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Abstract 
This paper proposes a novel estimation scheme for angular quantities extraction under disturbed 
network conditions; a robust identification of the network angular frequency and of its derivative are 
crucial for the synthetic inertia provision from grid-connected converters. The newly proposed 
architecture is derived from the Second Order / Second Order Generalized Integrator scheme (SO-
SOGI), an algorithm exploited to extract the fundamental harmonic component from phase voltages 
measurements, with the introduction of an additional decoupling feedback for negative sequence 
compensation. The effectiveness and robustness of the proposed technique are compared, both 
analytically and experimentally, with other schemes already available in literature. 

Introduction 
In recent years, an increasing interest in frequency support from grid-connected converters has raised. 
Beside primary frequency regulation from electrochemical storage units equipped with droop control 
[1] - [2], a new up-to-date paradigm is represented by the provision of transitory inertia support from 
non-dispatchable power sources to reduce the overshoot during the first instants after a severe 
frequency transient (synthetic inertia). 
Even though several synthetic inertia schemes have been proposed in literature ([3] - [5]), all the 
architectures imply a fast and clean estimation of the grid angular quantities (angular frequency and its 
derivative) from the available voltage measurements, even under disturbed network conditions. A 
typical solution adopted to reduce the estimation sensitivity consists in the application of a strong low-
pass filter on the reconstructed states to improve the signal-to-noise ratio, even though this may 
jeopardize the speed of the reconstruction itself due to the slow filter’s dynamics. 
The development of advanced measurement apparatus (like Phasor Measurement Units – PMUs) [6] 
represents only a partial solution to the problem due to the significant cost of these devices, which 
prevents a widespread application to small-size distributed generators. Thus, in this paper, a novel 
control scheme is proposed for local angular quantities reconstruction in grid-connected converters: 
the scheme is obtained from a Second-Order / Second-Order Generalized Integrator (SO-SOGI) [7] 
equipped with Frequency Locked Loop (FLL) and extended with an additional feedback for negative 
sequence disturbance reduction (SO-SOGI-N). The design of the algorithm internal dynamics is 
developed referring to resonant controllers rather than typical DSOGI coupling feedbacks [8]: this 
significantly simplifies the parameters definition and guarantees coherent dynamical interaction 
between the algorithm sub-functions. The performances of the proposed architecture will be assessed 
against the well-known DSOGI scheme [8], briefly recalled in the next section for clarity, and against 
the typical SO-SOGI algorithm [7].  

DSOGI architecture: a review 
DSOGI system 
In this first section, the three-phase DSOGI control is recalled. This serves as a background for the 



development of the proposed SO-SOGI-N scheme, illustrated in the next sections. Instead of referring 
to the typical nested-feedbacks configuration [8], a simpler implementation based on equivalent real-
coefficients resonant controllers 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠) can be introduced, according to the scheme reported 
in Figure 1.a: this simplifies the physical interpretation of the algorithm and allows to quantify its 
interactions with the external slower loops. The following notation is adopted in this paper: 

• 𝜔𝜔𝑛𝑛: resonance angular frequency of the controllers 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠); 
• 𝜉𝜉: damping factor of the controllers 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠); 
• 𝜔𝜔1: network fundamental angular frequency (2𝜋𝜋 ⋅ 50 rad/s in Europe); 
• 𝑠𝑠 = 𝑗𝑗𝜔𝜔𝑠𝑠: Laplace operator and symbolic frequency response variable. 

 

 
Figure 1: (a) DSOGI scheme and (b) resonant transfer function 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠). 

Consider the expressions of the 𝛼𝛼𝛼𝛼 components of a three-phase voltage set in the Park domain, under 
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where the frequency response magnitudes and phase displacements (Fig. 1-(b)) at the generalized 
angular frequency 𝜔𝜔𝑠𝑠 = ℎ𝜔𝜔1 are given by: 
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As the relative displacement between the frequency responses of 𝐷𝐷(𝑠𝑠)and 𝑄𝑄(𝑠𝑠) is constantly equal to 
90° in the whole frequency range (Fig. 1.b), the obtained signals (𝑣𝑣𝛼𝛼
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−) sequence components of the input voltages 
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 , 𝑣𝑣𝛽𝛽

