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ABSTRACT

Weak value measurements have been a real breakthrough in the quantum measurement framework. In particular,
quantum measurements may take advantage by anomalous weak values, i.e. values out of the eigenvalues spec-
trum of the measured observable, both for implementing new measurement techniques and studying Quantum
Mechanics foundations. In this report we show three experiments with single photons presenting anomalous weak
values: the first one tests the incompatibility between quantum mechanics and noncontextual hidden variables
theories, the second one is the first realization of a sequential weak value evaluation of two incompatible observ-
ables on the same photon, and the last one shows how sequential weak values can be used to test Leggett-Garg
inequalities extended to multiple-measurements scenarios.
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1. INTRODUCTION

In 1988 Aharonov, Albert and Vaidman introduced weak measurements,1 a new paradigm of quantum measure-
ment where just a small amount of information is extracted from a single measurement, but the state does not
collapse. In the same paper, they introduced the weak values, i.e., weak measurements of an operator performed
on an ensemble of pre- and postselected states, which present some peculiar properties, e.g. assuming anomalous
values (i.e., values outside the eigenvalue range of the observable). In recent years, weak values have been the
subject of great interest thanks to the several applications2–13 found, such as the investigation of fundamental
aspects of quantum mechanics as well as the possibility of amplifying the measurement of small parameter.14

In this paper we present three different experiments, useful both for the study of the foundations of quantum
mechanics and for more practical applications.

2. WEAK MEASUREMENTS AND WEAK VALUES

In quantum mechanics, an indirect measurement describes a quantum measurement device (usually called meter
M), whose interaction with the system constitutes the measurement: by reading the meter one gets information
about the value of the system observable. A special case of indirect measurements are weak measurements,15

consisting of two steps. In the first step the measurement device is coupled to the quantum system with a weak
von Neumann coupling.16 In the second step the measurement device is strongly measured. The collapsed state
of the measurement device is the outcome of the weak measurement process.



For a measurement to be weak, the standard deviation of the measurement outcome should be larger than
the difference between the eigenvalues of the system.

Let |φ〉 denote the wavefunction of the measurement device. In the position basis, it can be written as:

|φ〉 =

∫
x

φ (x) |x〉 dx (1)

where x is the position variable of the measuring needle. The position operator of the needle is X̂ : X̂ |x〉 = x |x〉.
It is assumed that φ (x) behaves normally around 0, with variance σ2: φ (x) = e−x

2/4σ2

/(2πσ2)

Let S denote the system to be measured and suppose that Â is an Hermitian operator of the system with
eigenvectors {|ai〉} such that Â |ai〉 = ai |ai〉. Then, a general state vector for the system can be expressed as:

|ψ〉 =
∑
i

αi |ai〉 (2)

The initial state of the total system, which comprises both the system and the meter, is |ψ〉 ⊗ |φ〉 and the
interaction Hamiltonian between the system and the meter is

Hint = gÂ⊗ P̂ (3)

with g being the coupling constant andP̂ being the observable canonically conjugated to X̂.

It is easy to see that for each |ai〉, e−igaiP̂ is the generator of the translations of X̂. The system, then, evolves
as:

e−iH/~ |ψ〉 ⊗ |φ〉 =
∑
j

αj |aj〉 ⊗ |φ (x− gaj)〉 (4)

So, the initial state of the measuring needle, assumed centered in zero, is transformed in a superpositions of
|φj〉 = |φ (x− gaj)〉 states. The strength of the interaction,17 then, can be quantified by the ratio g/σ. When
g/σ � 1 the wavefunctions φj do not overlap and the measurement is strong. However, if g/σ � 1 the
wavefunctions φj overlap each other. The lower the ratio, the weaker the measurement process.

After measuring the needle, the system’s vector is slightly biased in a direction that corresponds to the
needle’s outcome value. On one hand, the information we get, that is the value of the needle, is very vague, on
the other hand, the system’s state does not collapse.

2.1 WEAK VALUES

Introducing a post-selection after the weak interaction results in the weak values,18 a new property of the system.
Let Â be an hermitian operator of the system S and let |s〉 and |f〉 be two states in the Hilbert space of the
system. Let |φ〉 be the initial state of the measuring device. Now suppose to perform a weak measurement of
a particle in the initial state |s〉 using the interaction Hamiltonian (3) and then to post-select the final state
|f〉. The overall probability amplitude is 〈f | Û |s〉 (with Û = exp (−iHint/~)). This process can be described
as a projective measurement of the system with the projector Π = |f〉〈f | ⊗ 1M. After the weak interaction
and the post-selection, the state is: |f〉〈f | exp (−iHint/~) |s〉 ⊗ |φ〉, that, for weak interaction (g/σ � 1), can be
approximated as:

|f〉〈f | exp (−iHint/~) |s〉 ⊗ |φ〉 ≈ |f〉〈f |
(

1− i

~
gÂ⊗ P̂

)
|s〉 ⊗ |φ〉 =

= |f〉 〈f |s〉
(

1− i

~
〈A〉w P̂

)
|φ〉 ≈ |f〉 〈f |s〉 exp

(
− i
~
〈A〉w P̂

)
|φ〉

where

〈A〉w =
〈f | Â |s〉
〈f |s〉

(5)

is the weak value. The meter wavefunction, consequently, changes into |φ′〉 = |φ (x− g 〈A〉w)〉.



