following constraints have to be added to the
previous formulation:

eh ≤ τi ≤ lh ∀i ∈ F̃h,∀h ∈ Π (18)

In addition, multiple time windows associated with each pump h can be
easily addressed by our model introducing, for each time window, a number
of clones of h equal to the minimum between d µm

λ+1
e and the floor of the ratio

between the time window width and the refueling time. In particular, µ is
the maximum number of refuelings necessary per route and λ is the number
of the other pumps of the same AFS, which h belongs to, having time window
including that of h. In this way, the problem is reduced to the case with a
single time window.

5. A Path Based Formulation for the GVRP-CAFS

In this section, we propose a Path based Mixed Integer Programming
(MIP) formulation for the GVRP-CAFS. In fact, each feasible route can be
seen as the combination of paths, each one handling a subset of customers
without intermediate stops at AFSs. Each path can link the depot or an AFS
with the depot or another AFS. In particular, the path linking the depot with
itself is a route without intermediate stops. Moreover, for each path k, the
origin (starting node) sk, the destination (arrival node) ak, the travel distance
dk and the elapsed time γk are known. In particular, γk is computed as the
sum of the total travel time of path k and the service times at nodes visited
by it. For example, with reference to the scenario in Figure 1, two paths are
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(Depot, C1, C5, AFS4) and (AFS4, C2, C7, Depot). Therefore, a route is the
composition of these two paths: (Depot, C1, C5, AFS4, C2, C7, Depot).

Algorithm 1 Generation of the feasible non-dominated paths
Input:
Set of customers I, set of AFSs F , depot 0
Number of vehicles m
Maximum path distance Dmax

Maximum route duration Tmax.
Output: set of feasible non-dominated paths K

1: Let K := ∅;
2: for (i, j) ∈ {N \ I} × {N \ I} do
3: Let k := (i, j);
4: if feasible(k) then
5: if i = 0 and j = 0 then
6: K := K ∪ {k};
7: else
8: K ′ := replicate(k,m);
9: K := K ∪K ′;

10: end if
11: Let K ′ := {(i, j)};
12: while K ′ 6= ∅ do
13: K ′ := extend(K ′, Dmax, Tmax)
14: if K ′ 6= ∅ then
15: K := K ∪K ′;
16: K := removeDominated(K,K ′)
17: end if
18: end while
19: end if
20: end for

The set K contains all feasible non-dominated paths. A path k is feasible
(feasibility rules) if: dk ≤ Dmax and γk+psk +pak + t0sk + tak0 +pstart ≤ Tmax.
Moreover, a feasible path k1 dominates a feasible path k2 (dominance rules)
if: sk1 = sk2 , ak1 = ak2 , they handle the same customers and dk2 ≥ dk1 .

Algorithm 1 outlines the main steps of the procedure that generates all
feasible non-dominated paths. In particular, the feasible routine returns
TRUE if the path k respects the feasibility rules given above; FALSE,
otherwise. The replicate routine returns as many copies of the feasible path
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k as the number of vehicles (m). While, the routine extend receives a set
of feasible paths K ′, from origin i to destination j. It returns a new set
of feasible paths from i to j, each obtained from a path in K ′ by adding a
new customer, as the last served. For the sake of clarity, the routine initially
receives only the path (i, j). Then, it returns all feasible paths of type (i, c, j)
∀c ∈ I. At the second iteration, the routine receives the set of feasible paths
of type (i, c, j) and for each of them, it generates all feasible paths of type
(i, c, c1, j) ∀c1 ∈ I. It ends when no feasible paths of a certain type can be
found. Finally, the routine removeDominated removes, from the current set
of feasible non-dominated paths K, all ones that are dominated after adding
the new paths contained in K ′.

