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Abstract. This study presents a high–resolution (5km) set of new simulations performed with CAMx v6.40 16 

over the Po Valley area (Northern Italy), aimed to enhance organic aerosol (OA) levels prediction and to gain 17 

insight into the sensitivity of CAMx to different uncertain features of the input setup. In particular, we mainly 18 

investigated the role of (i) volatility distributions of organic emissions, (ii) parametrizations of semi– and 19 

intermediate–volatile compounds (S/IVOC) emissions and (iii) different aging schemes, by exploiting the 20 

latest experimental information available in the recent scientific literature. Model results were validated against 21 

two OA–specific datasets, available for both an urban site (Bologna, February 2013) and a rural one (Ispra, 22 

March 2013).  23 

We found out a remarkable performance enhancement of modelled OA levels when applying revisions in 24 

S/IVOC emission parametrizations together with the new volatility distributions, at both the validation sites. 25 

This performance enhancement is associated with a very significant improvement in secondary organic aerosol 26 

(SOA) prediction, mainly due to revised IVOC emissions. At Bologna urban site, mean fractional bias (MFB) 27 

of OA ranged from -80.1% in the worst run to -10.1% in the best one and index of agreement (IOA) from 0.52 28 

to 0.75. Notable improvements but overall poorer metrics were found for Ispra site, where MFB ranges from 29 

-84.2% to -35% and IOA from 0.45 to 0.50. These findings indicate that organic matter in the semi– and 30 

intermediate–volatile range are most likely underestimated in official emission inventories for each main 31 

source category (i.e. biomass burning, diesel and gasoline vehicles exhaust).  32 

Finally, model results did not show a very pronounced sensitivity to aging processes, due to the low 33 

photochemical activity typically observed during winter–time. However, we give evidence that enabling aging 34 

processes for biomass burning related SOA, which is by default disabled in CAMx v6.40, can help in closing 35 

the gap between modelled and observed SOA concentrations. 36 

 37 

Highlights 38 

• Latest experimental studies about emissions of organic matter implemented in CAMx 39 

• Remarkable improvement on modelled organic aerosol levels  40 

• S/IVOC emission revisions appear to be the key factor for such improvement 41 

• Enabling aging processes for biomass burning SOA enhances the performance of the model 42 

• VBS provides a better reconstruction of POA and SOA relative contribution to the total 43 

 44 
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1 Introduction 48 

Atmospheric pollution from particulate matter (PM) represents one of the major environmental and social 49 

concern for human health and it poses several challenges in terms of management and mitigation of harmful 50 

impacts. According to the latest European Environment Agency report (EEA, 2017), approximately 53% of 51 

the EU-28 population was exposed to PM concentrations exceeding the WHO Air Quality Guidance value for 52 

PM10 (WHO, 2006) in 2015. Premature deaths resulting from such exposure are estimated to be around 400 53 

000 in the EU-28 countries. Nevertheless, the trend of mean PM concentration in Europe is rather flat during 54 

the most recent years (Guerreiro, et al., 2014; Barmpadimos, et al., 2012). Development of cost– effective 55 

mitigation policies depends heavily upon reliable air quality models results (Harrison, et al., 2008) which can 56 

give insights about the impact of a given control strategy on PM concentrations. 57 

A relevant fraction of submicron particulate matter is given by organic aerosol (OA), which accounts for 20–58 

90% of total PM2.5 (Zhang, et al., 2007). However, the large complexity of OA chemical composition, with 59 

thousands of organic chemical species found in the ambient aerosol (Goldstein & Galbally, 2007), as well as 60 

the complex atmospheric processing of organic compounds strongly limited scientific progress in the OA 61 

modelling area (Hallquist, et al., 2009; Fuzzi, et al., 2015). Within the atmospheric modelling community, 62 

there is mounting evidence that – despite an overall good agreement in gaseous pollutants – OA mass is in 63 

most applications underestimated mainly because of the not well reproduced secondary (SOA) fraction 64 

(Meroni, et al., 2017; Ciarelli, et al., 2016; Woody, et al., 2016; Zhang, et al., 2013; Bergström, et al., 2012; 65 

Hodzic, et al., 2010). 66 

The traditional scheme for OA modelling in Chemical Transport Models (CTMs) is based on the so called 67 

“Two-product approach” by Odum et al. (1996). This approach considers primary organic aerosol (POA) that 68 

is directly emitted from various combustion sources (e.g. vehicles exhaust, biomass burning) as a non–volatile 69 

species that does not chemically evolve. SOA is formed from the early generation oxidation of gaseous organic 70 

volatile (VOC) precursors, which produces two nonreactive semi-volatile products that are partitioned between 71 

gas and aerosol phases depending on temperature and OA mass concentration. However, recent experimental 72 

studies highlighted that this approach presents two main limitations. First, Robinson et al. (2007) suggested 73 

that POA species should be treated as semi-volatile compounds that can evaporate from the particulate phase, 74 

react in the gas-phase and repartition as SOA, as pointed out also in other works (Jimenez, et al., 2009; 75 

Grieshop, et al., 2009). In the conceptual model of Robinson et al. (2007), POA emission is associated with 76 

semi–volatile (SVOC) and intermediate–volatile (IVOC) compounds emissions. SVOC compounds are 77 

characterized by a relatively low volatility (effective saturation concentration C* between 10-1 and 103 µg m-78 
3) and are in the substantial partitioning with the particulate phase whereas IVOC compounds (C* between 103 79 

and 106 µg m-3) are highly volatile and they partition preferentially to the gas-phase in atmospheric conditions.. 80 

The second main issue of Odum et al. (1996) approach is related to the further oxidation of SOA in the 81 

atmosphere (i.e., the so-called aging process), which is traditionally neglected as the products of VOC 82 

oxidation were considered non–reactive. These two limitations led to the development of a new framework for 83 

the description of all OA components and their reactions. This new framework – in literature referred to as 84 

VBS (Volatility Basis Set) – rethinks the distinction between the traditional primary and secondary OA by 85 

grouping organic species into surrogates according to their volatility and degree of oxidation, thus providing a 86 

more realistic picture of the behavior of atmospheric organic aerosol. Details about theoretical aspects of VBS 87 

framework are provided in Donahue et al. (2006); Donahue et al. (2011); Donahue et al. (2012b). 88 

Several applications of the VBS scheme to CTMs in different case studies can be found in the recent scientific 89 

literature (Fountoukis, et al., 2011; Tsimpidi, et al., 2011; Bergström, et al., 2012; Zhang, et al., 2013; 90 

Fountoukis, et al., 2014; Koo, et al., 2014; Ciarelli, et al., 2016; Woody, et al., 2016; Fountoukis, et al., 2016; 91 

Meroni, et al., 2017). The general conclusion stemming from these works is that the VBS scheme enhances 92 

the prediction of both OA levels and degree of oxidation, although the high number of parameters to be 93 

constrained in the VBS scheme causes a large uncertainty in the models results. For instance, all the studies 94 

cited above scaled the IVOC emissions, which are traditionally neglected in official emission inventories (Ots, 95 
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et al., 2016; Hodzic, et al., 2010), on POA emissions using a factor between 1.5× and 3×, as suggested by 96 

Robinson et al. (2007). However, this assumption historically derives from chassis dynamometer tailpipe 97 

measurements performed two decades ago on two diesel vehicles (Schauer, et al., 1999) and – whilst it might 98 

hold true for vehicles exhaust emissions (Kim et al., 2016) – it is likely to be incorrect for other emissions 99 

sources (e.g. biomass burning, Ciarelli et al., 2017b). Very recent experimental works presented more detailed 100 

and source-specific parametrizations for IVOC emissions, which might be implemented in CTMs to provide 101 

more accurate results. As an example, Jathar et al. (2014) performed smog chamber experiments to investigate 102 