3. WEAK VALUES AND CONTEXTUALITY

In recent years, a question emerged about anomalous weak values constituting a proof of the incompatibility of
quantum theory with noncontextual hidden variables theories (NCHVTs).19 NCHVTs are theories that assume
that a predetermined result of a particular measurement does notdepend on which other observables are simulta-
neously measured. Recently, it was demonstrated that, under specific experimental conditions, noncontextuality
is incompatible with the observation of anomalous weak values. In the next section, this connection will be
presented in the form of a theorem, and related experimental results will be shown.

3.1 Theory

The following theorem has been presented and demostrated in.20 Here, it will be presented in a form avoiding
any reference to quantum mechanics.
Theorem - Suppose to have a preparation procedure Ps, a strong measurement procedure Ms with outcomes
OK or KO, and a nondestructive measurement procedure MW with outcomes x ∈ R, such that:

1. The pre- and post-selected states |s〉 and |f〉 are not orthogonal:

pf = P (OK|Ps,Ms) > 0 (6)

2. Ignoring the post-measurement state MW is equivalent to a dichotomous measurement with unbiased
noise:

p(x|P,MW ) = pn(x− g)P (1|P,MA) + pn(x)P (0|P,MA) ∀P (7)

for some strong measurement procedureMA with outcomes 0 and 1 and probability distribution F (x) with
median x = 0.

3. A “probability of disturbance” pd can be defined such that, ignoring the outcome of MW , it affects the
post-selection in the same way as mixing it with another measurement:

P (OK|P,MW ,Mf = (1− pd)P (OK|P,Mf ) + pdP (OK|P,Md) ∀P (8)

for some measurement Md with outcomes OK and KO.

4. The values of x under pre- and post-selection have a negative bias that outweights pd, that is, for p− =

(p|f〉)
−1 ∫ 0

−∞ P (x,OK|Ps,MW ,Mf )dx holds:

I = p− −
1

2
− p−
pf

> 0 (9)

Then, there is no noncontextual ontological model for the preparation Ps, the measurement MW and the post-
selection Mf on OK satisfying the outcome determinism for strong measurements.

Here, we present the first experimental test of this theorem, performed by exploiting weak measurements on
heralded single photons.21

In quantum mechanics, P corresponds to the preseletion of the polarization state |s〉 = cos θ |H〉+eiβ sin θ |V 〉
of a single photon, the post-selection is the projector |f〉〈f |, which yelds to pf = P (OK|P,Mf ) = |〈f |s〉|2.
The nondestructive measurement MW is implemented as a weak interaction induced by the unitary evolution

Û = exp
(
−igÂ⊗ P̂

)
, where g is the von Neumann coupling constant.



3.2 Experimental setup

In the experiment22 (Fig. 1), a single photon state is prepared in the state |s〉 ⊗ |φ〉, with |φ〉 =
∫
x
dxF (x) |x〉.

Then, the single photon undergoes a weak interaction by interacting with a thin birifringent crystal, which
induces a spatial walk-off. This interaction is described by the unitary transformation Û . The probability of
finding the single photon in the position x0 of the transverse plane is

P (x0|P,MW ) = tr
[
Mx0 |ψ〉〈ψ|M†x0

]
(10)

where Mx0 |s〉 = 〈x0| Û |s〉 |φ〉. P (1|P,MA) and P (0|P,MA) in Eq. (7) correspond, respectively, to the prob-
ability that the photon undergoes or does not the weak interaction. Md) in Eq. (8) represents an unknown
measurement process. In order to demonstrare that its contribution is negligible because of the nondestructive
nature of the measurementMW (thanks to the weak interaction), one can exploit the parameter pd, which is the
disturbance thatMW causes to the subsequent strong measurementMf . pd can be evaluated as the amount of

decoherence induced on the single photon by the weak interaction Û :

pd = 1− e−(g2/4σ2) (11)