 ) according to the equalities reported in (7); this operation is represented by the “Sequence 
extraction” block in Fig. 1.a. Even though these equations have already been proposed in literature [8], 
it is often difficult to provide an intuitive understanding of their applicability; the Appendix at the end 
of the paper provides a rigorous proof of their derivation process.  
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DSOGI coordination with the FLL algorithm 
To guarantee that the resonance frequency 𝜔𝜔𝑛𝑛 converges to the fundamental 𝜔𝜔1, an external adaptive 
feedback referred as Frequency Locked Loop (FLL) is introduced. Its inputs and outputs are 
represented in Fig. 1.a, while the internal control scheme is reported in Fig. 2. According to [8], the 
FLL behaves as a first order unitary-gain transfer function, whose passband is determined by the 
parameter 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹: 

𝜔𝜔𝑛𝑛 =
𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹

𝑠𝑠 + 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹
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𝑠𝑠 ⋅ 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹

𝑠𝑠 + 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹
 𝜔𝜔1                                                                                         (8) 

 
Figure 2: Frequency Locked Loop for the DSOGI scheme.  

Weaknesses of the DSOGI architecture 
The main criticalities associated to the DSOGI scheme are the following: 

• poor disturbance rejection of the function 𝑄𝑄(𝑠𝑠) in the frequency range before the resonance 𝜔𝜔𝑛𝑛; 
• limited rejection of the function 𝐷𝐷(𝑠𝑠) for disturbance components above 𝜔𝜔𝑛𝑛; 
• high sensitivity of the estimation with respect to the first-order negative sequence component, 

which is not attenuated by either 𝐷𝐷(𝑠𝑠) or 𝑄𝑄(𝑠𝑠); 
In order to solve the first two issues, a modified architecture is proposed in [7]: this goes under the 
name of Second Order / Second Order Generalized Integrator (SO-SOGI) and combines the good 
rejection properties of 𝐷𝐷(𝑠𝑠) at low frequency with the ones of 𝑄𝑄(𝑠𝑠) in the higher part pf the spectrum 
to improve the signal-to-noise ratio of the estimation. Nevertheless, as for the Authors’ knowledge, a 
detailed analysis of the SO-SOGI coordination with the FLL loop is not available in literature and no 
solution is proposed to heal its sensitivity with respect to the first-order negative sequence: these are 
the key aspects introduced by the SO-SOGI-N scheme proposed in this paper.   

Proposed SO-SOGI-N architecture 
SO-SOGI-N scheme 
 Consider the scheme reported in Figure 3.a, which represents the structure of the proposed three-
phase SO-SOGI-N system; similarly to the DSOGI architecture, the input is constituted by the 𝛼𝛼𝛼𝛼 
components of the grid voltage space vector 𝑣̅𝑣 = 𝑣𝑣𝛼𝛼

 +𝑗𝑗𝑣𝑣𝛽𝛽
 . Nevertheless, the quadrature components 

�𝑞𝑞𝑞𝑞𝛼𝛼
′ +𝑗𝑗 𝑞𝑞𝑞𝑞𝛽𝛽

′ � are obtained filtering the input signals �𝑣𝑣𝛼𝛼
 +𝑗𝑗𝑣𝑣𝛽𝛽

 � by both 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠). Given the 
different dynamical interaction with respect to the DSOGI scheme, the structure of the FLL (Fig. 3.b) 
should be modified with respect to the one introduced in Fig. 2; furthermore, an additional decoupling 
feedback is introduced to heal the algorithm sensitivity with respect to the negative sequence first-
order component. These two aspects will be analysed separately in the next sub-sections.  



 

 
Figure 3: (a) SO-SOGI-N scheme for angular quantities extraction and (b) its FLL algorithm. 
 

