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Abstract

In this work, we consider the Biot problem with uncertain poroelastic coefficients. The un-
certainty is modelled using a finite set of parameters with prescribed probability distribution. We
present the variational formulation of the stochastic partial differential system and establish its well-
posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive
techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral
projection methods, which essentially amount to performing an ensemble of deterministic model
simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid
High-Order discretization supporting general polyhedral meshes and arbitrary approximation or-
ders. We numerically investigate the convergence of the probability error of the Polynomial Chaos
approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the
input uncertainty onto the solution considering an injection-extraction problem.

Key words. Biot problem, poroelasticity, Uncertainty Quantification, Polynomial Chaos expan-
sions, Pseudo-Spectral Projection methods, Hybrid High-Order methods
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1 Introduction

This work aims at the study poroelasticity problems where the model coefficients are uncertain. The
interest of this type of hydro-mechanical coupled models is particularly manifest in geosciences ap-
plications [39, 41, 51, 50], where subsurface fluid flows can induce a deformation of the rock matrix.
We rely here on the linear Biot model [6, 61] that describes Darcean fluid flows in saturated porous
media under the assumptions of small deformations and small variations of the porosity and the fluid
density. This model depends on physical parameters that are often poorly known, justifying a stochastic
description, due spatial heterogeneities, measurement inaccuracies, and sometimes the ill-posedness of
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inverse problems inherent to parameter estimation techniques. Although there is an extensive literature
on poroelasticity models (we mention, in particular, the comprehensive textbooks [19, 23, 64]) and
their numerical approximation, to our knowledge few works have addressed the impact of uncertainty
in Biot’s formulation of hydromechanical coupling. In [13, 38] the authors include uncertainty in one-
dimensional consolidation analysis by incorporating heterogeneity in the consolidation coefficient. The
stochastic consolidation model was extended in [53] to nonlinear uncertain soil parameters. Variabilities
in the initial pore pressure and the heterogeneous hydraulic mobility have been considered respectively
in [21] and [28]. We also mention [22], where a stochastic Galerkin approach is proposed to solve the
poroelasticity equations with randomness in all material parameters and tested on a one-dimensional
problem.

UncertaintyQuantification (UQ)methods have been developed in the last decades to take into account
the effect of random model inputs on the model predictions. Compared to a simple deterministic
simulation, advanced UQ methods can characterize an uncertain model prediction, computing its
statisticalmoments (e.g., mean and variance), probability distributions, and performing global sensitivity
analyses. Among the techniques designed for UQ in numerical models, the stochastic spectral methods
have received considerable attention. The principle of these methods is to decompose random quantities
on suitable stochastic approximation bases. In particular, Polynomial Chaos (PC) expansions represent
quantities as finites series in stochastic orthogonal polynomial bases. PC were initially introduced by
Wiener [65] and applied by Ghanem and Spanos [35] to solid mechanics and by LeMaître and Knio [44]
to fluid mechanics. PC expansion have been used to treat a large variety of problems, including elliptic
models (see, e.g., [1, 49]), flow and transport in porous media (see, e.g., [34, 33]), thermal problems (see,
e.g., [37, 46]), and hyperbolic systems (see, e.g., [62]). In this work, we consider a non-intrusive spectral
projection method, that only requires the resolution of several deterministic problems to construct the
stochastic spectral expansion of quantities of interest (“black box” approach). The numerical solution of
the deterministic poroelasticity coupled system requires a discretization method able to (i) treat complex
geometry with polyhedral meshes and nonconforming interfaces, (ii) handle possible heterogeneities of
the poromechanical parameters, and (iii) prevent localized pressure oscillations arising in the case of
low-permeable and low-compressible porous media. We choose to discretize the poroelasticity problem
using the fully coupled method developed in [8], which meets all of these requirements. Therein, the
elasticity operator is discretized using the Hybrid High-Order method of [25] (c.f. also [10, 24]), while
the Darcy operator relies on the Symmetric Weighted Interior Penalty method of [26].