Figure 1: Experimental setup. The second harmonic emission of a 796 nm mode-locked Ti:sapphire laser (repeti-
tion rate: 76 MHz pumps a LiIO3 nonlinear crystal in which type-I parametric down-conversion23,24 is produced.
The idler photon (λi = 920 nm) is coupled to a single-mode fiber (SMF) and then detected by a single pho-
ton avalanche diode (SPAD), heralding the presence of the correlated signal photon (λs = 702 nm), which is
SMF coupled and sent to the free-space optical path where the experiment is performed. The quality of the
single-photon emission is given by an α value25 of 0.13(1) without any background or dark-count subtraction.
The initial state |s〉 of the signal photon is prepared by the interaction with a polarizing beam splitter (PBS),
followed by an half-wave plate and a quarter-wave plate. Then, the photon interacts with a 1 mm long birifringet
crystal (BCx), responsible for the weak interaction, whose extraordinary (e) optical axis lies in the X-Z plane,
with an angle of π/4 with respect to the Z direction. This induces a spatial walk-off, which slightly separates
the vertically polarized paths of the photons with respect to the horizontally polarized photons one, inducing
a small decoherence (below 1%) on the initial state |s〉. The second crystal (BCc) is used to compensate the
phase and time shift induced by the first one. After the weak interaction, the heralded single photon is projected
onto the post-selected state |f〉 by a Glan linear polarizer and then adressed to a space-resolving single photon
detector, a 32x32 prototype SPAD Array.26 Furthermore, a removable polarization tomographic apparatus27,28

is inserted when needed to verify the fulfillment of the condition in Eq. (7).

3.3 Results

Fig. 2 shows the plot of the quantity I from Eq. (9) with respect to the post-selection angle θ of the linearly
polarized post-selection state |f〉 = cos θ |H〉 + sin θ |V 〉 with |s〉 = (|H〉 − |V 〉)/

√
2. By choosing θ = 0.18π the

value I(exp) = 0.063(11), in agreement with quantum-mechanical prediction and at a distance of 5.7σ from the
noncontextual bound.

To demonstrate the validity of Eq. (7), the polarizer realizing Mf is removed, so that the probability ξψ(x)
that a single photon prepared in any polarization state |ψ〉 is detected at the position x after the interaction
could be estimated. ξψ(x) is a faithful estimation of P (x|P,MW ). This has been accomplished by by sending



Figure 2: I with respect to the post-selection angle θ. For θ = 0.18π, a value I(exp) = 0.063(11) has been
observed, certifying a violation of the noncontextual bound of 5.7σ.

a tomographically complete set of four input states:
{
|H〉 , |V 〉 , |+〉 = (|H〉+ |V 〉)/

√
2, |R〉 = (|H〉 − i |V 〉)/

√
2
}

and measuring ξψ(x) without the polarizer performing the post-selection. Then, ξψ(x) has been compared with
the expected one obtained from the right side of Eq. (7), where the function pn(x) is reconstructed via a fit of
the spatial profile in the absence of the weak interaction (P (1|P,MA) = 0) and the value of g is estimated by
maximizing the interaction (P (0|P,MA) = 0).

The fideliy between the measured ξψ(X) and the expected ξeψ(x), evaluated by sampling more than 230 points
in the region where ξψ(x) is significantly nonzero, for the four input states |H〉, |V 〉, |+〉 and |R〉 is 0.997, 0.991,
0.994 and 0.996, respectively. This shows the validity of this approach. The quality of the reconstruction is
confirmed by a pixel-by-pixel proximity test of the two probability distributions for the pixels where the ξψ(x)
is significantly nonzero. The proximity is defined as:

Prψ(x) =

 2ξψ(x)ξeψ(x)

[ξψ(x)]
2

+
[
ξeψ(x)

]2


1
2

(12)

Results are shown in Fig. 3.

Finally, it can be proved that the condition in Eq. (8) is fulfilled by using a method based on the com-
parison between experimental probabilities collected in different conditions, to get rid of any possible bias due
to quantum-mechanical assumptions. At first, a tomographically complete set of states is prepared and the
detection probabilities P and P , obtained with the Glan polarizer projecting the single photon states onto |f〉
and its orthogonal

∣∣f〉, are registered. For each input state |s〉, these probabilities are given by P = Nf/NT and

P = Nf/NT , NT being the trigger counts and Nf(f) the number of photon counts. Second, in order to nullify
the weak interaction without altering the optical losses in the system, the position of the preparation stage and
the birefringet crystals is switched, and then the same set of acquisition is performed. For each input state, these
two acquisition correspond, respectively, to P (OK|P,MW ,Mf ) and P (OK|P,Mf ) from Eq. (8). The last one
is P (OK|P,Md), which is connected to the unknowk measurement procedure Md. It can be noticed that, by
definition, P (OK|P,Md) ∈ [0, 1], then:

(1− pd)P (OK|P,Mf ) ≤ P (OK|P,MW ,Mf ) ≤ (1− pd)P (OK|P,Mf ) + pd (13)



Figure 3: Prψ(x) evaluated for the four input states |H〉, |V 〉, |+〉 and |R〉. For all of them the proximity is
above 0.99, proving that the condition in Eq. (7) is satisfied.

which gives a lower and a upper bound to the parameter pd that are, for the collected data: (0.000021(14)) ≤
pd ≤ (0.086(50)), in agreement with the value derived by the system parameters (see Eq. (11)): pd = 0.0019(2).

