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Ornella Pisacane

Dipartimento di Ingegneria dell’Informazione, Universitá Politecnica delle Marche
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1. Introduction

Since the industrial revolution, we are assisting to an increment of the
global atmospheric CO2 emissions. In the last 7 years (from 2010 to 2017),
the increment has been of about 5% of the CO2 emissions, passing from
the 388.72 part per million (ppm) of 2010 to the 407.05 ppm of 2017 (data
updated on July1).

In particular, the transportation sector is responsible of about the 23%
of the global CO2 emissions, percentage that is forecast to double in 2050.
For this reason, European Commission is going to restrict the use of the
internal combustion engine vehicles in order to incentivize the use of the
so called Green Vehicles. Such vehicles use alternative fuel, e.g., methanol,
electricity, hydrogen and so on and therefore, they are also called Alternative
Fuel Vehicles (AFVs).

A significant reduction of the global harmful emissions is absolutely one
of the main advantages guaranteed by the AFVs. They are also characterized
by a kilometer cost lower than that the of the traditional internal combustion
engine vehicles. Moreover, they are allowed to reach also the Limited Traffic
Zones, i.e., urban areas where the traffic is restricted to specific vehicles.
This is a considerable advantage, for instance, in the Last Mile Logistics and
also in the Dial-a-Ride systems where a door-to-door transportation service
is required.

However, despite these advantages, they have a limited drive range and
therefore, they may require to be refueled more than once during a daily trip
([18]). In addition, the Alternative Fuel Stations (AFSs) are currently not
widespread on the territory. This means that it becomes very significant to
a priori define the routes of these vehicles in order to avoid drivers to remain
stuck along their route, i.e., without the sufficient fuel level either to go back
to depot or to reach the closest AFS.

A relatively new research topic, called the Green Vehicle Routing Problem
(GVRP), aims to properly route the AFVs, planning their stops at the AFSs.
The GVRP belongs to the most general class of Vehicle Routing Problems
(VRPs), recently reviewed in [23] and it was introduced in the literature by
the seminal work of [6]. The GVRP aims to serve a set I of customers,
geographically distributed, by using a homogenous fleet of m AFVs, based
on a common depot, with the objective of minimizing their total traveled
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distance. It is defined on a complete and directed graph G = (N,A) where
N denotes the set of nodes, containing I, the depot (node 0) and the set
F of AFSs, while A is the set of arcs. For each AFS s, the service time
ps is known, such as, the time to fully refuel an AFV. Similarly, for each
customer i ∈ I, the service time pi is given. For each (i, j) ∈ A, the travel
distance dij as well as the time tij necessary to go from node i to node j are
given. For each AFV, both the maximum fuel capacity Q and the average
speed v are known. Moreover, the fuel consumption is assumed to be linearly
proportional to the travel distance through the input constant value r (fuel
consumption rate). Each AFV can perform a route starting from the depot
and ending to it, without exceeding the maximum duration Tmax (duration
constraint). Due to the limited fuel autonomy, each AFV may require to stop
at the AFSs during its trip, since after a full refuel it can travel a maximum
distance given by Dmax = Q/r (fuel level constraint). It is assumed that the
AFVs leave the depot fully refueled and perform a full refuel each time they
stop at an AFS. A feasible solution for the GVRP consists in a set of at most
m routes (one for each available AFV).

In Figure 1, a solution example is shown for the instance 20c3sU2 of [6],
where 20 customers (nodes with prefix C) have to be served by at most m = 6
AFVs. For example, the route handling customers C4, C12, C10, C7 does not
require any stop at AFSs since its total distance is lower than Dmax. Instead,
the route handling customers C18, C9, C13, C6, C8, requires to stop at an AFS
since its total distance is grater than Dmax.

Each route can be seen as the composition of paths serving a subset of
customers without intermediate stops at AFSs. Each path can be of one of
the following types: between the depot and an AFS; between an AFS and
the depot; between two AFSs and finally, between the depot and itself. In
the latter case, the path represents the whole route. For example, the route
{D,C18, C9, C13, AFS,C6, C8, D} can be seen as the composition of the path
{D,C18, C9, C13, AFS} and the path {AFS,C6, C8, D}.