Each path k belonging to K is duplicated ηs(k) · ηa(k) times to take into
account multiple pumps in each station. Furthermore, a dummy path, k0,
which starts and ends at the depot without visiting any customers, with
duration γk0 = 0 and length dk0 = 0 is generated. This path is used, in the
model presented in the following, to ensure routes continuity and to force the
number of routes to be lower than the number m of available AFVs. The set
of all generated paths, included the duplicated ones and the dummy path,
is denoted by K̃. All paths belonging to K̃ are given as input to a Path
based MIP model, which is used to select paths and properly combine them
to generate the routes of the optimal GVRP-CAFS solution. A coverage
parameter, cik, is introduced, equal to 1 if i ∈ I is handled in k ∈ K̃, 0
otherwise. We define by s̃k and ãk the starting and the arrival pump of path
k, respectively. If s̃k = 0, it means that k starts from the depot and, similarly,
ãk = 0 implies that k ends at the depot. The notation ps is extended also
to the refueling pumps h ∈ Π imposing that ph = ps where s is the AFS
which h belongs to. From K̃, the set P of all the pairs of paths is generated.
A pair (k1, k2), k1 ∈ K̃, k2 ∈ K̃, k1 6= k2, exists (compatibility rules) if:
ãk1 = s̃k2 , the sets of customers handled in the two paths are disjoint and
t0s̃k1 + γk1 + γk2 + tãk20 + ps̃k1 + +pãk1 + pãk2 + pstart ≤ Tmax.

The following decision variables are introduced:

• Zk, equal to 1 if k ∈ K̃ is selected, 0 otherwise;

• Xkl, equal to 1 if l ∈ K̃ is covered just after k ∈ K̃, 0 otherwise;

• Tk a non-negative variable representing the starting refueling time of
k ∈ K̃ \ {k0} at its final node ãk if ãk 6= 0, the arrival time of k to the
depot if ãk = 0. While, for the dummy path k0, Tk0 = pstart.
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The Path based MIP model for the scenario with private AFSs (first
scenario of Section 1) is the following:

min
∑

k∈K̃\{k0}

dkZk (19)

∑
k∈K̃\{k0}

cikZk = 1 ∀i ∈ I (20)

∑
k2∈K̃

Xk0k2 ≤ m (21)

∑
k1∈K̃:

(k1,k)∈P

Xk1k =
∑
k2∈K̃:

(k,k2)∈P

Xkk2 ∀k ∈ K̃ \ {k0} (22)

∑
k1∈K̃:

(k1,k2)∈P

Xk1k2 = Zk2 ∀k2 ∈ K̃\{k0} (23)

Tk2 ≥ Tk1 + pãk1 + γk2 − Tmax(1−Xk1k2) ∀(k1, k2) ∈ P : k2 6= k0 (24)

|Tk1 − Tk2| ≥ pãk1 ∀k1, k2 ∈ K̃ \ {k0} : ãk1 = ãk2 , ãk1 6= 0 (25)

Tk ≤ Tmax − pãk + Tmax(1− Zk) ∀k ∈ K̃ \ {k0} (26)

Zk ∈ {0, 1}, Tk ≥ 0 ∀k ∈ K̃ \ {k0}, Tk0 = pstart (27)

Xk1k2 ∈ {0, 1} ∀(k1, k2) ∈ P (28)

The objective function (19) concerns the minimization of the total travel
distance. Each customer has to be visited exactly once (20) and the num-
ber of routes selected must not exceed the number of available AFVs (21).
Constraints (22) ensure that each route is a sequence of paths where the first
one and the last one is k0. Indeed, they guarantee that each path k 6= k0 se-
lected is traveled just after a path k1 and just before a path k2, both selected
in the same route. In fact, since constraints (22) are imposed for all paths
k ∈ K̃ \ {k0}, the dummy path is the only one not requiring to have both a
predecessor and a successor. Constraints (23) guarantee that a path can be
inserted in a route only if it is selected. If Xk1k2 = 1, the starting refueling
of path k2 cannot be performed before the refueling operation of path k1 at
ãk1 has been completed (24). Two AFVs cannot simultaneously refuel at the
same pump (25). The refueling operation carried out after path k cannot
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start before the path is completed nor finish after Tmax (26). Constraints
(27) and (28) specify variables nature.