The contribution of this work is threefold. First, a probabilistic framework is introduced to study the
Biot model with uncertain coefficients. Special attention is given to defining an almost surely physically
admissible set of stochastic poroelastic parameters by taking into account the dependences between
the poroelastic coefficients. Second, the well-posedness of the stochastic Biot model is proven at the
continuous level. Third, a non-intrusive PC approach is implemented in order to investigate the effect
of the random poroelastic coefficients on the displacement and the pressure fields.

The material is organized as follows. In Section 2 we present the deterministic poroelasticity model
and identify the relations among the poromechanical coefficients allowing to express the constrained
specific storage coefficient as a function of the other parameters and primary variables. In Section 3
we present the linear poroelasticity problem with random coefficients in strong and weak form. We
then give the probabilistic assumptions on the random model coefficients yielding the well-posedness
of the stochastic variational problem. In Section 4 we propose an uncertainty model for the poroelastic
coefficients. The sparse Pseudo-Spectral Projection (PSP) method is used to compute the PC expansions
of the stochastic solutions from a finite set of deterministic problems solved using the method of [8].
Finally, we present a complete panel of numerical results in Section 5 to illustrate the performance of
the method.
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2 The Biot model

In this section we introduce the model problem and present some preliminary relations among the
coefficients characterizing the porous medium. This linear poroelasticity model, usually referred to as
the Biot model, consists of two coupled governing equations, one describing the mass balance of the
fluid and the other expressing the mechanical equilibrium of the porous medium.

2.1 Fluid mass balance

We consider a spatial domain in dimension d ≥ 1. The fluid mass conservation law in a fully saturated
porous medium reads

dt (ρfϕ) + ∇·(ρfϕv ) = ρfg, (1)

where dt denotes the time derivative, ρf [kg/m3] is the fluid density, ϕ [−] the soil porosity, v [ms−1]
the velocity field, and g [s−1] the fluid source. The equation of state for slightly compressible fluids
(cf. [19, Section 3.1] and [67]) is

dt ρf =
ρf
Kf

dt p, (2)

with p [Pa] the pore pressure and Kf > 0 [Pa] the fluid bulk modulus. Under the assumptions of isotropic
and isothermal conditions, infinitesimal strains, and small relative variations of porosity, following [19,
Section 4.1], the change in the porosity caused by the fluid pressure and the mechanical displacement
field u [m] is

dtϕ =
1
M

dt p + αdt (∇·u ), (3)

where ∇·u is the divergence of the displacement field. We rely on the definitions of the Biot–Willis
coefficient α ∈ (0, 1] [−] and the Biot tangent modulus M > 0 [Pa−1] given in [19, 23]:

α B 1 −
Kd
Km

, M B
Km
α − ϕ

, (4)

with Kd, Km > 0 [Pa] denoting the bulk moduli of the drained medium and the solid matrix, respectively.
The coefficient α quantifies the amount of fluid that can be forced into the medium by a variation of
the pore volume at a constant fluid pressure, while M measures the amount of fluid that can be forced
into the medium by pressure increments due to the compressibility of the structure. The case of a
solid matrix with incompressible grains (Km → +∞) corresponds to the limit value 1/M = 0. From (2)
and (3), it follows that the variation of fluid content in the medium is given by

dt (ρfϕ) = ϕdt ρf + ρfdtϕ = ρf (c0dt p + αdt (∇·u )) ,

where, according to (2), (3), and (4) the constrained specific storage coefficient is defined by

c0 B
α − ϕ

Km
+
ϕ

Kf
. (5)

Using (1) and assuming that the fluid density ρf is uniform in the medium, we obtain

c0dt p + αdt (∇·u ) + ∇·(ϕv ) = g. (6)

The fluid velocity v is related to the pore pressure through the well-known Darcy law (see for
instance [23, Section 4.1.2]). Consistent with the small perturbations hypothesis adopted here, Darcy’s
law can be considered in its simplest form

ϕv = −
K

µf
∇p,
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whereK [m2] is the tensor-valued intrinsic permeability of themedium and µf [Pa·s] is the fluid viscosity.
Thus, introducing the hydraulic mobility κ B K/µf, the mass conservation equation (6) becomes

c0dt p + αdt (∇·u ) − ∇·(κ∇p) = g. (7)

For the sake of simplicity, we also assume in what follows that the mobility field is isotropic and strictly
positive, namely κ = κId , with 0 < κ < +∞ and Id the identity matrix.