SOA formation from gasoline vehicles, diesel vehicles and biomass burning, and they reported that unspeciated 103 

organics – which are not appropriately included in current emission inventories and, in turn, chemical transport 104 

models – account for 10–20% of total non-methane organic gases (NMOG). Zhao et al. (2015) and Zhao et al. 105 

(2016) characterized emissions of IVOC from on-road and off-road diesel and gasoline vehicles during 106 

dynamometer testing, respectively, reporting both new volatility distributions of the organics emissions and 107 

new parametrizations for IVOC emissions calculation. Ciarelli et al. (2017b) performed novel smog chamber 108 

experiments for wood combustion emissions, and their result suggest an average ratio of non–traditional VOCs 109 

(i.e. IVOC) to POA emissions of 4.75, much higher compared to the widely adopted 1.5, which however was 110 

based on diesel vehicles measurements.  111 

Recent European modelling studies attempted to integrate these new parametrizations into CTMs. Ciarelli et 112 

al. (2017a) constrained a modified VBS scheme to treat biomass burning OA and evaluated the implementation 113 

of this scheme in CAMx. Ots et al. (2016) and Sartelet et al. (2018) investigated different parametrizations for 114 

traffic-related S/IVOC emissions for the UK and the greater Paris area, respectively. Chrit et al. (2018) 115 

addressed both biomass burning and traffic-related S/IVOC emission parametrizations, volatility distributions 116 

and aging by performing a set of sensitivity simulations over western Mediterranean region during winter time. 117 

The overall outcome of these works is that updating S/IVOC emission parametrizations and volatility 118 

distributions helps in closing the gap between observed and predicted OA concentrations. 119 

Here, we present a new set of sensitivity simulations with CAMx that, differently from previous studies, aims 120 

to evaluate model performances in conditions where high OA levels are measured. Following the most recent 121 

European studies, we investigate the impact of volatility distributions of organics emissions, S/IVOC emission 122 

parametrizations, SOA yields from gaseous precursors and different aging schemes, by implementing the latest 123 

experimental information available in the scientific literature. The study area is the Po Valley (Northern Italy) 124 

during wintertime (February-March 2013), which is a well-known hotspot where PM levels remain 125 

problematic despite the air quality remediation plans intended to get in compliance with current EU air quality 126 

standards, mainly because of adverse meteorological conditions (Caserini, et al., 2017; Perrino, et al., 2014; 127 

Pernigotti, et al., 2012; Ferrero, et al., 2011). We evaluate our model results against two OA–specific datasets, 128 

available for both an urban site (Bologna, February 2013) and a rural one (Ispra, March 2013). These two 129 

datasets are derived from Positive Matrix Factorization (PMF) analysis of Aerosol Mass Spectrometer (AMS) 130 

and Aerosol Chemical Speciation Monitor (ACSM) measurements (DeCarlo, et al., 2006; Ng, et al., 2011), 131 

which allow a thorough comparison of each fraction of organic aerosol (i.e. primary and secondary). We also 132 

point out how the development of different meteorological condition can influence the overall model 133 

performance as well as, more specifically, the reconstruction of the organic fraction.  134 

 135 

 136 

2 Methods 137 

2.1 The modelling setup 138 

CAMx v6.40 (ENVIRON, 2016) was used to calculate the concentrations of both gaseous and particulate 139 

pollutants over the Po Valley domain, for a two-month long period covering February and March 2013. OA 140 

concentrations can be computed by CAMx v6.40 with three different schemes: (i) a traditional two–product 141 

model, which is called SOAP in CAMx (Strader, et al., 1999), (ii) the same two–product model with revised 142 
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yields for SOA production (SOAP2), based on new aerosol yield data that accounts for vapor wall losses in 143 

chamber experiments (Zhang, et al., 2014; Hodzic, et al., 2016) and (iii) a 1.5D–VBS scheme, 144 

which is widely described in Koo et al. (2014). SOAP and SOAP2 algorithms treat POA as non–reactive and 145 

non–volatile, and compute SOA concentrations starting from VOC and IVOC oxidation. VBS scheme instead 146 

employs four basis sets, two for primary aerosols from anthropogenic sources (PAPx) and biomass burning 147 

(PFPx) and two for secondary aerosols, again with the distinction between anthropogenic (PASx) and biomass 148 

burning (PBSx) origin. It should be noted that the biomass burning category includes also anthropogenic 149 

emissions deriving from residential wood heating, which accounts for an important share of total PM emissions 150 

during winter time in the Po Valley area (Guariso & Sangiorgio, 2018; Pietrogrande, et al., 2015). Each set has 151 

five different volatility bins (x ranges from 0 to 4, e.g.: PAP0, PAP1, up to PAP4) equally spaced on a 152 

logarithmic scale of effective saturation concentration, covering the whole semi–volatile range, i.e. C* = {0, 153 

1, 10, 100, 1000} µg m-3. An effective saturation concentration equal to zero means a non–volatile bin. Under 154 

this framework, total POA concentration is the sum of PAPx and PFPx and total SOA concentration is the sum 155 

of PASx (ASOA, i.e. anthropogenic SOA) and PBSx (BSOA, i.e. biomass burning and biogenic SOA). Total 156 

OA is the sum of POA and SOA. 157 

The overall configuration of the modelling chain follows the one presented in Meroni et al. (2017). CAMx 158 

v6.40 was applied over two nested domains, the outer covering the whole Italian peninsula with a spatial 159 

resolution of 15km and the inner one covering the Po Valley area and small parts of other countries at 5km 160 

resolution (Figure 1). CAMx uses 14 terrain–following vertical layers, with thickness varying according to the 161 

orography and the distance from the ground. Meteorological input was derived by the output of Weather  162 

 163 

Figure 1 - Air quality measurements sites from both ARPA (circles) and AirBase (diamonds) datasets, in the whole Po Valley domain. 164 
Airbase sites are used when both ARPA and AirBase data are available. Different colors stand for different ARPA agencies (i.e. green 165 
for ARPA Piemonte, red for ARPA Lombardia, yellow for ARPA Emilia Romagna, cyan for ARPA Veneto). The location of AMS 166 
and ACSM sites is reported with blue triangles. 167 
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Research and Forecasting model (WRF) (Skamarock, et al., 2008), applied over three nested domains, the 168 

largest of which covering Europe and Northern Africa at 45km resolution and the two innermost covering Italy 169 

and the Po Valley area at 15km and 5km resolution, respectively. Hourly anthropogenic emission fields were 170 

computed by the Sparse Matrix Operator for Kernel Emission model (SMOKE v3.5), which processes 171 

inventory data from three different levels (regional, Italian and European data) as in Meroni et al. (2017). Total 172 

hourly emission fields were obtained by adding SMOKE fields to biogenic and sea salt emissions, estimated 173 

using the Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.03) (Guenther, et al., 2006) 174 

and SEASALT model (Gong, 2003), respectively. Additional details about WRF configuration and emission 175 

data preparation can be found in Meroni et al. (2017). 176 

 177 

2.2 The base case 178 

We first set up a “base case” simulation to be used as a reference to assess the sensitivity of the model to 179 

different input features. The configuration of the base case is almost the same as the one described in Meroni 180 

et al. (2017), except for a few changes that we implemented in our new base case: (i) the new code version of 181 

CAMx (from v6.20 to v6.40), (ii) new gas–phase mechanism (from CB05 to the more recent CB6r4, 182 