Constraints (25) can be linearized by (29)-(30), through the introduction
of the auxiliary binary variables Yk1k2 which take value 1 if path k1 reaches
the AFS before k2 and 0 otherwise.The nature of variables Yk1k2 is specified
by constraints (31).

Tk2 ≥ Tk1 − 2Tmax(1− Yk1k2) + p ˜ak1
− 2Tmax(2− (Zk1 + Zk2))

∀k1 ∈ K̃, k2 ∈ K̃ \ {k0} : ãk1 = ãk2 , ãk1 6= 0
(29)

Tk1 ≥ Tk2 − 2TmaxYk1k2 + p ˜ak2
− 2Tmax(2− (Zk1 + Zk2))

∀k1 ∈ K̃, k2 ∈ K̃ \ {k0} : ãk1 = ãk2 , ãk1 6= 0
(30)

Yk1k2 ∈ {0, 1} ∀k1, k2 ∈ P : ãk1 = ãk2 , ãk1 6= 0 (31)

Similarly to the Arc based formulation, the Path based model can be easily
extended to the scenario with public AFSs where the refueling pumps reser-
vation has to be addressed. Indeed, using the notation for the time windows
introduced at the end of Section 4, the following constraints have to be added
to the formulation (19)-(31):

eãk ≤ Tk ≤ lãk ∀k ∈ K̃ \ {k0} (32)

Moreover, multiple time windows associated with the pumps can be ad-
dressed cloning the pumps as explained at the end of Section 4.

6. An exact Cutting Planes approach

Cutting Planes methods (CP) belong to a broad class of algorithms, to
exactly solve NP-hard optimization problems, based on the following princi-
ple. Given a MIP formulation of a problem (hereafter denoted as Original
Problem - OP), a relaxation (RP) of it is obtained by omitting a class of
constraints responsible to make OP hard to solve (usually, the integrality
constraints) or containing a huge number of constraints. In the latter case,
in fact, solving OP may become prohibitive from a computational point of
view. Once the RP is solved to optimality, the feasibility of its solution is
checked with respect to OP. If the optimal solution of RP is feasible for OP,
then it is optimal for OP too. Otherwise, we detect the violated constraints,
i.e. the cuts, we add them to RP and we solve it again. This procedure is

16



iteratively repeated until an optimal solution for OP (if any) is found. If
some of the initially dropped constraints are added to RP making it infea-
sible, OP is also infeasible. This method is exact since it converges to an
optimal solution, if it exists, in a finite number of iterations. In the worst
case, all the relaxed constraints have to be added to RP before proving that
either OP is infeasible or finding an optimal solution. The efficiency of the
method depends on the tightness of the relaxation and on the effectiveness of
the proposed cuts. Several CP variants have been proposed in the literature
across the years. For a complete survey on this subject, we refer the reader
to [24]. Although most of them propose to relax the integrality constraints,
many others apply different approaches. For example, in [19], for the Travel-
ling Salesman Problem, the huge number of subtours elimination constraints
is relaxed.

6.1. A Cutting Planes approach for the GVRP-CAS

The proposed approach works as follows. An RP is obtained, starting
from the formulation reported in Section 5, by dropping constraints (29) and
(30). The obtained problem corresponds to the classical GVRP in which
no limits on simultaneously refueling operations are imposed. The RP is
then solved to optimality by a MIP commercial solver. The feasibility of
the obtained solution is then checked with regard to the GVRP-CAFS. If
it is feasible, then it is optimal for GVRP-CAFS too. Otherwise, all the
violated constraints are added to RP, which is solved again. This procedure
is iteratively repeated until either the solution of RP becomes feasible for
GVRP-CAFS or a time limit TL is reached. In the latter case, the optimal
solution of RP obtained at the last iteration is considered as the best lower
bound. In fact, the RPi, at a generic iteration i, is obtained adding further
cuts to the relaxation at the previous iteration, RPi−1, and, therefore, the
optimal solution of RPi, Z(RPi), must be not lower than Z(RPi−1).