Another consistency check can be performed by testing the output state after the sharp measurement Mf ,
realized by the Glan polarizer, by inserting the tomographic apparatus in the setup, implicitly accepting some
quantum mechanical assumptions. With this apparatus, two experiments can be performed.

In the first one, the apparatus is used to project the state after Mf onto |f〉 and
∣∣f〉. A clear signal can

be seen if the tomographic apparatus realizes the same projection as the Glan polarizer (|f〉), but, when the
tomographer projects onto

∣∣f〉, the amount of signal registered is so small that it is completely indistinguishible
from the detector noise, as expected from two subsequent projection onto orthogonal states. This confirms that
the measurement process Mf is performing a projection onto the state |f〉.

In the second one, the state is tomographically reconstructed after the post-selection on |f〉. A tomographi-
cally complete set of input states (|H〉, |+〉, |L〉 = (|H〉+ i |V 〉)/

√
2, |R〉) is produced and used to reconstruct via

quantum tomography the state after the Mf measurement process. Fidelities of the tomograpic reconstruction
with respect to the chosen |f〉 are: FH = 0.9995, F+ = 0.9999, FL = 0.9991, FR = 0.9811. These values led
to a estimate pd = 0.0051(46), fitting the range obtained in Eq. (13) and in good agreement with the pd value
derivated from the system experimental parameters (pd = 0.0019(2)).

Since all the conditions of the theorem have been verified, it can be assessed that the results of this experiment
clearly violate the noncontextual bound for the quantity I in Eq. (9), providing a demonstration of the connection
between anomalous weak values and the contextual nature of quantum mechanics.



4. MEASURING INCOMPATIBLE OBSERVABLES BY EXPLOITING SEQUENTIAL
WEAK VALUES

Heisenberg uncertainty principle plays a fundamental role in quantum mechanics and quantum measurements.
In particular, a crucial feature due to it is that measuring one observable completely erases the information on
its conjugate one.

Within the weak measurement framework, the impossibility of measuring non-commuting observables can be
partially relaxed.

In quantum metrology, weak values allows high-precision measurements (at least in presence of specific
noises), as the tiny spin Hall effect or small beam detections and characterization of wavefunction. However,
sequential weak values, which are more sensitive to the system’s dynamics and whose time order is crucial, had
not been performed before. One of the most interesting properties of sequential weak values is that they allow
the simultaneous measurement of non-commuting observables on the same quantum state. Here we reach this
result, measuring at the same time non-compatible polarizations by exploiting real single photons.

In our experiment,29 measurements of sequential weak values of two non-commutant observables Â and B̂ are
obtained by means of two different couplings (gx and gy) to two distinct pointer observables (in our experiment

the two transverse momenta P̂x and P̂y) between the pre- and post-selection of the state. In particular, if we
have a sequence of two weak interactions, e.g. the first interaction is described by the unitary transformation

Uy = exp
(
−igyB̂ ⊗ P̂y

)
and the second by Ux = exp

(
−igxÂ⊗ P̂x

)
, when measuring 〈X̂Ŷ 〉 we obtain:

〈X̂Ŷ 〉 =
1

2
gxgy Re

[
〈ÂB̂〉w + 〈Â〉∗w 〈B̂〉w

]
(14)

Here, the result is proportional to the correlation between displacements inducted by meters X̂ and Ŷ . I.e.
it is related to the weak values of the operators Â and B̂, as well as the temporal correlation between them.
Furthermore, when Â and B̂ are non-commuting, the product Â and B̂ is non-Hermitian, and time evolution will
be, in the traditional quantum measurement framework, non-unitary. Instead, in our approach the two separate

weak couplings induce unitary evolution in time. Thus, Re
[
〈ÂB̂〉w

]
can be extrated by measuring 〈X̂Ŷ 〉 and

by evaluating each weak value independently, i.e. 〈Â〉w and 〈B̂〉w (these can be obtained by measuring the mean

values of the positions and momenta 〈X̂〉, 〈Ŷ 〉, 〈P̂x〉 and 〈P̂y〉).

In our sequential weak measurement implementation, the operators Â and B̂ are the polarization projectors
Πψ = |ψ〉〈ψ| and ΠV = |V 〉〈V |, with |ψ〉 = cos θ |H〉 + sin θ |V 〉. In our setup, a (heralded) single photon is
preselected in the initial state |φi〉〉 = |s〉⊗|rx〉⊗|ry〉, where |si〉 = cos θi |H〉+sin θi |V 〉 and |rξ〉 =

∫
dζ Fξ(ζ) |ζ〉,

in which |Fξ(ζ)|2 is the probability density function of detecting the photon in the position ξ = x, y of the
transverse spatial plane. In our case, for the preselected single photons, the spatial distributions in both x and
y axes are reasonably Gaussian and centered in zero with standard deviation σ.