A similar approach has been used in the literature for a problem of metro
network design, [13] and has been proved to effective and efficient.

It is worth noting that, differently from the general VRPs, where the
number of all the paths increases exponentially with the number of nodes in
the graph, in the GVRP, due to both the maximum duration and the fuel
level constraints, such a number is often limited. This means that some paths
can be a-priori excluded from the set of all the feasible ones.

Our paper aims to propose a new approach for solving the GVRP to the
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Figure 1: Optimal GVRP solution on the benchmark instance 20c3sU2 introduced in [6]
with Dmax = 300 miles, Tmax = 11 hours, v = 40 miles/hours. The service times of the
customers are all equals to 0.5 hours while the ones at the AFSs are all equal to 0.25 hours.

optimality in reasonable amount of time that, to the best of our knowledge,
outperforms all the existing solution methods on the medium size benchmark
instances. It is based on two phases. In the first phase, the set of all the
feasible paths is generated, removing from it, all those dominated. Moreover,
the set of all compatible pairs of paths is also determined. This is done in
order to speed-up the second phase in which the paths are combined for
creating the routes of the final solution. This second phase is solved through
a set partitioning based formulation, that combines only pairs of feasible
and not dominated paths, minimizing the total traveled distance without
exceeding Tmax.

Therefore, compared to the state-of-art, our work contributes to:

• solve the GVRP to the optimality in reasonable amount of time through
a path-based Mixed Integer Linear Programming (MILP) formulation,
easily extendable to similar problems like VRP with Intermediate Stops
and GVRP with multiple recharging technologies;

• introduce feasibility rules for generating paths and pairs of paths;

• define dominance criteria among the paths.
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The rest of this paper is organized as in the following. Section 2 reviews
the state-of-the art on both exact and heuristic/meta-heuristic approaches
proposed for solving the GVRP. Section 3 details the exact solution approach
proposed in this paper for solving the GVRP. Section 4 shows the numerical
results found by our solution approach on some benchmark instances taken
from literature. This section is also devoted to numerical comparisons with
the already existing solution approaches on both solutions quality and com-
putational times. Finally, Section 5 draws some conclusions and highlights
some useful future research directions to be investigated.

2. Literature Review

The GVRP and its several variants are attracting over the years the inter-
est of the scientific community, specially the one of the operations researchers.

Figure 2: Scientific contributions on the GVRP and its variants

Figure 2 shows the increasing interest, justified by an increasing trend of
the production of scientific contributions (scientific papers, reviews and book
chapters).

As shown in the figure, the GVRP was introduced in 2012 by the paper
[6]. The authors represent it on a directed completed graph and model it
through a MILP formulation (hereafter denoted as EMH) in which, beyond
the traditional arc routing variables, the ones on both the fuel level and

5



the arrival time at each node are introduced. The objective function to be
minimized denotes the total travel distance and beyond the traditional flow
conservation constraints, it is imposed that: each customer is handled exactly
once; the number of AFVs leaving the depot and returning to it is limited to
a fixed value m. With reference to this last aspect, they properly clone the
AFSs in order to allow that each route is an elementary cycle, i.e., the routes
do not share AFSs. In this way, an AFS may be used more than one time in
the same route and eventually also in more routes. However, a critical issue
of the formulation proposed in [6] is determining the proper number of AFS
clones to introduce: if it is too low, beneficial multiple stops at AFSs may be
restricted and thus, the formulation may be not exact. On the contrary, if
it is too large, the network size increases a lot, making very time consuming
the solution of the corresponding MILP. For the experimental campaign, the
authors introduce the GVRP benchmark instances, distinguished in medium
and large scale case studies. In order to solve the large scale instances in
reasonable amount of time, they propose both a Modified Clark and Wright
Saving heuristic and a Density-Based Clustering algorithm together with a
post-optimization procedure in order to improve the solution quality.