ENVIRON, 2016), (iii) update of SMOKE speciation profiles for VOCs to be compatible with the new gas–183 

phase mechanism and (iv) revision of elemental carbon (EC) and organic matter (OM) emission factors with 184 

more recent literature data (Caserini, et al., 2013; EMEP, 2016; Yarwood, et al., 2010). We updated the gas–185 

phase mechanism because CB6r4 explicitly adds the gas–phase treatment of some SOA precursors (benzene, 186 

acetylene) and a new aromatics chemistry which is relevant to SOA modelling. Finally, Table 1  187 

Table 1 - Comparison of OM and EC mass speciation factors for PM2.5 188 

 Meroni et al. (2017) Caserini et al. (2013) 

 EC OM EC OM 

Wood burning 15.4% 51.0% 11.1% 53.7% 

Heavy duty diesel 69.4% 17.5% 49.4% 26.0% 

Light duty diesel 69.0% 17.5% 67.8% 19.0% 

Diesel passenger 71.1% 16.5% 75.0% 16.2% 

Gasoline 19.0% 54.9% 36.5% 53.4% 

Tire&Brake wear 6.0% 24.4% 3.7% 21.1% 

 189 
summarizes the new OM and EC profiles compared to the previous ones, according to the Po Valley–specific 190 

work of Caserini et al. (2013). 191 

We performed both a SOAP2 and a VBS simulation with these settings, in order to get a comparison between 192 

the two algorithms and to evaluate the effect of the revised yields of SOAP2 algorithm. Labels for the new 193 

base case runs are 01_soap2_newbase and 02_vbs_newbase for SOAP2 and VBS algorithms, respectively. 194 

 195 

2.3 New IVOC parametrizations 196 

The base case simulations compute IVOC emissions with the traditional 1.5×POA parametrization, regardless 197 

of the source of the emission. However, as in the last few years many modelling works claimed that accurate 198 

IVOC emission estimates are crucial for SOA prediction (Shrivastava, et al., 2011; Bergström, et al., 2012; 199 

Meroni, et al., 2017), some experimental works have recently presented more detailed and source-specific 200 

parametrizations, which are summarized in Table 2. 201 

 202 
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Table 2 - Different IVOC source-specific emission parametrizations from recent literature data. GV stands for Gasoline Vehicles, DV 203 
for Diesel Vehicles and BB for Biomass Burning.  204 

Reference Type Gasoline Diesel Biomass 

Robinson et al., (2007) Reva 1.5xPOAGV 1.5xPOADV 1.5xPOABB 

Jathar et al. (2014) Reva 0.25xNMOGGV
c 0.20xNMOGDV

c
    0.20xNMOGBB

c 

Zhao et al. (2015) Expb — 0.6xNMHCDV
c — 

   (12xPOADV)  

Zhao et al. (2016) Expb 0.04xNMHCGV
c — — 

Ots et al. (2016) Reva — 2.3xSNAP7d — 

Ciarelli et al. (2017b) Expb — — 4.75xPOABB 

Hatch et al. (2017) Expb — — 0.09xNMOGBB
c 

a Review, i.e. the authors propose a new parametrization based on previous works 205 
b Experimental study, i.e. the authors propose a parametrization based on new measurements 206 
c NMOG = Non-Methane Organic Gases; NMHC = Non-Methane HydroCarbons 207 
d SNAP7 refers to the VOC emission from road-transport 208 

 209 

Using such parametrizations in our case study leads to very different results in terms of total IVOC emissions. 210 

In the base case run, total IVOC emission was approximately 10.6 kton, during February 2013 and considering 211 

the whole Po Valley domain. Jathar et al. (2014) parametrization would add a slightly lower amount of IVOC 212 

(7.6 kton), but with a different allocation between the different sources, being IVOC scaled on VOC rather 213 

than POA. Ots et al. (2016) simulations included additional diesel-related intermediate-volatility organic 214 

compound emissions derived directly from ambient measurements at an urban background site in London. 215 

Their parametrization would lead, in our case study, to the addition of 22.1 kton of diesel-related emissions, 216 

which is 2.09 times the amount in the base case. 217 

However, for our new run we decided to use the most up-to-date actual experimental studies, i.e. direct and 218 

source-specific emission measurements. For biomass burning emissions (BB), we used the parametrization of 219 

Ciarelli et al. (2017b), which is the most recent European study focused on BB. Gasoline (GV) and diesel (DV) 220 

vehicles emission parametrizations were instead borrowed from two American studies (Zhao, et al., 2015; 221 

Zhao, et al., 2016) as there are no detailed experimental European works related to IVOC emissions from GV 222 

and DV. Emissions of IVOC from other sources were calculated as 1.5×POA, as there are no other information 223 

available. In calculating IVOC emissions from GV and DV, we took into account that current emissions 224 

inventories only report estimates for VOCs, i.e. C* > 107 µg m-3 (Ots, et al., 2016), and for the particle fraction 225 

of the emissions of species with lower volatilities. As an example, let us consider emissions from gasoline 226 

vehicles. Since IVOC are not included in the official emission inventory of VOC, the following relationships 227 

hold:  228 

IVOC = 0.04 × NMHC     (Zhao, et al., 2016) (1) 

NMHC =(VOC+IVOC) × 0.954 (2) 

 229 

where the factor 0.954 takes into account the difference between non-methane hydrocarbons and non-methane 230 

organic gases, i.e. NMOG = VOC + IVOC and NMHC = 0.954 × NMOG (Gabele, 1997). From (1) and (2), 231 

we can easily find that: 232 

IVOC = 
0.04 × 0.954

1 − 0.04 × 0.954
 𝑉𝑂𝐶 

(3) 

We proceeded in the same way for IVOC emissions from diesel vehicles, where the coefficient NMHC/NMOG 233 

is equal to 0.934 (EPA, 2005) and the scaling factor on NMHC is 0.6 (Zhao, et al., 2015). IVOC emissions 234 

calculation from biomass burning was instead straightforward, as Ciarelli et al. (2017b) parametrization scales 235 
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IVOC emissions on POA ones. The resulting total IVOC emission budget using these three parametrizations 236 

is 33.8 kton, which is 3.19 times the emission in the base case. The apportionment of these emissions to the 237 

different source categories is reported in Table 3. Again, we performed both a SOAP2 and a VBS run with 238 

revised IVOC parametrization, keeping the rest of the configuration as the one described in the previous section 239 

(i.e., the new base case), to evaluate the effect of adding this IVOC emissions on both algorithms. Labels for 240 

these two runs are 03_soap2_newivoc and 04_vbs_newivoc. 241 

Table 3 - Source–related and total IVOC emissions according to the revised parametrizations and Meroni et al. (2017) work. All 242 
emissions values refer to the Po Valley domain during February 2013 and are reported in tons. 243 

Source Base case Revised Revised/Traditional 

Gasoline vehicles 119.9 276.1 2.30 

Diesel vehicles 556.3 3137.2 5.64 

Biomass burning 9461.3 29 960.8 3.17 

Others 462.5 462.5 1.00 

Total 10600.1 33836.6 3.19 

 244 

2.4 New volatility distributions and OMSV estimates 245 

In all the above–mentioned runs, we implicitly assumed that POA = OMSV, where OMSV is the organic matter 246 

in the semi-volatile range. We basically allocated POA emissions from the official inventory into the five 247 

volatility basis sets (C* = {0, 1, 10, 100, 1000} µg m-3) via the default volatility distributions of CAMx, which 248 

are borrowed from May et al. (2013a); May et al. (2013b); May et al. (2013c); Woody et al. (2015). However, 249 

as already mentioned before, several studies showed that this assumption might not hold true (Shrivastava, et 250 

al., 2011; Tsimpidi, et al., 2010; Ciarelli, et al., 2016) and new volatility distributions are now available in the 251 

recent literature. Many modelling works therefore performed some sensitivity runs in which OMSV was 252 

increased by a factor 1.5×, 2× , 3× (Shrivastava, et al., 2011; Tsimpidi, et al., 2010; Ciarelli, et al., 2016). 253 