Coordination of the SO-SOGI-N with the FLL algorithm 
If we refer to the SO-SOGI topology in Fig. 3.a, the expression associated to the filtered quadrature 
space vector (𝑞𝑞𝑣𝑣 𝛼𝛼
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The linearization of expressed (16) can be obtained recognizing that ∡𝐷𝐷(𝑗𝑗𝜔𝜔1) is small, thus the 
corresponding asymptotic expressions can be invoked for the trigonometric functions. 
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As the FLL itself imposes 𝜔𝜔𝑛𝑛
 ≅ 𝜔𝜔1

 , the asymptotic behaviour for the inverse tangent function leads to 
(18), where almost unitary amplitude of the fundamental positive-sequence Park voltage is assumed 
(in per-unit). Note that the normalization coefficients in the FLL schemes for the SO-SOGI-N 
architecture (Fig. 3.b) modifies with respect to the DSOGI ones (Fig. 2) as a consequence of the 
change in the 𝐷𝐷(𝑠𝑠)-𝑄𝑄(𝑠𝑠) combination, as well as of the different inputs’ definition.   
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 The linearized expression (18) is exploited to tune the normalization coefficients in the loop reported 
in Fig. 4; by solving the feedback, it is easy to show that the FLL behaves as a first order low-pass 
filter for the network angular frequency and  its derivative (19), where the control parameters 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹 
determines the estimation pass-band. A feedforward compensation term 𝜔𝜔𝑛𝑛

∗ = 1 𝑝𝑝. 𝑢𝑢. is introduced to 
speed up the algorithm convergence at the first computation steps after the initialization, even though 
this does not affect the dynamical stability properties. 
 

𝜔𝜔𝑛𝑛 =
𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹

𝑠𝑠 + 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹
 𝜔𝜔1        𝜔𝜔𝑛̇𝑛 =

𝑠𝑠 ⋅ 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹

𝑠𝑠 + 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹
 𝜔𝜔1                                                                                         (19) 



 
Figure 4: Linearized equivalence of the FLL algorithm for SO-SOGI-N scheme. 

Negative sequence decoupling cell 
A further estimation improvement can be obtained introducing a decoupling feedback to reduce the 
impact of the first-order negative term. Consider the scheme in Fig. 3.a: from the positive sequence 𝛼𝛼𝛼𝛼 
components as extracted by the “Sequence extraction” block, it is possible to calculate the space 
vector phase angle 𝜃𝜃 by means of the inverse tangent function and, subsequently, define an inverse 
rotating (clockwise) frame by means of the rotation blocks reported in Fig. 3.a  (𝛼𝛼𝛼𝛼 → 𝑑𝑑𝑞𝑞− and 
𝑑𝑑𝑞𝑞− → 𝛼𝛼𝛼𝛼). This frame results synchronous with the first-order negative component even under non-
nominal network conditions. The interposition of a low-pass filter with high time constant (𝑇𝑇𝑝𝑝 = 0.1 s) 
allows to extract the negative sequence component and enables its deletion from the input of the SO-
SOGI architecture: this significantly reduces the estimator disturbance sensitivity without affecting its 
convergence speed, as the quantities of interest (related to the positive sequence) result practically 
unaffected by the compensation.  

Experimental validation  
In order to test the proposed algorithm under controlled and repeatable conditions, the experimental 
set-up reported in Fig. 5.a has been developed. Two converters are connected in parallel to a high-
impedance resistive load:  

• the first unit is operated in grid-forming mode and imposes a pre-determined frequency 
transient on the small-scale microgrid; 

• the second converter is operated in PQ mode (grid-following) and acquires a set of three-phase 
voltages from the grid: the analysed estimation algorithms are coded in the control of this 
converter and can thus be compared. 

As the network frequency is imposed by the grid-forming unit, its time profile is known and replicable 
(labelled as “real” in the reported results, compared to the “measured” ones obtained by the considered 
reconstruction algorithms). The assessment refers to two different conditions:  

• in steady-state operations, the system angular frequency imposed by the grid-forming 
converter remains stable. This allows to estimate the Signal-to-Noise ratio for the 
reconstructed quantities.  

• in transitory conditions, the grid-forming converter imposes a known frequency transient to 
the network, thus it is easy to verify the convergence time of the estimation to the real angular 
quantity. 

 
Figure5: (a) Experimental setup and (b) frequency spectrum of the experimental voltages. 