6.2. A Proactive Cutting Planes approach

We propose a modified version of the CP described in the previous section,
called CP-proactive. In this version of the algorithm, at each iteration, given
the paths selected by the optimal solution of RP, we add constraints (29) and
(30) not only for the pairs of paths violating the capacity constraint, but also
for all pairs of them ending at the same AFS. In this way, we add some valid
inequalities as future probable cuts to prevent further violations and force
the model to find a feasible schedule for the current selection of paths ending
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at that AFS. If such a schedule does not exist, then, in the next iteration, the
optimal solution of RP will not contain all these paths simultaneously. Such
approach aims at reducing the number of iterations needed by the algorithm
trying to preventively add constraints which have high probabilities to be
violated in the next iterations. This approach is particularly useful when
the number of visits to the same AFS s is high and the combination of the
maximum route duration Tmax and the refueling time at AFS s, ps, are such
that the visit scheduling constraints become very tight, as in the example
shown in Figure 3 and described in the next subsection.

6.3. An illustrative example for CP-proactive

In this subsection, we present an example in which the CP-proactive
would be very effective compared to the standard CP. In this example, Tmax
is equal to 7 hours. Moreover, there is only an AFS s which is 2 hours far
from the depot. This means that, at s, refueling operations can take place
between the 2nd and the 5th hour. Refueling time is fixed to 0.5 hours. At the
first iteration, in the optimal solution of RP, we have 7 vehicles refueling at s.
The arrival time of each vehicle and the related AFS occupation is illustrated
in Figure 3. It is trivial to note that whichever vehicle scheduling is applied,
such a solution would not become feasible for the GVRP-CAFS, because the
sum of the refueling times needed (3.5 hours) is greater than the available
time for refueling (3 hours, considered that 4 hours are necessary to reach
the station from the depot and come back to it). The first six vehicles do
not overlap, while vehicle 7 is overlapping vehicle 1. Therefore, the optimal
RP solution is infeasible for the GVRP-CAFS. At the second iteration, the
standard CP would add a constraint to prevent AFV 1 overlaps AFV 7.
Consequently, AFV 7 arrival would be shifted but would overlap another
AFV. The same would happen in cascade for the other AFVs. To detect the
solution infeasibility, in terms of selected paths, the standard CP may need,
in the worst case, 6! = 720 iterations, in which at each iteration a single cut is
added. The CP-proactive would add all the 720 non-overlapping constraints
at the same iteration. Therefore, already from the second iteration, the
optimal RP solution would not have 7 vehicles refueling at s. In this case,
the convergence of the CP-proactive would be much faster compared to the
standard CP approach.
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Figure 3: An illustrative example for which CP-proactive is much more efficient than CP

7. Numerical results

In this section, we test the performances of all the proposed approaches
on some realistic cases with different layouts and AFS capacity tightness. In
particular, we compare results provided by the two MIP models, the Arc-
based MILP (A-MILP) and the Path-based MILP (P-MILP), introduced in
Sections 4 and 5, respectively, and the ones detected by the two versions of
the Cutting Planes method, CP and CP-proactive (introduced in Section 6),
in the scenario with private AFSs (first scenario of Section 1). All tests have
been carried out under Xpress 7.9 on a machine equipped with a processor
Intel i7-5500U at 2.4 GHz with 16 GB of RAM, giving a CPU time limit of
3600 seconds.

Three sets of instances have been experimented, as detailed in the follow-
ing.