Nevertheless, instead of using fixed factors (i.e. with no physical meaning) as in previous studies, we decided 254 

to infer OMSV with the most recent information available and then to compare it with the official values from 255 

the emission inventory. For gasoline and diesel vehicles emissions, we calculated OMSV starting from the 256 

volatility distribution provided in Zhao et al. (2015); Zhao et al. (2016), respectively, being known the ratio 257 

(R) between IVOC and OMSV (Figure 2). OMSV can be thus calculated as IVOC/R. 258 

 259 

Figure 2 - Diesel (a) and gasoline (b) complete volatility distributions (Zhao, et al., 2015; Zhao, et al., 2016). The ratio R is the sum 260 
of the IVOC bars divided by the sum of the OMSV bars (R = 4.62 for gasoline emissions and R = 2.54 for diesel emissions). 261 

For biomass burning, since we did not have an updated volatility distribution covering the whole semi– and 262 

intermediate–volatile range, we used a factor from the revised inventory of Denier van der Gon et al. (2015), 263 

which takes into account also condensable organics. The ratio between OM in the inventory of Denier van der 264 

Gon et al. (2015) and OM in our emission inventory, considering BB emissions for the whole Italy, is 1.34 and 265 
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therefore we scaled up BB emissions using this correction factor. Table 4 summarizes the results of these 266 

revisions in terms of total emission for February 2013 and the whole Po Valley domain. As clear from Table 267 

4, all the calculated OMSV are actually higher than traditional POA emission, confirming that current emission 268 

inventories are probably missing SVOC emissions.  269 

Table 4 - Comparison between official inventory data of OMSV (i.e. POA) and the revised OMSV according to our methodology. All 270 
emissions values refer to the Po Valley domain during February 2013 and are reported in tons. 271 

Source Official OMSV Revised OMSV Revised/Official 

Gasoline vehicles 80.0 108.8 1.36 

Diesel vehicles 370.9 679.3 1.83 

Biomass burning 6307.5 8452.1 1.34 

 272 

Finally, in addition to the revised emission of OMSV, we also applied the new volatility distributions from Zhao 273 

et al. (2015); Zhao et al. (2016) for gasoline and diesel emissions as well as the IVOC parametrizations as in 274 

04_vbs_newivoc. The comparison between default and updated volatility distributions is shown in Figure 3. 275 

With respect to the default volatility distributions, DV emissions are mostly associated with the lowest and 276 

highest C* bins in the semi-volatile range whereas GV emissions present a general shift towards higher 277 

volatilities.  278 

This new run will be hereinafter referred to as 05_vbs_newomsv. As we are assessing the influence of VBS–279 

specific parameters (i.e. volatility distributions), no equivalent SOAP2 run has been performed. 280 

 281 

Figure 3 - Comparison of volatility distributions in the semi–volatile range between Zhao et al. (2015); Zhao et al. (2016) and CAMx 282 
default (May, et al., 2013a; May, et al., 2013b; May, et al., 2013c) for (a) diesel emissions and (b) gasoline emissions. 283 

2.5 Model sensitivity to aging schemes 284 

In Meroni et al. (2017) and all the above-mentioned runs, multigenerational aging scheme has been borrowed 285 

from Koo et al. (2014) which is the default in CAMx. Chemical aging process is approximated by using a 286 

partial conversion from POA to SOA, i.e. oxidation products of POA aging are a mixture of POA and SOA in 287 

the next lower volatility bin. The mixture ratios (i.e. how much POA/SOA is produced from each oxidation 288 

reaction) are calculated via carbon and oxygen balances and are provided in Koo et al. (2014). A rate constant 289 

of 4×1011 cm3 molecule-1 s-1 is used for gas-phase oxidation of POA with OH radical (Robinson, et al., 2007). 290 

The OH reaction rate for anthropogenic SOA is assumed to be 2×1011 cm3 molecule-1 s-1. Aging of SOA 291 

deriving from biomass burning and biogenic precursors (BSOA) is instead disabled in default CAMx 292 

configuration based on previous modelling studies which found that aging of BSOA led to overestimation of 293 

OA in rural areas (Lane, et al., 2008; Murphy & Pandis, 2009). However, in recognizing that the aging of 294 

BSOA does occur, some other modelling works (Karnezi, et al., 2018; Woody, et al., 2016; Bergström, et al., 295 

2012; Donahue, et al., 2012a) performed some sensitivity simulations enabling this process. A more recent 296 

study focused on multi-generational aging (Jathar, et al., 2016) highlighted that SOA aging is however 297 
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probably not very important at urban-suburban scales, and suggests that adding aging reaction of SOA may be 298 

double counting SOA formation (i.e., this effect is already included in aerosol yields). 299 

Since the literature is somewhat controversial on this issue, we decided to perform two additional runs to 300 

evaluate the sensitivity of CAMx to different aging schemes, (1) applying the current aging scheme also to 301 

BSOA (06_vbs_bioaging) and (2) turning off the whole aging scheme (07_vbs_noaging). 302 

2.6 Summary of the simulation set 303 

Summing up, we performed seven simulations to address different uncertain aspects of CAMx input setup, 304 

with the methods described in the previous sections. The main characteristics and the labels for all the seven 305 

runs are summarized in Table 5. 306 

2.7 Comparison with observations 307 

Observed concentrations of traditional air pollutants (e.g. PM2.5, NOx) are provided by the European database 308 

of national monitoring networks (AirBase) in Europe. AirBase is the European air quality database maintained 309 

by the EEA through its European topic center on Air pollution and Climate Change mitigation 310 

(https://www.eea.europa.eu/data-and-maps/data/aqereporting-2). We integrated AirBase dataset with data 311 

from sites managed by Italian Regional Agencies for Environmental Protection (ARPA). Only background 312 

stations (rural, suburban and urban) with an hourly data coverage higher than 75% in simulation year 2013 313 

were chosen. Figure 1 shows the location of such measurement stations. 314 

Table 5 - Main characteristics of the 7 sensitivity runs presented in this work 315 

Run label Gas-phase chem OA-chem Notes 

00_vbs_meroni CB05 VBS Meroni et al. (2017) configuration 

01_soap2_newbase CB6r4 SOAP2 Revised yields for SOA production 

02_vbs_newbase CB6r4 VBS New CAMx version, revised OM/EC 

03_soap2_newivoc CB6r4 SOAP2 Revised IVOC emissions 

04_vbs_newivoc CB6r4 VBS Revised IVOC emissions 

05_vbs_newomsv CB6r4 VBS Revised volatility distributions+OMSV 

06_vbs_bioaging CB6r4 VBS Enabling BSOA aging 

07_vbs_noaging CB6r4 VBS Turning off aging scheme 

For our study period, observations of organic aerosol concentrations are available for two different sites, 316 

Bologna (AMS–BO) and Ispra (ACSM–IS). Location of such sites is reported in Figure 1 with blue triangles. 317 

Ispra station is located in the Northern part of the study area and it is a rural background site affected by 318 

anthropogenic emissions (Gilardoni, et al., 2011); Bologna station is instead located in the South–Eastern part 319 

and it is representative of an urban background site. Data are available for February 2013 at Bologna site and 320 

March 2013 at Ispra site. 321 

Details about the aerosol measurements carried out in Bologna and Ispra were already reported elsewhere 322 

(Bressi, et al., 2016; Gilardoni, et al., 2016), thus only a brief summary follows here. PM1 concentration of 323 

nitrate, sulfate, ammonium, and OA were measured at Bologna by an Aerodyne High Resolution Time of 324 