When the two sequential weak interactions occur, single photons undergo spatial displacement both for x and

y directions according to the unitary transformations Uy = exp
(
−igyΠ̂V ⊗ P̂y

)
and Ux = exp

(
−igxΠ̂ψ ⊗ P̂x

)
.

Afterwards, the single photons are post-selected in the linear polarization state |ψf 〉 and detected by a spatial-

resolving detector. Therefore, the post-selected single-photon state is |φf 〉〉 = 〈ψf | ÛxÛy|φi〉〉.
We are focusing on linear polarisations only, i.e. only real-valued weak values. Thus, we can evaluate the

sequential weak value 〈Π̂ψΠ̂V 〉w, where in general the two projectors Π̂ψ and Π̂V are non-commuting operators.

Indeed, from Eq.(14), we have 〈X̂Ŷ 〉 = 1
2gxgy

(
〈Π̂ψΠ̂V 〉w + 〈Π̂ψ〉w 〈Π̂V 〉w

)
, 〈X̂〉 = gx 〈Π̂ψ〉w and 〈Ŷ 〉 =

gy 〈Π̂V 〉w. Note that 〈X̂〉 and 〈Ŷ 〉 are real because in our setup we use only linear polarizers. We stress that the
relation between position mean values and polarisation weak values can exist only in a weak-interaction regime,
i.e. only for g/σ � 1: e.g. gx/σ ∼ gy/σ ∼ 0.15 in our case.

A scheme of the experimental setup in shown in Fig. 4.

The main results of this work are exposed in Fig. 5. We choose the following pre- and post-selected states:



Figure 4: Experimental setup: a mode-locked laser with wavelenght 796 nm is frequency-doubled by means of
second harmonic generation (SHG) and injected to a Lithium Iodate crystal (LiIO3), where type-I parametric
down-conversion (PDC) occurs. Idler photon (920 nm) is fiber-coupled and sent by a single-mode optical fiber
(SMF) in a Silicon Single-Photon Avalanche Diode (Si-SPAD). Signal photon (702 nm) is SMF-coupled and
then re-emitted in the open air path where the experiment takes place, with a Gaussian spatial distribution.
There, it is pre-selected by a polarizing beam-splitter (PBS) followed by a half-wave plate (HWP). Each weak
interaction is induced by a pair of birefringent crystals. In each pair, the first crystal is 2 mm thick and it has
the optical axis with an angle of 45◦ with respect to the propagation direction of the photons. The second one
is 1.1 mm thick, with the optical axis orthogonal to the path of the photons. We need the second birefringent
crystal in order to remove any relative phase and temporal walk-off induced by the first one. After the first weak
measurement (BCV ), the polarization state of the signal photon is rotated by a HWP, in order to perform the
second weak measurement (BCH) by means of a pair of birefringent crystals with optical axes orthogonal with
respect to the corresponding crystals in the first weak measurement. Afterwards, the effect of the previous HWP
is counterbalanced by another HWP, and finally a HWP and a PBS realize the post-selection on the polarization
quantum state |f〉. At the end of the optical path, signal photon is detected by the same 32x32 SPAD array
presented before (Fig. 1)

|s〉 = 0.588 |H〉+ 0.809 |V 〉 and |ψf 〉 = |H〉 in Fig 5.a, and |s〉 = 0.509 |H〉+ 0.861 |V 〉 and |ψf 〉 = −0.397 |H〉+
0.918 |V 〉 in Fig 5.b. Here we plot the two weak values and the sequential one as a function of the angle θ of the
polarization projector Π̂ψ of the second weak interaction, all in good agreement with the theoretical predictions.

A paradoxical situation may be the case when one of the two single weak values is zero (within the uncer-
tainty), while the sequential weak value of the two non-commuting observables is signicantly different from zero.
E.g., in Fig. 5.a, with θ = 0.2π, we obtain 〈Π̂V 〉w = 0.03±0.03, 〈Π̂ψ〉w = 1.44±0.04, and 〈Π̂V Π̂ψ〉w = 0.69±0.15.

For θ = 0.9π, we obtain 〈Π̂V 〉w = 0.04± 0.03, 〈Π̂ψ〉w = 0.35± 0.04, and 〈Π̂V Π̂ψ〉w = −0.46± 0.10, i.e. a single
weak value positive, another one almost null positive and a negative joint weak value two order ov magnitude
larger than the product between the two previous one. We also obtain, in Fig. 5.b at θ = 0.9π, the situation in
wich one of the single weak values and the sequential weak value are both positive, while the other single weak
value is negative: 〈Π̂V 〉w = 1.40± 0.04, 〈Π̂ψ〉w = −0.24± 0.03, and 〈Π̂V Π̂ψ〉w = 0.28± 0.10.