In 2014, the work of [20] studied the specific case in which the fleet is com-
posed of only Electric Vehicles, (EVs). Such a problem aims to handle a set
of customers, minimizing the total travel distance and taking into considera-
tion, among the traditional arc routing constraints, the following additional
ones: the demand of each customer has to be served in exactly one route
and within a specified time window; the cargo capacity of each EV cannot
be exceeded as well as its battery capacity can never go under zero; each
EV is fully recharged at a station and the battery consumption is assumed
to be linearly proportional to the travel distance. For such Electric Vehicle
Routing Problem with Time Windows and Recharge Stations, (EVRP-TW)
they propose both a MILP formulation and a Variable Neighborhood Search
combined with a Tabu Search (VNS-TS). In the experimental campaign, they
also use the GVRP benchmark instances, showing that the proposed VNS-TS
significantly outperforms the results found by [6]. In the same year, in [7], a
variant of the GVRP was introduced. The authors, in fact, take into account
the possibility to use multiple technologies and partial recharges at the sta-
tions. In such a case, the objective function to minimize represents the total
cost given by three components: the first related to the cost for recharging
an EV at the depot during the night, the second associated with the cost
for recharging an EV at the stations and finally, the third cost component
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due to the battery life cycle. They propose a Simulated Annealing and a
Local Search, called 48A and based on 48 combinations of 6 different neigh-
borhoods. On the GVRP benchmark instances, the 48A outperforms the
VNS-TS. Recently, in [24], the problem of scheduling a fleet of electric buses
or vehicles has been addressed assuming both fully and partial recharges at
the stations. With the aim of minimizing both the number of EVs and the
total traveling distance, the authors formulate a MILP model and design an
adaptive large neighborhood search heuristic.

In 2015, in [21], the VRP with Intermediate Stops (VRPIS) was intro-
duced in order to generalize the GRVP. In fact, the VRPIS represents all
the cases in which vehicles have to stop at certain intermediate facilities to
replenish/unload their cargo and/or to be refueled. The authors propose an
Adaptive Variable Neighborhood Search (AVNS) that applied on the GVRP
benchmark instances significantly outperforms the existing approaches espe-
cially for what concerns the solution quality.

In 2016, a first attempt to get rid of the AFS clones was described in
[12] in which the authors propose a three-index MILP (hereafter indicated
as KK), where the arc routing and binary variables indicate if an AFV stops
at an AFS going from a customer to another one. They solve the proposed
model through a Branch-and-Cut approach. In the same year, in [19], a two
phase solution approach (hereafter called MSH) for the GVRP was proposed.
In particular, a Randomized route-first cluster second heuristic is firstly used
for generating a set of feasible routes. Then, such a feasible set is given
in input to a set partitioning formulation for determining a solution of the
GVRP. To the best of our knowledge, it outperforms all the other heuristics
and meta-heuristics designed for the GVRP.

In [17], the Hybrid Vehicle Routing Problem was addressed in which the
decision process is related to decide both when to recharge and when to
switch from an internal combustion engine vehicle to an EV. The author
proposes a Large Neighborhood Search based Matheuristic (hereafter called
MH) and she also uses the GVRP benchmark instances for the experimental
campaign. In [14], a new exact solution approach for solving the GVRP was
proposed. Starting from a non-linear formulation, they propose a MILP for-
mulation (hereafter indicated as LH1) together with a reduction procedure.
In addition, both valid inequalities, i.e., a 2-customer sub-tour elimination
constraints and a pre-processing procedure, i.e., the fixing of some binary
variables, are also described. Therefore, the authors propose and experiment
other four different versions of LH1: LH2, i.e., LH1 with the valid inequal-
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ities; LH3, i.e., LH1 with the reduction procedure and the fixing; LH4, i.e.,
LH2 with the reduction procedure and the fixing and finally, LH5, i.e., LH4
with the relaxation on the maximum number of routes. Experimental results
on the GVRP benchmark instances show that their formulations outperform
both EMH and KK. Very recently, in [1], a set partitioning formulation was
proposed for modeling the GVRP. Feasible routes are firstly generated as
simple circuits in a multigraph in which each node is associated with a cus-
tomer while an arc represents a not dominated path between two customers
that eventually uses AFSs. The set partitioning formulation is strengthen
through valid inequalities and it is then solved with a column generation ap-
proach. Numerical results show that the proposed exact solution approach
is suitable to solve to the optimality some large benchmark instances in an
average computational time of 3 hours. However, numerical results on the
medium scale benchmark instances are not provided. As reported in [15],
columns generation methods are very effective but their convergence is very
slow. Therefore they are generally suitable to solve large instances in long
computational times, but they are not suited to solve smaller problems in
very fast computational times.