2.2 Momentum balance

The momentum conservation equation under the quasi-static assumption, namely when the inertia
effects in the elastic structure are negligible, reads

− ∇·σ̃ = f , (8)

where σ̃ [Pa] is the total stress tensor and f [Pa/m] is the loading force (e.g., gravity). According to
Terzaghi’s decomposition [61], the stress tensor is modeled as the sum of an effective term (mechanical
effect) and a pressure term (fluid effect), i.e.,

σ̃ = σ (∇su ) − αpId . (9)

The symmetric part of the gradient of the displacement field ∇su measures the strain accordingly to the
small deformation hypothesis. In the context of linear isotropic poroelasticity, the mechanical behavior
of the soil is described through the Cauchy strain-stress relation defined, for all deformation tensors
ε ∈ Rd×dsym , by

σ (ε ) = 2µε + λ tr(ε )Id = 2µ dev(ε ) + K tr(ε )Id, (10)

where µ > 0 [Pa] and λ > 0 [Pa] are Lamé’s coefficients, K B 2µ/d + λ [Pa] is the bulk modulus, and

tr(ε ) B
d∑
i=1

ε ii, dev(ε ) B ε −
tr(ε )Id

d
,

are the trace and deviator operator, respectively. Incidentally, as noted in [4, 7], physical and experimental
investigations suggest that the mechanical behavior of porous solids may be nonlinear. More general
stress-strain relations could be used in place of the linear law (10), as done in [10, 11]. Inserting (10)
and (9) into (8), leads to

− ∇· (2µ∇su + (λ∇·u − αp)Id ) = f . (11)

2.3 Constrained specific storage coefficient

In order to perturb the Biot model coefficients, we need to investigate the dependences between the
poroelastic coefficients. We propose here to express the specific storage coefficient c0 as a function of
other physical parameters. For that purpose, we introduce the Gassmann equation (cf. [30, 50]), that
relates the bulk moduli K and Kd to the Biot–Willis and storage coefficients α, c0:

α2 = c0(K − Kd). (12)

Using (4) to express the drained bulk modulus Kd as a function of α and Km, equation (12) gives

Km =
Kc0 − α2

c0(1 − α)
. (13)
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Plugging the previous equation into (5) and rearranging yields the following quadratic equation for c0:

Kc20 −
(
α + αϕ +

ϕK
Kf
− ϕ

)
c0 +

α2ϕ

Kf
= 0. (14)

The parameters ϕ, Kf, K , and α can then be used to define c0 through the previous equation. Some
conditions need to be prescribed in order to avoid non-physical solutions c0. Owing to the definition of
the Biot–Willis coefficient, it holds that 0 ≤ ϕ ≤ α ≤ 1. As observed in [67, Section 3], a stricter lower
bound can be imposed, namely

3ϕ
2 + ϕ

≤ α. (15)

Lemma 1 (Existence). Let Kf, K > 0, and ϕ, α satisfying condition (15). Then, there exists c0 ∈ R+

solution of (14).

Proof. We prove existence by assessing the positivity of the discriminant D associated to (14). Com-
puting D and rearranging, leads to

D =

(
α + αϕ +

ϕK
Kf
− ϕ

)2
−
4α2ϕK

Kf

= ϕ2 (K/Kf − 1)2 + 2αϕ (1 + ϕ − 2α) (K/Kf − 1) + α2(1 − ϕ)2

=
[
ϕ (K/Kf − 1) + α(1 + ϕ − 2α)

]2
+ α2(1 − ϕ)2 − α2(1 + ϕ − 2α)2

=
[
ϕ (K/Kf − 1) + α(1 + ϕ − 2α)

]2
+ 4α2(1 − α)(α − ϕ).