Our results are a good demonstration of the “product rule” breakdown when weak values are concerned.
More generally, looking at Fig. 5.a we can observe that, despite the fact that 〈Π̂V 〉w is almost zero everywhere,
we have that both the single weak value of the other non-commuting observable and the sequential one are
significantly non-zero. Furthermore, for both of them we have observed anomalous weak values. In Fig. 5.a we
observe 〈Π̂ψ〉w > 1 and 〈Π̂ψ〉w < 0, as well as 〈Π̂V Π̂ψ〉w < 0.

The uncertainties related to the weak values shown in the plots of Fig. 5 are obtained with the uncertainty



(a) θ = 0.2π (b) θ = 0.9π

Figure 5: Measured weak values (data points) compared with the theoretical predictions (dashed lines) for

different Π̂ψ (i.e. for different values of θ, since |ψ〉 = cos θ|H〉 + sin θ|V 〉). Yellow and cyan points and lines

correspond to the evaluations of the single-weak-value 〈Π̂ψ〉w and 〈Π̂V 〉w, respectively, while green points and

line represent the evaluation of the sequential-weak-value 〈Π̂ψΠ̂V 〉w. Uncertainty bars are evaluated on the
basis of sequences of repeated measurements. The uncertainty bars are naturally bigger in the case of the
evaluation of sequential-weak-values with respect to the case single-weak-values, since in the former case the
quantity measured is a covariance of positions, while in the latter cases they are position mean values. The
pre-selected and post-selected states are respectively |ψi〉 = 0.588|H〉 + 0.809|V 〉 and |ψf 〉 = |H〉 for plot (a),
and |ψi〉 = 0.509|H〉+ 0.861|V 〉 and |ψf 〉 = −0.397|H〉+ 0.918|V 〉 for plot (b).

propagation standard rules (coverage factor k = 1) starting from the images collected by our 32×32 SPAD array.

Here we demonstrate an unprecedented measurement capability, providing information on two non-commuting
observables at the same time, as well as on the correlation between them, a feature forbidden in the conventional
(i.e. POVM-based) measurement framework of quantum mechanics. In our sequential weak value experiment we
exploit two weak couplings plus a “strong” post-selection measurement to obtain the simultaneous estimation of
two single-operator weak values in connection with the same uncollapsed initial state, as well as the sequential
weak value of two (in general non-commuting) observables. This is more significant than what can be obtained
from a single weak interaction plus a strong post-selection measurement. Indeed, another weak value means
more (non-counterfactual) information and interesting temporal correlations between non-commuting operators,
including anomalous and paradoxical weak values. Sequential weak values can be used in direct measurement
of the density matrix,30 and also in quantum process tomography, which makes use of this very technique of
estimating an unknown dynamics without considerably changing it.

5. ANOMALOUS WEAK VALUES AND THE VIOLATION OF A
MULTIPLE-MEASUREMENT LEGGETT-GARG INEQUALITY

The impossibility of interpreting the results of a measurement on quantum system in terms of pre-existing values
is the topic of Bell’s inequalities.31 This situation has also been studied by Leggett and Garg32 in the behaviour
of macroscopic systems when one does subsequent measurements. For these objects, it is natural to assume that
they will be found in a definite, realistic macro-state (macroscopic realism), and that a measurement, especially
when it is achieved by a microscopic investigation, can not perturb such macro-state (non-invasive measurability).
This consideration carried out a strong production of theoretical and experimental work about the inadequacy
of such macro-realistic view; this has also inspired somehow the transposition of Bell’s nonlocal argument to the
time domain.

In its simplest form, Leggett and Garg’s arrangement considers a macroscopic body undergoing three two-
outcome measurements at different times, with the first being usually the preparation stage. The correlation



among the outcomes can be shown not to be in accordance with macro-realistic prescriptions. The same scheme
can also be employed for observing so-called post-selected values: the value of the second observable is considered
only on events chosen according to the outcome of the last measurement. This measurement in the middle can
also be driven in the weak regime: while shot by shot it delivers only partial information on the observable,
it still provides the correct expectation value on average. While post-selection on a following measurement is
mostly harmless in classical statistics, post-selection in the weak regime can lead to anomalous values. When
one allows for such a weak measurement to be performed in a Leggett-Garg test, then a direct connection can
be established between the violation of macro-realism and the emergence of anomalous post-selected values.

The simplest LGT one can design involves three measurements,33 which we label as IA; IB , and IC ; these
are two-outcome observables which can take either the value +1 or −1. The inequality writes:

− 3 ≤ B3 = 〈IAIB〉+ 〈IBIC〉 − 〈IAIC〉 ≤ 1 (15)

The measurement of IA can be taken to coincide with the initial preparation in the state |ψA〉, hence one can
assign the fixed value +1 for IA:

− 3 ≤ B3 = 〈IB〉+ 〈IBIC〉 − 〈IC〉 ≤ 1 (16)

The connection with anomalous post-selected values of IB is established by considering the two instances IC = 1
and IC = −1 separately, each with the respective occurrence probabilities pC(1), pC(−1):