Over the years, several and different other versions of the GVRP were
proposed. Just to cite a few, a GVRP with cross-docking was addressed in
[25] while the Green Inventory Routing Problems with Heterogeneous Fleets
was studied in [5]. In [4], the Electric Vehicle Routing Problem with Time
Windows and Partial Recharges was introduced and addressed through a
Variable Neighborhood Search Branching while the same problem was ad-
dressed by an Adaptive Large Neighborhood Search algorithm in [11]. In
[10], the authors addressed a Pick-up and Delivery Problem with soft Time
Windows, through a fleet of EVs. Such a problem is formulated as a multi-
objective MILP model and the objective function to minize denotes the total
travel distance, the total cost for the EVs used and the total penalty cost for
the unsatisfied time windows. In [3], a three-phase matheuristic is designed
for solving the Electric Vehicle Routing Problem with Time Windows and
Recharge Stations. It mainly combines an exact method with a VNS local
Branching (VNSB). Recently two new extension of the EVRP have been
proposed: in [9] the authors dealt with an EVRP with non linear recharging
fucntions, while in [8] they considered capacitated charging stations. The
problem of dealing with capacitated alternative fuel stations have been in-
troduced also for the GVRP by [2]. In [16], two MILPs have been proposed
for routing a set of AFVs considering pick-up and delivery operations in a
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Semiconductor Supply Chain. While, in [22], the Green Time Dependent
Capacitated Vehicle Routing Problem has been addressed through dynamic
programming.

In this paper, we address the GVRP by proposing a new exact solution
approach based on generating feasible not dominated paths and solving a set
partitioning based MILP formulation to compose the routes of the final so-
lution. The numerical results, found on the medium scale GVRP benchmark
instances, show that our approach is suitable to dominate all the already
existing others. It is worth remarking that we cannot compare our approach
with the one proposed in [1] since they do not report the results on those
instances.

3. A path-based exact solution approach

Starting from the assumptions specified in Section 1, we propose a path-
based exact solution approach for the GVRP.

The method works as follows. Let define Σ as the set containing all the
AFSs and the depot 0. The method is made up by two phases: in the first
one, all the feasible and not dominated paths connecting two nodes in Σ are
generated. Then, in the second phase, some of the paths obtained are selected
and combined determining their sequence through a MILP formulation with
the objective of minimizing the total traveled distance and respecting the
maximum route duration constraint and serving all the customers exactly
once.

In fact, each route of the solution for the GVRP can be seen as the
combination of paths. A path, identified by number k, with starting point sk
and arrival point ak handles a subset of customers and sk as well as ak can
be either an AFS or the depot. It means that we are looking for paths that
are either between two stations or a station and the depot or the depot and
a station or the depot and itself. Figure 3 shows an example of a route seen
as the combination of two paths k1 and k2: k1 goes from the AFS sk1 to the
AFS ak1 while k2 goes from the AFS ak1 (that is sk2) to the AFS ak2 . In order
to allow that the route starts from the depot and ends to it, we properly add
the arc from the depot to sk1 and the arc from ak2 to the depot. Therefore,
the total duration of the route is the sum of: t0sk1 , the duration tk1 of path
k1, the duration tk2 of path k2, tak20 and the service time at each AFS. The
duration of each path is computed as the sum of the travel time on each of
its arcs plus the service time at each of its customers.
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Figure 3: A route example as a combination of two paths

Among all the possible paths, we are looking for all the feasible ones, i.e.,
the paths that respect both the duration and the fuel level constraints.

Feasibility Rules. Given a path k, with length dk, starting point sk,
arrival point ak and its set Ik ⊆ I of customers, its total duration tk can be
computed as in the following:

tk = dk
v

+
∑

i∈Ik pi. Therefore, k is a feasible path if and only if the
following two conditions simultaneously hold:

1. dk ≤ Dmax;

2. t0sk + tk + psk + pak + tak0 ≤ Tmax.