Since 0 ≤ ϕ < α ≤ 1 owing to (15), the second term in the previous sum is positive and, as a result,
D ≥ 0. �

Remark 2. The previous lemma yields the existence of two real solutions c−0 ≤ c+0 . We consider c+0 as
the unique solution to (14) because, for admissible values of (K, Kf, ϕ, α), we might have c−0 < ϕ/Kf,
violating (5). For instance, this is the case if α = 2ϕ/(1+ϕ) for any φ ≤ 3/4 and K, Kf > 0.

3 The Biot problem with random coefficients

In this section, we introduce the extension of the linear poroelasticity problem in the case of uncer-
tain poroelastic coefficients. We discuss the assumptions on the random coefficients, derive a weak
formulation of the resulting stochastic problem, and prove its well-posedness.

3.1 Strong and weak formulations

Let n ∈ N and denote by X ⊂ Rn a measurable set. Spaces of functions, vector fields, and tensor
fields defined over X are respectively denoted by italic capital, boldface Roman capital, and special
Roman capital letters. Thus, for example, L2(X ), L2(X ), L2(X ) denote the spaces of square integrable
functions, vector fields, and tensor fields over X , respectively. For any m ∈ N, we denote by Hm (X ) the
usual Sobolev space of functions that have weak partial derivatives of order up to m in L2(X ), with the
convention that H0(X ) B L2(X ), while Cm (X ) and C∞c (X ) denote, respectively, the usual spaces of
m-times continuously differentiable functions and infinitely continuously differentiable functions with
compact support on X .
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We introduce an abstract probability space (Θ,B,P), where Θ is the set of possible outcomes, B a
σ-algebra of events, and P : B → [0, 1] a probability measure. For any random variable h : Θ → R
defined on the abstract probability space, the expectation of h is

E(h) B
∫
Θ

h(θ)dP (θ).

We assume hereafter that all random quantities are second-order ones, namely they belong to

L2
P

(Θ) B
{
h : Θ→ R ; E(h2) < +∞

}
.

The Biot problem consists in finding a vector-valued displacement field u and a scalar-valued
pressure field p solutions of (7) and (11). We now consider the stochastic version corresponding to
the case of random poroelastic coefficients. We assume that D ⊂ Rd , d ∈ {2, 3}, is a (deterministic)
bounded connected polyhedral domain with boundary ∂D and outward normal n. In order to close the
problem, we enforce boundary conditions corresponding to a medium that is clamped on ΓD ⊂ ∂D,
traction-free on ΓN B ∂D \ ΓD , permeable with free drainage on Γd ⊂ ∂D, and impermeable on
Γn B ∂D \ Γd , as well as a deterministic initial condition prescribing the initial fluid content φ0. For a
given finite time tF > 0, the resulting problem is given by

−∇·σ (x, θ, t) + ∇(α(x, θ)p(x, θ, t)) = f (x, t), (x, θ, t) ∈ D × Θ × (0, tF ], (16a)
dtφ(x, θ, t) − ∇·(κ (x, θ)∇p(x, θ, t)) = g(x, t), (x, θ, t) ∈ D × Θ × (0, tF ], (16b)

u (x, θ, t) = 0, (x, θ, t) ∈ ΓD × Θ × (0, tF ], (16c)
σ (x, θ, t)n + α(x, θ)p(x, θ, t))n, = 0 (x, θ, t) ∈ ΓN × Θ × (0, tF ], (16d)

p(x, θ, t) = 0, (x, θ, t) ∈ Γd × Θ × (0, tF ], (16e)
κ (x, θ)∇p(x, θ, t) · n = 0, (x, θ, t) ∈ Γn × Θ × (0, tF ], (16f)

φ(x, θ, 0) = φ0(x), (x, θ) ∈ D × Θ, (16g)

where the stress tensor in (16a) and (16d), and the fluid content in (16b) and (16g), are defined, for all
(x, θ, t) ∈ D × Θ × (0, tF ], such that