B3 = 〈IB〉+ [1 〈IB〉 − 1] pC(1)− [−1 〈IB〉 − 1] pC(−1) (17)

where a 〈IB〉 is the post-selected value of IB , conditioned on the outcome a for IC . Exploiting the relation:

〈IB〉 =1 〈IB〉 pC(1) +−1 〈IB〉 pC(−1) (18)

it is possible manipulate Eq.(17) as
B3 = 1 + 2pC(1)(1 〈IB〉 − 1) (19)

Inserting the condition for the standard values of 〈IB〉, one recovers the limits of the Leggett-Garg inequality.
This connection can be extended to the multiplemeasurement LGT that, in the simplest scenario, considers four
measurements, including state preparation IA:

|B4| = | 〈IB〉+ 〈IBIC〉+ + 〈ICID〉 − 〈ID〉| ≤ 2 (20)

The structure of this inequality looks like the familiar Clauser-Horne-Shimony-Holt test for space-like separated
systems; in that case, two partners alternate four distinct experimental arrangements, and verify whether the
collected statistics is compatible with a local, realistic theory. Our situation can be viewed as a single system
interrogated at four different times, including preparation. We can manipulate the four-measurement term B4 as
we did for its three-measurement counterpart, by distinguishing the two instances for the last measurement ID

|B4| = | 〈IB〉+ 〈IBIC〉+ pD(1) [1 〈IC〉 − 1]− pD(−1) [−1 〈IC〉 − 1]| (21)

We now assume that the post-selected values are bound to be found in the same ranges as the standard
values: in this case, it is easy to verify that |B4| is upper bounded by 2. Differently from the three-measurement
case, where any anomalous value would result in a violation, it can be shown that the inequality (21) demands a
minimal value −1 〈IC〉 ≥ 3−M

2pD(−1) , where M = 〈IB〉+ 〈IBIC〉+ 〈IC〉, with a similar expression holding for 1 〈IC〉

In the last experiment, we exploit sequential weak value in order to implement a Leggett-Garg test (LGT). We
obtained an explicit link between anomalous weak values of both individual observables and their correlation.
Our experiment confirms the intimate connection between the observation of anomalies in the post-selected
statistics of quantum measurement, and the failure of a macrorealistic view.

We perform a test of the inequality (21) by exploiting single photons undergoing sequential weak measure-
ments of their polarization. Single photons are emitted by a downconversion source; at a heralding rate around



130 kHz, the quality of the emission is certified by a measured value of the antibunching parameter of 0.13±0.01
without any background/dark-count subtraction. This implies that in our test we can genuinely associate the
outcomes of the measurements to properties of single particles, avoiding classical wave-like analogies.

The experimental setup is the same shown in Fig. 4. The use of a single-mode fibre (SMF) allows to prepare
the transverse profile F(x, y) in a Gaussian shape of width σ, which ensures that the two directions can be used
as distinct pointers for the weak measurements. As shown in Fig. 4, the state of the photon is prepared (pre-
selected) in the polarisation state |ψA〉 = cosα |H〉+sinα |V 〉 by means of a calcite polarising beam splitter (PBS)
and a half-wave plate (HWP). These operations are implemented by coupling the polarisation to the transverse

position by means of the unitary transformations Ûx = exp
(
−igxÎB ⊗ P̂x

)
and Ûy = exp

(
−igy ÎC ⊗ P̂y

)
, where

ÎC = |H〉〈H| − |V 〉〈V | and ÎB = |ψγ〉〈ψγ | −
∣∣ψ⊥γ 〉〈ψ⊥γ ∣∣ is associated to an arbitrary direction for the linear

polarisation |ψγ〉 = cos γ |H〉 + sin γ |V 〉 and
∣∣ψ⊥γ 〉 = sin γ |H〉 − cos γ |V 〉. The operators P̂x and P̂y are the

momenta associated to the x and y directions, respectively.

After the second weak interaction, the photons arrive to a HWP that undoes the preceding rotation and,
at the same time, determines the projection of the state onto one of the post-selected states 〈ψA|, 〈ψD| =
cos δ〈H|+ sin δ〈V | or 〈ψ⊥D| = sin δ〈H| − cos δ〈V |, by means of a PBS.

Since we are interested in the LGT as a tool for probing quantumness, we estimate each term in the in-
equality (21) separately in our setup. The chain of weak interactions and the space-resolved detector allow us
to reconstruct the expectation values 〈IB〉 and 〈IC〉 by measuring the average x and y positions of the photons,

respectively, when post-selecting on the input state 〈ψA|: 〈x̂〉 ' gx〈ÎB〉 and 〈ŷ〉 ' gy〈ÎC〉. The covariance

of the x and y positions gives 〈x̂ ŷ〉 ' gxgy
2 (〈ÎB ÎC〉 + 〈ÎB〉〈ÎC〉). By inverting these relations, it is possible

to obtain the single and sequential values 〈ÎC〉, 〈ÎB〉 and 〈ÎB ÎC〉, estimated as weak averages. This resolves
a major difficulty, in that by using standard “strong” measurements one would only have access to the sym-
metrized quantity 1

2 〈ψA|IBIC+ICIB |ψA〉.29 Post-selection on 〈ψD| and 〈ψ⊥D| occurrence delivers the probabilities
pD(1) = |〈ψD|ψA〉|2 and pD(−1) = |〈ψ⊥D|ψA〉|2, as well as the weak values 1 〈IC〉 and −1 〈IC〉.