Condition (1) guarantees that an AFV goes from an AFS to another with
the sufficient fuel level while condition (2) imposes that the total duration of
a path does not exceed the maximum time limit.

Once the set of all the feasible paths has been generated, we remove from
it all the paths that are dominated by the others, determining the set K of
all the not dominated feasible paths, according to the following rules:

Dominance Rules. Given two feasible paths k1 and k2, k1 is dominated
by k2 if and only if the following conditions simultaneously hold:

1. ak1 = ak2 ;

2. sk1 = sk2 ;

3. Ik1 ⊆ Ik2 ;

4. dk1 > dk2 .

The first two conditions ensure that the two paths have the same origin
and destination; the third condition guarantees that k2 handles all the cus-
tomers served in k1 and finally, the length of k1 is greater than the length of
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k2. However, due to both the fuel level and duration constraints, not all the
not dominated feasible paths can be combined to each other for composing
a route. For this reason, we also define rules for generating a priori the set
P of pairs of not dominated feasible paths that are compatible.

Compatibility Rules. Given two paths k1, k2 ∈ K, they are compatible
to be combined into a pair (k1, k2) if and only if the following four conditions
simultaneously hold:

1. sk2 6= 0 ∧ ak1 6= 0;

2. ak1 = sk2 ;

3. t0sk1 + psk1 + tk1 + pak1 + tk2 + pak2 + tak20 ≤ Tmax;

4. Ik1 ∩ Ik2 = ∅.

Figure 3 represents an example of a pair of compatible not dominated
feasible paths. Therefore, our solution approach can be summarized as in
the following steps:

1. Determine the set of all the feasible paths by invoking, for example, a
depth first search algorithm and applying the feasibility rules;

2. Remove from the set of feasible paths, the ones that are dominated by
others, by applying the dominance rules: set K;

3. Find pairs of not dominated feasible paths by applying the compatibil-
ity rules: set P ;

4. Solve a set partitioning based MILP model that receives in input both
the set K and P .

In the following subsection, the set partitioning based MILP is detailed.

3.1. A set partitioning based MILP

Let define K as the set containing all the feasible paths k, i.e. all the paths
that can be covered without refueling and without exceeding the maximum
route duration Tmax. We create a dummy path which starts and ends at the
depot, with t0 = 0 and d0 = 0.For each path k, the travel time tk, the travel
distance dk, the starting site sk and the arrival site ak are known. Finally, let
define the parameter cik which is equal to 1 if customer i is served by path k
and 0 otherwise. The refueling time pk is fixed for all paths. A feasible route
may be composed by one, two or more paths. We also introduce elementary
paths which directly connect two distinct nodes in Σ. Such paths may appear
more than once in a feasible solution therefore a sufficient number of clones
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of them is generated, each one of which can be inserted only once in the
solution. The following types of variables are involved in the formulation:

• Zk: binary variable taking value equal to 1 if path k is selected and 0
otherwise;

• Xkl: binary variable taking value equal to 1 if path l is covered just
after path k and 0 otherwise;

• Tk: positive variable representing the starting time of path k.

It is worth noting that, in order to reduce the number of variables in-
volved, the Xkl is defined only if ak = sl.
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The mathematical model can be written as follows:

min
∑
k∈K

dkZk (1)

s.t. ∑
k∈K

cikZk = 1 ∀i ∈ C (2)

∑
k∈K

X0k ≤ m (3)

∑
k1∈K:

k1 6=k2,(k1,k2)∈P

Xk1k2 =
∑
k1∈K:

k1 6=k2,(k2,k1)∈P

Xk2k1 ∀k2 ∈ K (4)

∑
k1∈K:

k1 6=k2,(k1,k2)∈P

Xk1k2 = Zk2 ∀k2 ∈ K|k2 6= 0 (5)

Tk2 ≥ Tk1 + tk1Xk1k2 + p− Tmax(1−Xk1k2) ∀(k1, k2) ∈ P |k1 6= k2 (6)

Tk + tk ≤ Tmax ∀k ∈ K (7)

Tk ≥ 0 ∀k ∈ K (8)