σ (x, θ, t) = 2µ(x, θ)∇su (x, θ, t) + λ(x, θ)(∇·u (x, θ, t))Id, (16h)
φ(x, θ, t) = c0(x, θ)p(x, θ, t) + α(x, θ)∇·u (x, θ, t). (16i)

If ΓN = Γd = ∅ and c0 = 0, owing to (16b) and the homogeneous Neumann condition (16f), we need
the following compatibility conditions on g and φ0 and zero-average constraint on p:∫

D

φ0(·) = 0,
∫
D

g(·, t) = 0, and
∫
D

p(·, ·, t) = 0 ∀t ∈ (0, tF ). (16j)

For the sake of simplicity, we do not consider the case of ΓD with zero (d − 1)-dimensional Hausdorff
measure. This situation simply requires an additional compatibility condition on f and the prescription
of the rigid-bodymotions of themedium. We remark that inhomogeneous and possibly randomboundary
conditions, as well as random loading, can also be considered up to minor modifications.

Before giving the variational formulation of problem (16), we introduce some notations. For a given
vector space V (D) of real-valued functions on D, equipped with the norm ‖ · ‖V (D), we define the
Bochner space of second-order random fields by

L2
P

(Θ;V (D)) B
{
v : D × Θ→ R ; ‖v‖L2

P
(Θ;V (D)) B E

(
‖v‖2V (D)

) 1
2 < +∞

}
.
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Since the Biot problem is unsteady, we also need to introduce, for a given vector space W , the Bochner
space L2((0, tF);W ) of square integrable W -valued functions of the time interval (0, tF). Similarly, the
Sobolev space H1((0, tF);W ) ⊂ L2((0, tF);W ) is spanned by W -valued functions having square inte-
grable first-order weak derivative. In what follows, for all (x, θ, t) ∈ D ×Θ× (0, tF ], v ∈ L2

P
(Θ;V (D)),

and w ∈ L2((0, tF); L2
P

(Θ;V (D))), we use v(x, θ) and w(x, θ, t) as shorthand notations for (v(θ))(x)
and (w(t))(x, θ), respectively.

At each time t ∈ (0, tF], the natural functional spaces for the random displacement field u (t) :
D × Θ → Rd and pressure field p(t) : D × Θ → R taking into account the boundary conditions (16c)–
(16f) are, respectively,

U B L2
P

(Θ;H1
0,ΓD (D)),

P B



L2
P

(Θ; H1(D) ∩ L2
0(D)) if Γd = ΓN = ∅ and c0 = 0,

L2
P

(Θ; H1
0,Γd (D)) otherwise,

with H1
0,ΓD (D) B

{
v ∈ H1(D) : v |ΓD = 0

}
, H1

0,Γd (D) B
{
q ∈ H1(D) : q |Γd = 0

}
, and

L2
0(D) B

{
q ∈ L2(D) :

∫
D

q = 0
}
.

We consider the following weak formulation of problem (16): For a loading f ∈ L2((0, tF);L2(D)),
a fluid source g ∈ L2((0, tF); L2(D)), and an initial datum φ0 ∈ L2(D) that verify (16j), find u ∈
L2((0, tF);U ) and p ∈ L2((0, tF); P) such that, for all v ∈ U , all q ∈ P, and all ψ ∈ C∞c ((0, tF))∫ tF

0
a(u (t), v ) ψ(t)dt +

∫ tF

0
b(v, p(t)) ψ(t)dt =

∫ tF

0
E

(
( f (t), v )D

)
ψ(t)dt, (17a)∫ tF

0

[
b(u (t), q) − c(p(t), q)

]
dtψ(t)dt +

∫ tF

0
d(p(t), q) ψ(t)dt =

∫ tF

0
E

(
(g(t), q)D

)
ψ(t)dt, (17b)

c(p(0), q) − b(u (0), q) = E
(
(φ0, q)D

)
, (17c)

where (·, ·)D denotes the usual inner product in L2(D) and the bilinear forms a : U × U → R,
b : U × P → R, and c : P × P → R are defined such that, for all v, w ∈ U and all q, r ∈ P,

a(v, w ) B E
(∫

D

(2µ(x, ·)∇sv (x, ·) : ∇sw (x, ·) + λ(x, ·)∇·v (x, ·)∇·w (x, ·)) dx
)
,

b(v, q) B E
(
−

∫
D

α(x, ·)∇·v (x, ·)q(x, ·) dx
)
,

c(q, r) B E
(∫

D

c0(x, ·)q(x, ·)r (x, ·) dx
)
,

d(q, r) B E
(∫

D

κ(x, ·)∇r (x, ·) · ∇q(x, ·) dx
)
.