Flight Aerosol Mass Spectrometer (HR–TOF–AMS) (DeCarlo, et al., 2006), using composition dependent 325 

collection efficiency (Middlebrook, et al., 2012) with a time resolution of 5 min. Before the sampling, particles 326 

were dried with a Nafion drier at relative humidity below 30%. Data validation was performed by comparing 327 

sulfate, nitrate, and ammonium concentration from AMS analyses with the concentration measured offline by 328 

ion chromatography on aerosol samples collected in parallel. At Ispra site, an Aerodyne Aerosol Chemical 329 

Speciation Monitor (ACSM) (Ng, et al., 2011) was used instead, based on the same operating principle but 330 

with a 30 min time resolution. Filter measurements of inorganic species are also available at Ispra site. Details 331 

about these measurements can be found in Meroni et al., (2017). 332 
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Further analysis of OA mass spectra by means of Positive Matrix Factorization (PMF) allowed the separation 333 

of ambient OA mass into different factors: hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and 334 

from one (at Ispra) to three (at Bologna) types of oxygenated OA (OOA) (Bressi, et al., 2016; Gilardoni, et al., 335 

2016). In our validation, we matched the sum of OOA factor concentrations in PM1 with modelled SOA 336 

concentrations. HOA and BBOA are instead linked to POA deriving from anthropogenic and biomass burning 337 

sources, respectively. 338 

 339 

3 Results 340 

The validation of both meteorological variables and gaseous precursors for our case study is reported in Meroni 341 

et al. (2017). It is worth noting that our set of simulations differ only for OA-related features with respect to 342 

Meroni et al. (2017), and therefore a new validation of both meteorological variables and gaseous precursors 343 

was not needed. OA concentrations were validated by means of several model performance metrics. Mean 344 

Bias (MB) and Mean Fractional Bias (MFB) aim to assess the magnitude of systematic errors, Mean Fractional 345 

Error (MFE) and Root Mean Square Error (RMSE) are related to random errors whereas the index of agreement 346 

(IOA) takes into account the correlation between two timeseries. The mathematical definition of such metrics 347 

is reported in the Supplementary Material (Equations S1-S7). 348 

The overall results of the whole set of CAMx runs in terms of organic aerosol (POA, SOA and total OA) are 349 

summarized in Figure 4. The corresponding performance metrics for total OA can be found in Table 6 and 350 

Errore. L'origine riferimento non è stata trovata.. A detailed discussion of each run follows in the next 351 

subsections. 352 

Table 6 – Total organic matter (TOM) performance metrics for Meroni et al. (2017) run and the seven runs presented in this work at 353 
Bologna site (February 2013). Obs stands for the mean observed value whereas Mod represents the mean modelled one. 354 

Run label Obs (µg m-3) 
Mod (µg m-

3) 
MB (µg m-3) RMSE (µg m-3) MFB MFE IOA 

00_vbs_meroni 8.50 3.09 -5.41 7.21 -80.1% 85.9% 0.52 

01_soap2_newbase 8.50 5.50 -3.01 5.58 -31.0% 56.4% 0.61 

02_vbs_newbase 8.50 3.98 -4.52 6.43 -63.5% 72.9% 0.57 

03_soap2_newivoc 8.50 6.31 -2.19 5.09 -19.8% 50.9% 0.66 

04_vbs_newivoc 8.50 5.53 -2.98 5.49 -40.7% 60.0% 0.67 

05_vbs_newomsv 8.50 7.19 -1.32 5.16 -18.5% 53.4% 0.73 

06_vbs_bioaging 8.50 8.00 -0.50 5.19 -10.1% 52.2% 0.75 

07_vbs_noaging 8.50 6.21 -2.29 5.39 -30.7% 56.9% 0.70 

 355 

Table 7 – Total organic matter (TOM) performance metrics for Meroni et al. (2017) run and the seven runs presented in this work at 356 
Ispra site (March 2013).  Obs stands for the mean observed value whereas Mod represents the mean modelled one. 357 

Run label Obs (µg m-3) 
Mod (µg m-

3) 
MB (µg m-3) RMSE (µg m-3) MFB MFE IOA 

00_vbs_meroni 14.95 — — — — — — 

01_soap2_newbase 14.95 6.50 -8.45 15.27 -58.1% 76.7% 0.45 

02_vbs_newbase 14.95 4.86 -10.08 15.93 -84.1% 93.7% 0.45 

03_soap2_newivoc 14.95 7.49 -7.45 14.79 -47.5% 71.0% 0.45 

04_vbs_newivoc 14.95 6.63 -8.31 15.12 -64.6% 81.6% 0.46 

05_vbs_newomsv 14.95 8.67 -6.28 14.60 -44.1% 73.1% 0.48 

06_vbs_bioaging 14.95 9.82 -5.13 14.36 -35.0% 70.3% 0.50 
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07_vbs_noaging 14.95 7.33 -7.61 15.03 -56.4% 78.8% 0.46 

 358 

 359 

Figure 4 - Distribution of hourly POA, SOA and TOM concentrations across the whole set of CAMx runs for (a–c) Bologna site and 360 
(d–f) Ispra site. The bottom and top of the box represent the lower and upper quartiles, respectively, and the band in the middle of the 361 
box is the median value of the distribution. The whiskers extend to the most extreme data point which is no more than 1.5 times the 362 
interquartile range from the box. 363 

 364 

3.1 The base case 365 

The few changes with respect to Meroni et al. (2017) work (i.e. new CAMx version, CB6r4 instead of CB05 366 

and other minor upgrades, described in Section 2.2) lead to a non-negligible variation in OA levels results. 367 

Total Organic Matter (TOM) is generally better predicted at Bologna site by the new base case 368 
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(02_vbs_newbase) compared to the run described in Meroni et al. (2017) (00_vbs_meroni), although a strong 369 

underestimation – especially for SOA concentrations (3.2 times on average) – is still present ( 370 

 371 

Figure 5a). Mean observed TOM at Bologna site is 8.50 µg m-3, whereas mean modelled TOM is 3.98 µg m-3 and 3.09 µg m-3, for the 372 
new base case and Meroni et al. (2017) run, respectively. TOM Mean Bias (MB) is therefore reduced from -5.41 µg m-3 to -4.52 µg m-373 
3 (mean fractional bias from -80.1% to -63.5%). Index of Agreement (IOA) increases accordingly (from 0.52 to 0.57). This enhancement 374 
in model performances is mainly due to new speciation profiles (which are in favor of higher OM/EC ratios, Table 1) and the new code 375 
of CAMx, which includes a major revision to the secondary organic aerosol chemistry/partitioning algorithm (both SOAP and VBS). 376 
As Meroni et al. (2017) run was performed only for February 2013, no comparison between the new base case and 00_vbs_meroni is 377 
possible for Ispra site, in which observed data refer to March 2013. Nonetheless, a severe underestimation of TOM and its fractions is 378 
found for our new base case at Ispra site ( 379 
 380 
Figure 5b). SOA mean concentration is underestimated by ~4 times (as it was for Bologna site) for the VBS 381 

simulation, with a mean bias of -5.88 µg m-3. In contrast to Bologna simulation, we found a significant 382 

underestimation in POA mean concentration (2.4 times) as well. 383 

 384 
 385 
Figure 5 - Comparison between the new VBS base case and Meroni et al. (2017) run for TOM at (a) Bologna site and (b) Ispra site. 386 
The new base case is labelled as 02_vbs_newbase (red) and the run of Meroni et al. (2017) is labelled as 00_vbs_meroni (cyan). 387 
Statistics are computed with pairwise–complete observations. 388 
 389 

This is confirmed by the analysis of POA fractions (i.e. HOA and BBOA) presented in the Supplementary 390 