• EMH Set: it is composed of 10 instances selected from the 40 proposed
in [10]. The instances are selected if in the optimal solution of the
GVRP there are at least two vehicles visiting the same AFS. The other
instances are discarded because they would never be challenging for the
GVRP-CAFS. The original values of the parameters have been kept,
i.e., Tmax = 11 hours, pstart = 0.25 hours, ps = 0.25 hours ∀s ∈ F ,
pi = 0.5 hours ∀i ∈ I, Q = 60 gallons and r = 0.2 gallons/miles
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(leading to Dmax = 300 miles). The number of customers varies from
6 to 20, the number of AFSs from 3 to 10 and the number of vehicles
from 3 to 8. The layout of the instances is similar to that represented in
Figure 1 with both the depot and the AFSs embedded in the customers
area. Due to this layout, refuels may happen at very different times
along the routes or do not happen at all. Therefore, these instances
can be considered slightly challenging for the GVRP-CAFS.

• TRIANGLE Set: it is composed of 10 instances with 15 customers, 3
AFSs and 10 vehicles. The parameters have been set as Tmax = 11,
pstart = 0, ps = 0.5 ∀s ∈ F , pi = 0.75 ∀i ∈ I, Q = 50 and r = 0.2
(leading to Dmax = 250). The layout of these instances is similar to that
represented in Figure 2 with the AFSs which lay in the middle between
the depot and the customers area. In this case, every vehicle needs to
refuel and the refueling can be carried out only at the beginning or at
the end of the route making the scheduling problem more challenging.
These instances can be considered medium challenging.

• CENTRAL set: it is composed of 10 instances with 15 customers, only
one AFS, located at the center of the customers area, and 15 vehicles.
The parameters have been set as Tmax = 7, pstart = 0, ps = 0.5 ∀s ∈ F ,
pi = 0.5 ∀i ∈ I, Q = 50 and r = 0.2 (leading again to Dmax = 250).
The depot is far from the customers area and the travel time from the
depot to the AFS is 2 hours. In this way, the available time for refueling
is small and the AFS capacity becomes a crucial issue. These instances
can be considered extremely challenging.

In all the three sets of instances, the average speed v has been set equal to
40 miles per hour. Without loss of generality, for each AFS s, its capacity ηs
is assumed to be equal to 1. Indeed, the general case in which ηs is greater
than 1 can be addressed by properly introducing as many clones of s as the
value of ηs. Since in the EMH instances only a refuel per route is necessary
and ηs = 1,∀s ∈ F , in the A-MILP we consider a number q = m of clones of
each fuel pump. While, since in the other two sets of instances two refuels
per route are necessary, in the A-MILP we consider q = 2m. The results
on the three sets of instances are reported respectively in Tables 2, 3 and 4.
Each table is organized in the following way. The first column indicates the
instance name, while the second, the third and the fourth column indicate the
objective function value (i.e., the total travel distance), the solver MIP-GAP
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and the required CPU time (in seconds) for the solutions obtained by the
A-MILP, respectively. The next three columns report the same information
for the solutions obtained by the P-MILP. The next four columns report the
objective function value, the required CPU time (in seconds), the number
of cuts added and the number of iterations (Iter) performed through the
CP method. The next four columns report the same information for the
solutions found with the CP-proactive. We emphasize in bold the optimal
results. While the symbol † in the “CPU time” column indicates that the
CPU time limit has been reached. Finally, the acronym NFS stands for No
Feasible Solution found.