 



Table I: Design parameters for the experimental test 
Parameter Symbol 𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 
Damping factor 𝜉𝜉 0.2 
Slow FLL 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹 (slow) 8 rad/s 
Fast FLL 𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹 (fast) 80 rad/s 
Decoupling filter time constant 𝑇𝑇𝑝𝑝 0.1 s 

 
Figure 5.b reports the spectral profiles of the steady-state voltages; the steady-state actual frequency 
(49.6 Hz) has been taken different from the nominal one (𝑓𝑓𝑛𝑛

∗ = 50 Hz) in order to test the robustness of 
the algorithms. The spectral diagram shows the presence of an inverse sequence (1% of the 
fundamental) and a 5th order component produced by the physical non-linearities of the experimental 
setup (2% of the fundamental). Even though these disturbances are limited, they considerably affect 
the estimation of the angular frequency derivative. 
Consider the time profiles associated to a traditional DSOGI algorithm with a fast FLL loop, as 
reported in Fig, 6: the algorithm correctly estimates the angular frequency, even though the 
reconstructed derivative profile is unacceptably affected by the disturbance components associated to 
the negative sequence and 5th order harmonic. A possible solution consists in the reduction of the 
equivalent FLL bandpass (Fig. 7): the improvements in terms of harmonic content are nullified by the 
increase of the convergence time, which may be detrimental for the converter response during the 
provision of regulation services [3]. The SO-SOGI scheme (Fig.8) guarantees acceptable rejection of 
the disturbance associated to the 5th harmonic even under a fast estimation passband, but still retains a 
significant sensitivity with respect to the first-order negative sequence term. On the other hand, the 
proposed SO-SOGI-N architecture (Fig. 9) combines a sufficient estimation fastness and good 
disturbance rejection, both for the angular frequency and its derivative. 
 
 

  
 
Figure 6: Angular frequency (a) and its derivative (b) obtained by a DSOGI scheme with fast FLL 
loop (𝐾𝐾𝐹𝐹𝐹𝐹𝐹𝐹 = 80 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠). Even though the transitory algorithm convergence is fast, the reconstructed 
signals are strongly affected by disturbances.  



 
Figure 7: Angular frequency (a) and its derivative (b) obtained by a DSOGI scheme with slow FLL 
loop (𝐾𝐾𝐹𝐹𝐹𝐹𝐹𝐹 = 8 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠). The signal-to-noise ratio is acceptable, but the effect of a slow FLL dynamic 
produces a significant delay in the reconstruction. 

 
Figure 8: Angular frequency (a) and its derivative (b) obtained by a SO-SOGI scheme with fast FLL 
loop (𝐾𝐾𝐹𝐹𝐹𝐹𝐹𝐹=80 rad/s). High order terms are reduced with respect to Fig. 7, but the 100 Hz 
disturbance (produced by the negative sequence) remains significant in the derivative signal. 

Figure 9: Angular frequency signal (a) and its derivative (b) with a SO-SOGI-N scheme (fast FLL). 
The reconstructed quantities match with the real ones: disturbance rejection and convergence time are 
acceptable. 



The convergence time associated to each estimator matches with the theoretical one (𝑡𝑡∗ ≃ 5/𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹) 
associated to the linearized FLL transfer function (19). Additionally, some Performance Indexes (PIs) 
have been identified to carry out a rigorous comparison between the algorithms. The considered PIs 
are reported in the following (20)-(23): according to their definitions the higher the value of each PI, 
the better the algorithm behaviour. Following aspects are taken into account in the PIs definition: 

• Total harmonic distortion of the angular frequency at steady-state, including disturbances up 
to 500 Hz (20), where 𝜔𝜔0 

  represents the steady-state value of the angular frequency. 
• Harmonic content of the angular frequency derivative at steady-state, including disturbances 

up to 500 Hz (21). 
• Integral absolute error between actual (real) and estimated (measured) angular frequency 

during the transient (22). 
• Integral absolute error between actual (real) and estimated (measured) derivative during the 

imposed transient (23). 
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2
ℎ≠0 / 𝜔𝜔0 
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𝑇𝑇=5 𝑠𝑠
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    (22) − (23)

The numerical values of the Performance Indexes are reported in Table II. In order to produce equal 
combination of the single indexes, they have been normalized (in brackets) with respect to the 
maximum column value. A global performance index 𝑃𝑃𝐼𝐼𝐺𝐺

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is obtained as the mean of the single 
normalized indexes for each estimator: this global index thus ranges in [0; 1], with the higher end of 
the interval corresponding to the best performances. The analysis of the data in Table II reveals the 
outperformance of the proposed SO-SOGI-N scheme with respect to the other considered algorithms. 