Material (Figure S1 and Figure S2). The clear underestimation of BBOA fraction might be due to missing 391 

SVOC emission from BB (as underlined by Denier van der Gon et al., 2015) and to an incorrect spatial 392 

distribution of such emissions. As a matter of fact, mean modelled BBOA concentration in Ispra and in 393 

Bologna are similar (2.59 and 2.08 µg m-3, respectively) whereas the observed ones are much more different 394 

(6.36 and 2.38 µg m-3, respectively). Such difference in BBOA measurements might be explained by the 395 

location of the two stations. Ispra station is a rural background site strongly affected by anthropogenic 396 

emissions (Henne et al., 2010) – where wood combustion in the residential sector is an important source of 397 

atmospheric aerosol – while Bologna station is an urban one, where residential heating is mainly accomplished 398 

by natural gas burning. However, this large spatial gradient is not well captured by CAMx, likely because of 399 
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an inaccurate spatialization of BBOA emissions. HOA underestimation is instead related to an incorrect 400 

representation of peaks magnitude for both Bologna and Ispra site, as clear from the daily profiles of Figure 6.  401 

Finally, SOAP2 run (01_soap2_newbase) leads to a slightly better agreement for TOM prediction compared 402 

to the VBS run, at both Bologna and Ispra sites. At Bologna site, MB shifts from -4.52 µg m-3 in the VBS run 403 

to -3.01 µg m-3 in the SOAP2 run. RMSE decreases accordingly, from 6.43 µg m-3 to 5.58 µg m-3. However, 404 

this improvement in TOM levels is associated with a degradation in both SOA and POA performances, i.e. 405 

error compensation gives overall a better result in terms of concentration, but not in terms of SOA and POA 406 

fractions (Figure 7). 407 

 408 

 409 

Figure 6 - Comparison of daily profiles of BBOA and HOA between the new VBS base case and Meroni et al. (2017) run at Bologna 410 
site. The new base case is labelled as 02_vbs_newbase (red) and the run of Meroni et al. (2017) is labelled as 00_vbs_meroni (cyan). 411 

 412 

 413 

Figure 7 - Comparison of daily profiles of POA and SOA calculated with SOAP2 and VBS algorithms at Bologna site. The SOAP2 414 
run (blue) is labelled as 01_soap2_newbase and the VBS one (red) is labelled as 02_vbs_newbase. 415 

3.2 New IVOC parametrization 416 
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We expect that revisions in IVOC emissions parametrizations (runs labelled as 03_soap2_newivoc and 417 

04_vbs_newivoc) should significantly affect the secondary fraction of organic aerosol. Nevertheless, minor 418 

changes might be observed on POA as well, since a variation in SOA concentration leads to a different OA 419 

total mass, thus influencing the overall partitioning of POA.  420 

We found out a considerable improvement for the modelled SOA concentrations in 04_vbs_newivoc, compared 421 

to the VBS base case (Figure 8) at Bologna site. SOA mean bias is reduced from -3.07 µg m-3 to -1.62 µg m-3 422 

(MFB from -98.7% to -53.6%), and IOA increases from 0.53 to 0.70 (Table S4). POA mean concentration 423 

slightly increases as a consequence of SOA increase (MB from -0.92 µg m-3 to -0.81 µg m-3, Table S1). 424 

 425 

Figure 8 - Effect of the revision in IVOC emissions (04_vbs_newivoc,  purple) on the new VBS base case run (02_vbs_newbase,  red) 426 
for SOA at (a) Bologna site and (b) Ispra site. Statistics are computed with pairwise–complete observations. 427 

Enhancement of TOM performances (IOA from 0.57 to 0.67, Mean Fractional Error from 72.9% to 60.0%, 428 

Table 6) are therefore mainly due to SOA improvement. This much better agreement (especially for SOA) 429 

suggests that updated IVOC emissions parametrizations are crucial for a better prediction of organic aerosol 430 

concentrations. Similar improvements are found for Ispra site (Figure 8), even though the SOA performance 431 

metrics clearly indicate overall poorer results (IOA from 0.47 to 0.50, MB from -5.88 to -4.24 µg m-3, Table 432 

S8).  433 

Applying the new IVOC parametrizations to the same base case with SOAP2 algorithm (03_soap2_newivoc) 434 

leads again to worse results in terms of both POA and SOA concentrations compared to the equivalent VBS 435 

run (04_vbs_newivoc) and highlights therefore the limits of SOAP2 compared to VBS (Figure S3). The 436 

increased yields of SOAP2 and the new IVOC parametrizations are not capable of correctly reproducing SOA 437 

observed concentrations, whereas the VBS approach (with the same amount of IVOC emissions) provides 438 

much better results. The comparison between 03_soap2_newivoc and 04_vbs_newivoc confirms that revised 439 

IVOC emissions can help filling the gap between modelled and observed SOA as long as VBS algorithm is 440 

applied (Figure S3 and Table S4). 441 

3.3 New volatility distribution and OMSV estimates 442 
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Run labelled 04_vbs_newivoc addressed the issue of IVOC emission parametrization, whereas we implicitly 443 

set OMSV emissions (organic matter in the semi–volatile range) equal to POA emissions. Further improvements 444 

in OA levels prediction can be obtained by applying new volatility distributions and new OMSV emissions 445 

according to the methods explained in Section 2.4. These revisions entail three main differences between 446 

05_vbs_newomsv and 04_vbs_newivoc: (i) updated volatility distributions applied to GV and DV emissions, 447 

(ii) increased total emissions of OMSV for GV, DV and BB and (iii) increased IVOC 448 

emissions from biomass burning (IVOB) as IVOB are scaled on OMSV. 449 

A very good agreement between modelled and observed TOM is obtained in 05_vbs_newomsv (Figure 9). At 450 

Bologna site, mean bias for TOM is reduced from -2.98 µg m-3 in the previous run (04_vbs_newivoc) to -1.32 451 

µg m-3 (MFB from -40.7% to -18.5%), and IOA increases from 0.67 to 0.73 (Table 6).  452 

 453 

 454 

Figure 9 - Effect of the revision in OMSV emissions and volatility distributions (05_vbs_newomsv, green) on the new base case run 455 
(02_vbs_newbase, red) for TOM at (a) Bologna site and (b) Ispra site. Statistics are computed with pairwise–complete observations. 456 

Again, this performance enhancement is associated with a significant improvement in both SOA and POA 457 

prediction, due to the new volatility distribution and new OMSV revisions. IOA for SOA increases up to 0.75 458 
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and mean bias decreases to -0.76 µg m-3, which is a remarkable result compared to the base case (IOA = 0.53, 459 

MB = -3.07 µg m-3, Table S4). It should be noted that SOA mean concentration increases compared to the 460 

previous run, for two main reasons: (i) increased material in the semi-volatile range which can form SOA and 461 

(ii) increased IVOC emissions from biomass burning as IVOC are scaled on OMSV emissions.  462 

 463 

3.4 Model sensitivity to aging schemes 464 

We performed two additional runs (based on 05_vbs_newomsv) to assess the sensitivity of CAMx to different 465 

aging schemes, (i) applying the current aging scheme to BSOA as well (06_vbs_bioaging) and (ii) turning off 466 

the whole aging scheme (07_vbs_noaging). The results of the two simulations are summarized in Figure 4. As 467 

expected, enabling aging of BSOA helps in closing the gap between observed and modelled SOA. At Bologna 468 

site, mean bias of SOA decreases from -0.76 µg m-3 (in 05_vbs_newomsv) to ~0, even though this is associated 469 

with a slight increase in RMSE (from 3.13 µg m-3 in 05_vbs_newomsv to 3.34 µg m-3 when enabling aging of 470 