Fig. 6 reports a theoretical simulation showing the shape of B4 for four different values of γ, plotted vs.
the parameters α and δ determining the pre- and post-selection states. Aside of the yellow part of the surface,
indicating where the classical bound holds, for each γ value one observes orange and/or magenta areas, corre-
sponding to the B4 > 2 and B4 < −2 violations respectively.
We tested the inequality for different choices of the initial state α, of the orientation γ of weak measurement,
and of the final post-selection δ: the four combinations have been identified to deliver a violation (indicated
by the blue arrow in each plot reported in Fig. 6) close to the maximal value, whose results are illustrated in
Table 1. For each of the four tests performed, the experimental values of B4 are in excellent agreement with the
theoretical expectations within the statistical uncertainties, granting for both the positive and negative values a
classical bound violation between 3.4 and 4.4 standard deviations.34 In the table, we also report the measured
weak values showing how anomalies, i.e. values outside the standard range −1 to 1, do flag the violation of the
Leggett-Garg inequality: this corroborates the intimate connection between the emergence of anomalous values
and the failure of a realistic description.



Figure 6: Behaviour of the quantity B4 in eq. (21) vs. the parameters α (related to the state |ψA〉) and δ
(determining the states |ψD〉 and |ψ⊥D〉), both in π units, for four different values of the parameter γ defining the
polarisation operator IB : γ = 0.1π for plot (a), γ = 0.4π for plot (b), γ = 0.5π for plot (c), γ = 0.95π for plot
(d). In each of these plots, the green part of the surface indicates the non-violation area (−2 ≤ B4 ≤ 2), while
in cyan and magenta are highlighted respectively the positive (B4 > 2) and negative (B4 < −2) violation areas.
In each plot, the orange arrow indicates the point for which the violation was experimentally checked

6. CONCLUSIONS

In this paper we have shown three different experiment about quantum weak measurement. We demonstrated
the crucial role of this measurement paradigm for onthological studying of non-contextuality of the wave func-
tion, showing that anomalous weak values violate the noncontextual bound, providing a demonstration of the
connection between anomalous weak values and the contextual nature of quantum mechanics. Then, we demon-
strated that weak measurements have the unprecedented measurement capability of providing information on
two non-commuting observables at the same time, as well as on the correlation between them. Finally, we showed
the importance of weak measurements for quantifying the quantumness of a state by showing that anomalous
weak values flag the violation of the Leggett-Garg inequality.

Furthermore, weak measurements have paved the way to novel weak-interaction-based measurement paradigms.
It is the case of Protective Measurements, originally proposed within the debate on the reality of the wave func-
tion,35 that combine weak measurements with some protection mechanism preserving the quantum state from
decoherence. In their first experimental implementation,36 it has demonstrated how they can extract the expec-



Parameters 1〈Ic〉 −1〈Ic〉 B(th)4 B(exp)4

γ = 0.1π
α = 0.233π 2.34± 0.04 −0.34± 0.04 2.82 2.76± 0.17
δ = 0.867π
γ = 0.4π
α = 0.767π −0.30± 0.04 2.20± 0.04 −2.82 −2.74± 0.18
δ = 0.633π
γ = 0.5π
α = 0.833π 0.01± 0.06 1.86± 0.06 −2.50 −2.56± 0.16
δ = 0.667π
γ = 0.95π
α = 0.8π 1.86± 0.04 −0.12± 0.06 2.71 2.86± 0.19
δ = 0.15π

Table 1: Leggett-Garg inequality violation results obtained in our four experimental scenarios. The first column
reports the γ, α and δ values exploited in each experiment, the second and third columns host respectively the

theoretical (B(th)4 ) and experimentally-obtained (B(exp)4 ) values of the quantity B4, while the fourth and fifth
columns show the anomalous weak values obtained for IC in each experiment.

tation value of a quantum observable by measuring a single (protected) particle in a single experiment, something
in sharp contrast with usual quantum (and even classical) measurement frameworks. In fact, we know that one
description provides only probabilities for obtaining various eigenvalues of a quantum variable. The eigenvalues
and the corresponding probabilities specify the expectation value of a physical observable, which is known to be
a statistical property of an ensemble of quantum systems. In contrast to this paradigm, it has been demonstrated
a method for measuring the expectation value of a physical variable on a single particle.

We believe that theese experiments will prove themselves useful both for studies of foundations of quantum
mechanics and for the quantum technologies framework.
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