Table II: Performance Index (PI) comparison 
Estimator (Fig.) 𝑷𝑷𝑰𝑰𝟏𝟏 𝑷𝑷𝑰𝑰𝟐𝟐 𝑷𝑷𝑰𝑰𝟑𝟑 𝑷𝑷𝑰𝑰𝟒𝟒 𝑷𝑷𝑰𝑰𝑮𝑮

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏. 
Slow DSOGI 

(Fig. 6) 
1.0 ⋅ 104 

(1.0) 
5.2 ⋅ 101  

(0.22) 
3.3 ⋅ 10−2 

(0.15) 
5.5 ⋅ 10−3 

(0.39) 
0.44 

Fast DSOGI 
(Fig. 7) 

3.0 ⋅ 103 
(0.30) 

5.3 ⋅ 100 
(0.023) 

2.2 ⋅ 10−1 
 (1.0) 

9.1 ⋅ 10−4 
(0.065) 

0.35 

Fast SO-SOGI 
(Fig. 8) 

9.1 ⋅ 103 
(0.91) 

1.7 ⋅ 101 
(0.074) 

1.3 ⋅ 10−1 
(0.59) 

2.6 ⋅ 10−3 
(0.18) 

0.44 

Fast SO-SOGI-N 
(Fig. 9) 

1.0 ⋅ 104 
(1.0) 

2.3 ⋅ 102  
(1.0) 

1.3 ⋅ 10−1 
(0.59) 

1.4 ⋅ 10−2  
(1.0) 

0.90 

Conclusions 
This paper proposes an extended estimator of the grid angular frequency and its derivative, in the 
perspective of fast regulation services provision to power networks. A detailed focus on the interaction 
of the developed architecture with the Frequency Locked Loop has been provided, also comparing the 
scheme with similar solutions available in literature. The experimental tests highlight the optimal 
performances of the proposed SO-SOGI-N scheme, both in terms of convergence speed and 
insensitivity to the network disturbances. 

Appendix: Derivation of the formulas used for sequences extraction  
Assume that it is possible to identify an hypothetic real-coefficients transfer functions 𝑍𝑍(𝑠𝑠) 
characterized by a constant magnitude profile |𝑍𝑍(𝑗𝑗𝜔𝜔𝑠𝑠)| ≡ 1 and by a constant phase displacement 
equal to 90° lagging in the whole frequency range ∡𝑍𝑍(𝑗𝑗𝜔𝜔𝑠𝑠) = −90°.  From (1), the 𝛼𝛼𝛼𝛼 components of 
the positive and negative voltage sequences are obtained, taking into account that: 
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 =  𝑣𝑣𝛽𝛽
+ +  𝑣𝑣𝛽𝛽

−                                                                                               (24) 
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As a consequence of the characteristics of the transfer function 𝑍𝑍(𝑠𝑠), it is possible to obtain:   
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Analytically manipulating (30) and (31) and combining them with the definition in (25)-(28), leads to 
the following equivalences: 𝑧𝑧𝑧𝑧𝛼𝛼

+ =  𝑣𝑣𝛽𝛽
+, 𝑧𝑧𝑣𝑣𝛼𝛼

− = −𝑣𝑣𝛽𝛽
−, 𝑧𝑧𝑣𝑣𝛽𝛽
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+. Thus: 
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−                                   (32) 

Equations (24) and (32) define a 4th order determined linear system in the variables (𝑣𝑣𝛼𝛼
 , 𝑧𝑧𝑧𝑧𝛼𝛼

′ , 𝑣𝑣𝛽𝛽
 , 𝑧𝑧𝑧𝑧𝛽𝛽

′ ), 
that can easily lead to the expressions of positive and negative sequences reported in (7). From a 
rigorous point of view, the characteristics of the ideal transfer function 𝑍𝑍(𝑠𝑠) cannot be obtained from a 
real-coefficient rational expression; nevertheless, the combination of 𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠) meet the identical 
magnitude requirement and the 𝜋𝜋/2 shifting at the resonance point, thus correctly approximates 𝑍𝑍(𝑠𝑠) 
behaviour, enabling the sequences extraction by means of (7). Far from the resonance condition, the 
sequence extraction may be affected by the non-ideal behaviour of  𝐷𝐷(𝑠𝑠) and 𝑄𝑄(𝑠𝑠). 
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