BSOA). IOA remains almost unchanged. The results of the last simulation (07_vbs_noaging) suggests that the 471 

addition of aging reactions leads to a little improvement for wintertime TOM prediction. As a matter of fact, 472 

when removing all aging reactions MB and RMSE of TOM increases (MB from -1.32 µg m-3 to -2.29 µg m-3, 473 

RMSE from 5.16 µg m-3 to 5.39 µg m-3) and IOA decreases accordingly (from 0.73 to 0.70). 474 

At Ispra site, SOA mean bias decreases from -3.30 µg m-3 to -2.21 µg m-3, and IOA increases accordingly (0.52 475 

to 0.55) when moving from 05_vbs_newomsv to 06_vbs_bioaging. The modelled aging of BSOA produces a 476 

non-negligible amount of SOA in Ispra station during March, on average 1.09 µg m-3. Turning off the whole 477 

aging scheme leads to a considerable performance worsening for SOA prediction, as aging processes 478 

implemented in 05_vbs_newomsv are responsible for ~1 µg m-3 of SOA, which is ~15% of total observed SOA. 479 

3.5 Meteorological influence on organic aerosol levels 480 

Meteorology plays a crucial role in determining OA levels, especially in the Po Valley area. Frequent 481 

stagnation events and persistent conditions of atmospheric stability are mainly responsible for the high OA 482 

concentrations observed in both Bologna and Ispra site, which are respectively ~3 and ~5 times larger than the 483 

average OA concentration across 11 sites in Europe  (Ciarelli, et al., 2017a). Consequently, modelling the 484 

correct meteorological conditions is essential to properly reproduce OA levels. 485 

For Bologna site, two clear anticorrelated periods in TOM concentrations are found during February (around 486 

6th-7th and 19th-20th February, Figure 9). Both those examples are likely linked to an erroneous meteorological 487 

simulation (Figure S4 and Figure S5), as we found out that the meteorological model completely misses a 488 

precipitation event (6th–7th February) and a strong Föhn wind event (19th–20th February), which might explain 489 

the non–observed peaks occurring during those days. 490 

At Ispra site, fairly good performances are achieved from March 6 to the end of the month (Figure 9). The first 491 

part of March (1st–6h March) shows instead an almost anti-correlated behavior for TOM, meaning that CAMx 492 

misses the first peaks for both TOM and SOA. This anticorrelated period negatively affects the overall 493 

validation statistics which turn out to be worse compared to Bologna site. A strong underestimation at the 494 

beginning of the month has been found out also for other PM fractions (e.g. nitrate, Figure S6) and other 495 

gaseous precursors, like nitrogen oxides (Figure S7). Hence, we further analyzed vertical temperature profiles 496 

to assess whether the meteorological model WRF is able to reproduce the stability condition which was clearly 497 

in place during those days. Results of such analysis are presented in Figure 10 for four exemplifying days, and 498 

they show a general incorrect representation of the temperature inversions layers which were in place during 499 

those days. Even though this analysis is limited to one station (Milano Linate) which is 63.9km away from 500 

Ispra site, we can reasonably suppose that OA underestimation in the first period is to some extent related to a 501 

misrepresentation of the atmospheric stability condition. 502 

 503 
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 504 

Figure 10 - Modelled (red) and observed (blue) vertical temperature profiles for four different days at 00 CET. 505 

The effect of erroneous meteorological modelling, as well as the importance of meteorology in the Po Valley 506 

area, is further illustrated in Figure 11 for TOM. The stagnation event during 1st-6th March leads to 507 

exceptionally high concentrations of TOM, which are not captured by the model. However, when 508 

meteorological conditions are well reproduced (7th-31st March), satisfactory performances are achieved, 509 

especially when taking into account S/IVOC and volatility distributions revisions. A more complete 510 

comparison of the model performance evaluation between these two periods is presented in the supplementary 511 

material (Figure S8-S9 and Table S9). 512 

 513 

Figure 11 - Distribution of hourly POA, SOA and TOM concentrations across the whole set of CAMx runs for (a) Ispra site during 1st-514 
6th March and (b) Ispra site during 7h-31st March. The bottom and top of the box represent the lower and upper quartiles, respectively, 515 
and the band in the middle of the box is the median value of the distribution. The whiskers extend to the most extreme data point which 516 
is no more than 1.5 times the interquartile range from the box. 517 

 518 

4 Discussion 519 

Table 6 and Errore. L'origine riferimento non è stata trovata. summarize the main performance metrics for 520 

TOM at Bologna and Ispra sites, respectively. The same validation indices for each fraction of OA (i.e. POA, 521 

SOA, BBOA and HOA) are reported in the supplementary material (Table S1 to Table S8). At Bologna urban 522 

site, mean fractional bias for TOM ranges from -80.1% in the worst case run (00_vbs_meroni) to -10.1% in 523 

the best one (06_vbs_bioaging) and IOA from 0.52 to 0.75. Notable improvements, though with overall poorer 524 

metrics, are found for Ispra site, where MFB ranges from -84.1% to -35.0% and IOA from 0.45 to 0.50. 525 

Underestimation of total organic matter remains still relevant in Ispra, although our revisions do significantly 526 

improve model performances. It should be noted that a much higher TOM is observed in Ispra with respect to 527 
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Bologna (15.0 ± 12.5 µg m-3 and 8.50 ± 5.51 µg m-3, mean ± standard deviation, respectively), which is to 528 

some extent surprising and confirms the importance of residential wood heating in OA concentrations. 529 

Comparable results were found in other European modelling studies in which similar revisions in S/IVOC 530 

parametrizations and volatility distributions were applied (Chrit et al., 2018; Ciarelli et al., 2017a). It is worth 531 

noting that these results were obtained in very different conditions, with the observed OA mean concentration 532 

being in the range 2-3 µg m-3 (Chrit et al., 2018; Ciarelli et al., 2017a) compared to 15.0 and 8.5  µg m-3 533 

observed in Ispra and Bologna, respectively. 534 

Despite the improvements, both the timeseries of Figure 9 and the daily profiles of Figure 12 show that there 535 

are still some issues to be tackled. 536 

 537 

Figure 12 - Daily profiles of POA and SOA concentrations at Bologna site for two different runs: 05_vbs_newomsv (green) includes 538 
all the revisions in S/IVOC and volatility distributions whereas 02_vbs_newbase (red) is the new VBS base case presented in this work. 539 

BBOA and HOA (which sum up to total POA) suffer from the two main limitations pointed out in Meroni et 540 

al. (2017) though to a minor extent. BBOA is underestimated during night–time across the different 541 

simulations, and this may depend on an inaccurate representation of vertical dispersion (i.e. partial 542 

overestimation of the planetary boundary layer height). Moreover, modelled BBOA daily profile present two 543 

peaks, at 8am and 8pm (Figure 6), which is somehow counterintuitive as BBOA derive mostly from biomass 544 

burning emissions. This is linked to improper temporal profiles applied in the emissions preparation model, 545 

because biomass burning activities fall under the wider “Non-industrial combustion plants” sector. Given the 546 

importance of BBOA concentrations with the respect to total OA, a more refined and specific temporal profile 547 

for BB emissions could be developed in future studies. HOA concentrations face instead a systematic 548 

underestimation of the rush–hour peaks, even though our revisions improve the model performances compared 549 

to Meroni et al. (2017) run. This might be due to the relatively low spatial resolution used in CAMx (5km), 550 

especially for the urban site of Bologna where the influence of local traffic may be relevant. An integrated 551 

modelling approach, using also a nested Lagrangian local scale model as done in Pepe et al. (2016), could 552 

enhance HOA peaks prediction.  553 

Observed SOA daily profile is instead rather flat, as it was also for other European studies (Ots, et al., 2016; 554 