Zk ∈ {0, 1} ∀k ∈ K (9)

Xk1k2 ∈ {0, 1} ∀(k1, k2) ∈ P |k1 6= k2 (10)

The objective function (1) concerns the minimization of the total traveled
distance. Constraints (2) imply that each customer is visited exactly once.
The number of vehicles used cannot exceed the number of available vehicles,
constraint (3). Route continuity is ensured by constraint (4). A path can be
inserted in a route, only if it is selected (constraint 5). Starting time for each
route is computed by means of constraint (6). Travel time for each route
cannot exceed the value Tmax (constraint 7).
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4. Instances description and numerical results

The above proposed approach has been tested on the benchmark instances
introduced in [6]. Computational tests have been carried out on a machine
with a processor Intel i7-5500U at 2.4 Ghz with 16 Gb of Ram. The path
generation phase has been coded in Java while the model has been solved
with Xpress 7.9. Instances are grouped in 4 sets with 20 customers each and
with different features, as specified in the following:

• S1, characterized by a uniform customer distribution. It is made up of
10 randomly generated instances of 20 uniformly distributed customers
with 3 AFSs;

• S2, characterized by a clustered customer distribution. It is made up
of 10 randomly generated instances of 20 clustered customers with 3
AFSs;

• S3, aimed to analyze the impact of the spatial AFSs configuration. It
has 10 instances, half selected from S1 and half from S2. Each instance
has 6 AFSs, randomly generated;

• S4, aimed to study the impact of the AFSs density. It has 10 instances,
half of which has been created from one instance of S1 and half from
one instance of S2, gradually increasing the number AFSs from 2 to 10
with a step of 2.

As suggested in [6], customers which are not reachable from the depot
with at most one intermediate refuel stop are discarded.

We compare results obtained by the path based approach (PBA) with
those obtained by the exact methods available from the literature that have
been tested on the same benchmark instances: the mathematical formula-
tion proposed in [6], (EMH), the branch&cut by [12], (KK) and the five
formulations proposed in [14], (LH1),(LH2),(LH3),(LH4) and (LH5).

In Tables, 1,2,3 and 4, we report results related to sets S1, S2, S3 and
S4, respectively. All the methods have been run with a timelimit of 3600
seconds. The symbol “–” means that no feasible solution has been found
within the time limit. For each approach, we report the best upper bound
reached and the computational time elapsed. The EMH model has been
reimplemented and run on the same machine of the PBA, because in its
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original version it has been run on a machine slower than ours, while for
the other methods we have considered results published in the respective
papers, which have been obtained on faster machines respect to ours. The
second last row reports average values, while the last one reports the number
of optimal solutions certified. A summary of both the number of optimal
solutions certified and the average computational times, grouped by set, are
reported in Table 5. As it can be deduced, PBA is the only method suitable
to certify the optimal solutions for all the 40 instances, while both LH1 and
LH4 certify 38 optimal solutions. LH2, LH3, LH5 and KK certify 37, 36,
25 and 21, respectively, while EMH always reaches the execution time limit
without finding any optimal solution. Moreover, PBA is faster than the
other known exact methods, with an average computational time of 358.01
seconds against 429.25 seconds of the second fastest method, i.e., LH4. The
dominance of PBA, with respect to the other methods, in terms of both
solution quality and computational effort required, is clearly shown by the
plot reported in Figure 4.
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Figure 4: Graphical comparison of methods performances

The layout of the addressed instances, combined with the value of Dmax

and Tmax, implies that at most one refuel per route is necessary in an optimal
solution. Therefore, we have developed a modified version of PBA, named
PBA-EMH, in which the paths, between two AFSs, have not been generated,
yielding a faster approach in both the two phases thanks to a significantly
decrement of the number of not dominated feasible paths. The PBA-EMH
can be used only on instances in which the restriction of at most one refueling
stop per route holds, while PBA is more general and can be always applied.
Table 6 reports a comparison of the number of paths and pairs generated
with PBA and PBA-EMH, showing that, exploiting the information on the
maximum number of refueling stops, we can a priori exclude, on average, the
60% of the paths and the 47% of the pairs, without any loss of quality, but
with a significant gain on computational effort, as shown in Figure 5.