7.1. Results Analysis

Computational results obtained on the EMH set show that both the CP
and the CP-proactive solve all instances to optimality within very small com-
putational times (9.38 seconds, on average) while the P-MILP requires 216.70
seconds, on average. In particular, the average number of paths and pairs
generated is about 4261.80 and 19190.30, respectively in about 8.86 seconds
on average. The A-MILP is able to solve to optimality only one instance,
while it reached the CPU time limit of 3600 seconds in all the other cases,
with an average MIP gap of 27.34%. Both CP and CP-proactive reach the
optimum at the first iteration, which means that the optimal RP solution
is already feasible for OP and, therefore, no additional cuts are necessary.
The larger computational times of the P-MILP can be explained by the huge
number of constraints added to avoid overlapping refuels. The bad A-MILP
performances, respect to the other methods, show that a path based ap-
proach is much more convenient on the GVRP-CAFS.
The same trend is confirmed on the TRIANGLE set, whose instances are
more challenging. Both CP and CP-proactive require a small number of iter-
ations (3) and number of cuts (4 and 5) to solve to optimality all instances.
Computational times are slightly lower for CP-proactive, 5.87 against 7.68
seconds, but, both methods can be considered essentially equivalent in terms
of performances. The P-MILP shows a good performance, solving all the in-
stances in 26.37 seconds on average, while the A-MILP is never able to find
a feasible solution within the CPU time limit. For this set of instances, the
average number of paths and pairs generated is about 1048.20 and 11615.00,
respectively, in about 0.41 seconds on average.

Finally, on the extremely challenging instances belonging to set CEN-
TRAL, the CP requires, on average, 17 iterations and 17 cuts, which means
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that on average, just one violated overlapping constraint is detected at each
iteration. Despite the larger number of cuts added by the CP-proactive (91),
it requires a smaller number of iterations (11) to converge to the optimal
solution. This behavior is due to the beneficial effect of the proactive addi-
tion of cuts. Due to the high challenge level of the instances, respect to the
previous set, average computational times slightly grow, 989.56 seconds for
the CP and 975.15 seconds for the CP-proactive, and both methods are able
to solve to optimality 8 instances over 10. The P-MILP is able to solve to
optimality only 4 instances over 10 within the CPU time limit and the av-
erage computational time is 2831.34 seconds. The average number of paths
and pairs generated is about 1440.20 and 12498.10, respectively, in about
1.00 seconds on average. The A-MILP is not able to detect the optimal solu-
tion in any instance and obtains an average MIP gap of 78.96%. It is worth
noting that in the Total Distance columns, optimal solutions are reported
in bold. While, in the cases in which the CP and CP-proactive reach the
CPU time limit without proving optimality, the value reported is, actually,
the best lower bound obtained.
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8. Conclusions and future works

In this paper, we introduced the GVRP-CAFS, a more realistic variant
of the GVRP where the capacity of the Alternative Fuel Stations (AFS)
is addressed. For this new problem, we proposed two different MILP for-
mulations (A-MILP and P-MILP) based on arc-variables and path-variables,
respectively. Moreover, we also proposed two slightly different cutting planes
methods (CP and CP-proactive). Since the benchmark instances of the
GVRP are not challenging for the GVRP-CAFS, because of the capacity
constraint not tight, we built two real-world alike sets of 10 instances each
where the capacity constraint is actually tight.

CP and CP-proactive obtain very good results within very reasonable
computational times. CP-proactive is slightly faster on average, but does
not systematically outperform CP. Both of them strongly outperform the P-
MILP, which is significantly slower but still reaches the optimal solution in
all the instances of the first two sets and on 4 instances of the last set. On the
other hand, the A-MILP is not suitable to efficiently solve the GVRP-CAFS
since on the two sets of instances where the capacity constraint is tight it is
not able even to find a feasible solution within the CPU time limit of 1 hour.

Future works concern the development of metaheuristic approaches to ad-
dress larger sized instances. Moreover, the solution approaches proposed for
the GVRP-CAFS can be extended to other problems such as the VRP with
Intermediate Facilities, e.g., the waste collection VRP with intermediate fa-
cilities or the VRP with Intermediate Replenishment Facilities, where the use
of shared facilities among the vehicles has to be optimized (similarly to the
shared use of AFSs). Another possible extension of our work is to the GVRP
with multiple recharge technologies where, at each AFS, several recharging
technologies are available, characterized by different recharging times and
costs and the objective consists in minimizing a general cost function (given
by the total travel distance and the recharging cost).
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