Fountoukis, et al., 2014). Model results show however a stronger diurnal cycle peaking in the late afternoon 555 

(Figure 11), indicating that vertical dispersion during night–time is probably misrepresented, as modelled SOA 556 

concentrations (and other primary pollutants, e.g. HOA and BBOA) decline after 8pm whereas the 557 

observations show further accumulation. However, the discrepancies in SOA daily profiles might also be 558 

partially due to an underestimation of the importance of aging processes which can flatten the SOA daily 559 

profile. 560 
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The relative contribution of POA and SOA to total organic matter is much better reconstructed by VBS scheme 561 

compared to the traditional SOAP algorithm, even when the revised yields are applied (the so–called SOAP2 562 

in CAMx): the non–volatile treatment of POA leads to a general overestimation of POA concentrations 563 

associated with a strong underestimation in SOA concentrations. Within the VBS framework, POA is instead 564 

allowed to evaporate (depending on the partitioning), and vapors can be oxidized in the atmosphere (becoming 565 

less volatile) and re-condense back to SOA. The relevance of both the aging processes and the non–volatile 566 

treatment of POA suggest therefore that VBS algorithm should be employed as the state-of-the-art scheme for 567 

OA calculation in CTM, as done in the latest modelling works (Ciarelli, et al., 2017a; Jathar, et al., 2017). 568 

As for the contributions of different emission sources to total OA, we found out that biomass burning activities 569 

are a major source of organic matter during winter time, both in the observations and in the modelling results. 570 

This finding is coherent with other European studies (Glasius, et al., 2018; Ciarelli, et al., 2017a; Bergström, 571 

et al., 2012), but in contrast with some American works (Jathar, et al., 2017; Shrivastava, et al., 2011) where 572 

more relevance is given to mobile sources emissions. At Ispra site, for 05_vbs_newomsv, modelled primary 573 

organic aerosol is 48.3% (on average) of the total organic matter, whereas secondary matter contributes for 574 

51.7%. The secondary contribution is slightly lower compared to the findings of Ciarelli et al. (2017a), in 575 

which the secondary fraction was accounting for 62% of total organic matter as an average between 11 sites 576 

across Europe. The difference is most likely due to the high emissions of POA coming from residential wood 577 

heating in the Ispra area, which increases the contribution of primary matter compared the average of Ciarelli 578 

et al. (2017a). As expected, modelled POA is predominantly composed by biomass–burning particles, which 579 

account for 89.1% of total POA, reflecting the findings for the total emission budget (Table 4). Observations 580 

show a similar POA/TOM and SOA/TOM ratios (47.9% and 52.1% on average, respectively) as well as the 581 

BBOA/POA ratio (89.0%). Similar figures are found for the urban Bologna site, except for the contribution of 582 

BBOA to total POA: the modelled BBOA/POA value is similar (83.6%) whereas the observed one is much 583 

smaller (68.8%), highlighting that for this urban site HOA concentrations are underestimated, as already 584 

mentioned. 585 

Finally, we showed that enabling aging of BSOA (SOA deriving from biomass burning and biogenic precursor) 586 

would help to close the gap between the observations and the model in terms of SOA, which is in contrast to 587 

some other American studies (Lane, et al., 2008; Murphy & Pandis, 2009). However, this performance 588 

improvement does not directly imply that missing BSOA aging processes is certainly responsible for SOA 589 

underestimation. Results might be improved for the wrong reasons as a lot of other assumptions are required 590 

in the VBS scheme. For instance, increasing SOA yields from VOC precursors would lead to a similar 591 

improvement in model performances, but at the moment we cannot really distinguish whether SOA 592 

underestimation is due to low SOA yields or missing aging of BSOA. The most reasonable option is probably 593 

to keep the default yields and aging scheme in CAMx, as VBS yields are based on chamber data which allows 594 

further oxidation (aging) of the first-generation products (Koo, et al., 2014). Therefore, application of these 595 

yields together with a different aging scheme might lead to a conceptually incorrect representation of SOA 596 

formation (i.e. double counting of SOA formation). Further work is necessary to better constrain the aging 597 

scheme, even though here we provide evidence that aging of BSOA would help in getting a more realistic SOA 598 

representation at both AMS and ACMS sites. A summertime simulation could be helpful in further 599 

understanding aging schemes impact on summertime TOM concentrations. 600 

 601 

5 Conclusions 602 

We presented a high–resolution (5km) set of new simulations performed with CAMx v6.40 over the Po Valley 603 

area (Northern Italy), aimed to enhance OA levels prediction and to gain insight into the sensitivity of CAMx 604 

to different uncertain features of the input setup. In particular, we investigated the role of volatility distributions 605 

of organics emissions, S/IVOC emissions parametrizations, SOA yields from S/IVOC precursors and different 606 

aging schemes by exploiting the latest experimental information available in the scientific literature. Model 607 

results were validated against two OA–specific datasets, available for both an urban site (Bologna, February 608 
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2013) and a rural one (Ispra, March 2013). We may summarize the main conclusions stemming from our 609 

analysis as follows: 610 

- Overall, we found a considerable performance improvement on modelled OA concentrations when 611 

applying new S/IVOC emission estimates and the new volatility distributions. However, despite a great 612 

performance enhancement, SOA concentrations remain the most underestimated among the different 613 

OA components, especially for Ispra site. Further analysis on SOA source (i.e. anthropogenic, biogenic 614 

and biomass–burning) and SOA aging, also based on the analysis of oxidation state (as done in Chrit 615 

et al., 2018) could provide a helpful insight for future enhancements in SOA prediction. Of course, 616 

very detailed measurements of SOA would be required for such analyses, but they could give 617 

indications on (i) which SOA source is more responsible of SOA underestimation, (ii) how much the 618 

development of stagnation conditions can influence the accumulation of pollutants and (iii) to what 619 

extent our current aging scheme is reproducing the actual aging processes of source–specific SOA and 620 

therefore its tendency to remain in the atmosphere, particularly during stagnation conditions. 621 

- CAMx proved to be very sensitive to IVOC emissions. Updated parametrizations of these compounds 622 

from the most recent experimental studies significantly contribute in mitigating the large 623 

underestimation of SOA which was present in the traditional algorithm. However, a thorough literature 624 

review underlined a large variability between different estimates of source–specific IVOC emissions 625 

from different authors. Even though the parametrizations identified in this work seem to provide 626 

satisfactory results, further experimental work (especially in Europe) to better constrain IVOC 627 

emissions is suggested. 628 

- We argue that organic matter in the semi-volatile range is most likely underestimated in the current 629 

emissions inventories. We gave evidence of this point for diesel, gasoline and biomass burning 630 

emissions. A correct representation of OMSV in the official emission inventories – as well as up-to-631 

date volatility distributions – appear to be very relevant in improving model performances. 632 

- A correct meteorological input is fundamental in accurately reproducing organic aerosol 633 

concentrations for the Po Valley area, as pointed out in Section 3.5. By analyzing also the 634 

meteorological simulation and the behavior of other pollutants (e.g. NOx, elemental carbon and 635 

inorganic ions), we found out that most of the periods characterized by inaccurate TOM concentrations 636 

are linked to an incorrect reconstruction of the meteorological conditions (e.g. mixing layer evolution, 637 

precipitation and strong wind events). 638 

- Model results did not show a very pronounced sensitivity to aging processes, due to the low 639 

photochemical activity typically observed during winter-time. However, we give evidence that 640 

enabling aging processes for biomass burning related SOA, which is by default disabled in CAMx 641 

v6.40, can help in closing the gap between modelled and observed SOA concentrations. 642 
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