5. Conclusions and future works

In this paper, we presented the Path Based Approach (PBA), a new exact
method to efficiently solve the Green Vehicle Routing Problem (GVRP),
based on the generation and combination of not dominated paths, each of
them serving a subset of customers without intermediate refuels.

PBA was tested on four sets of benchmark instances available in the liter-
ature. The numerical results found were compared with those obtained by all
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Table 6: Number of paths and pairs generated by the PBA and the PBA-EMH
PBA PBA EMH

INSTANCE I F Paths Pairs Paths Pairs
20c3sU1 20 3 9232 44501 3201 10907
20c3sU2 20 3 17019 66092 5400 15774
20c3sU3 20 3 17014 70092 5456 17030
20c3sU4 20 3 8951 38584 3036 9301
20c3sU5 20 3 11388 44813 3742 10579
20c3sU6 20 3 20283 96361 6451 18959
20c3sU7 20 3 20123 95788 6328 18405
20c3sU8 20 3 8673 37931 2984 9179
20c3sU9 20 3 18426 38247 5239 11875
20c3sU10 20 3 25771 90746 8200 23973
Average 17017 55453 5320 13825

20c3sC1 20 3 32972 154210 11008 38153
20c3sC2 19 3 29231 115700 8844 25635
20c3sC3 12 3 10772 35450 3738 11635
20c3sC4 18 3 30869 116394 9431 35672
20c3sC5 19 3 16636 28841 5614 12299
20c3sC6 17 3 1708 7179 642 1805
20c3sC7 6 3 113 306 46 89
20c3sC8 18 3 740 2781 308 801
20c3sC9 19 3 42836 186596 12704 36802
20c3sC10 15 3 845 3438 338 917
Average 13704 32146 4676 11967

S1-2i6s 20 6 29298 213590 11142 45480
S1-4i6s 20 6 23937 172640 9026 28650
S1-6i6s 20 6 20712 103474 6651 20764
S1-8i6s 20 6 13145 80370 5062 18393
S1-10i6s 20 6 58045 356176 22000 70497
S2-2i6s 20 6 69500 456200 18024 57026
S2-4i6s 19 6 67556 366766 26875 87456
S2-6i6s 20 6 4918 36757 1642 4566
S2-8i6s 16 6 1787 10576 610 1508
S2-10i6s 16 6 4423 27665 1672 4322
Average 22325 138057 7839 24707

S1-4i2s 20 2 8907 35998 3004 8594
S1-4i4s 20 4 9959 43969 3528 10834
S1-4i6s 20 6 23937 172640 9026 28650
S1-4i8s 20 8 37796 349736 12690 40555
S1-4i10s 20 10 41401 406457 13806 45458
S2-4i2s 18 2 30076 111105 9039 34241
S2-4i4s 19 4 46855 200142 17685 58651
S2-4i6s 20 6 67556 366766 26875 87456
S2-4i8s 20 8 90810 448072 40557 139262
S2-4i10s 20 10 89956 375867 59941 185366
Average 39599 274939 13248 43007
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Figure 5: Graphical comparison of methods performances including PBA-EMH

the existing exact methods, tested on the same benchmarks. PBA was shown
to outperform all the existing exact approaches in terms of both efficiency
and effectiveness, solving to the optimality all the instances in a smaller com-
putational time (on average, 358.01 seconds, against 429.25 seconds of the
previous fastest method in the literature). Moreover, PBA revealed to be
the only method suitable to certify the optimality of the solution found for
all the tested instances.

Future research directions can go toward a generalization of PBA in order
to solve other Vehicle Routing Problems (VRPs) with Intermediate Stops,
(VRPIS), as the VRP with Cross Docking, the Waste Collection problem
with intermediate disposals, and the Multi-Depot VRP with intra-depots
routes, to cite a few. Moreover, PBA can be applied also to extended versions
of the GVRP, e.g., with multiple recharging technologies, partial recharges
and capacitated AFSs. Finally, PBA may be an approach suitable also to
solve problems in which the number of customers per route is limited, i.e.,
the Drayage Problems.
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