Above, we have introduced the Frobenius product such that, for all τ, η ∈ Rd×d , τ : η B
∑

1≤i, j≤d τi jηi j
with corresponding norm such that, for all τ ∈ Rd×d , |τ |d×d B (τ : τ)1/2.

3.2 Well-posedness

The aim of this section is to infer a stability estimate on the displacement and pressure (u, p) ∈
L2((0, tF);U ) × L2((0, tF); P) solving (17) yielding, in particular, the well-posedness of the weak
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problem. The existence and uniqueness of a solution to the deterministic Biot problem has been
studied in [58, 63]. The results therein establish the existence, for almost every (a.e.) θ ∈ Θ, of a
solution (u (θ), p(θ)) to (16). Following the argument of [15, Theorem 2.2], we note that the mapping
(u, p) : Θ → L2((0, tF);H1

0,ΓD (D)) × L2((0, tF); H1(D)) is measurable because it is a continuous
function of the input coefficients µ, λ, α, c0, κ ∈ L2

P
(Θ). Therefore, proving that θ 7→ (u (θ), p(θ)) is

bounded in L2
P

(Θ) gives the existence of a solution to (17). This result is established by Proposition 5.
We assume some additional conditions on the input random data that will be needed in the proofs.

First, we recall that, for all x ∈ D and all θ ∈ Θ, the coupling coefficient α(x, θ) ∈ (0, 1] satisfies the
lower bound (15). We assume that the reference porosity of the medium is strictly positive (otherwise
the Biot problem would reduce to a decoupled one), so that we have 0 < α B

3ϕ
2+ϕ < α(x, θ). We also

assume that Lamé’s coefficients satisfy the following:

Assumption 3 (Elastic moduli). The shear modulus µ ∈ L∞(D × Θ) is uniformly bounded away from
zero, i.e. there exists a positive constant µ such that

0 < µ ≤ µ(x, θ), a.e. in D × Θ. (18)

The bulk modulus K ∈ L∞(D ×Θ) is uniformly bounded from above, i.e. there exists a constant K such
that

0 <
2µ(x, θ) + dλ(x, θ)

d
= K (x, θ) ≤ K < +∞, a.e. in D × Θ. (19)

The next result establishes the coercivity and the inf-sup condition of the bilinear forms a and b
in (17a).

Lemma 4 (Coercivity and inf-sup). Under Assumption 3, the following bounds hold:

a(v, v ) ≥ 2µ C−1K ‖v ‖
2
U, ∀v ∈ U, (20)

sup
0,v ∈U

b(v, q)
‖v ‖U

≥ α Cis‖q‖L2
P

(Θ;L2 (D)), ∀q ∈ L2
P

(Θ; L2(D)), (21)

where CK > 0 denotes the constant in Korn’s first inequality, Cis > 0 the inf-sup constant, and
‖ · ‖U B ‖ · ‖L2

P
(Θ;H1

0,ΓD
(D)). In the case ΓD = ∂D, (21) holds for all q ∈ L2

P
(Θ; L2

0(D)).

Proof. The first bound directly follows from Assumption 3. Indeed, since |ΓD |d−1 > 0, we can apply
Korn’s first inequality, yielding

2µ‖∇v ‖2
L2
P

(Θ;L2 (D))
≤ 2µCKE

(
‖∇sv ‖

2
L2 (D)

)
≤ CKa(v, v ), ∀v ∈ U .

To obtain (21), we use [5, Lemma 7.2] establishing the existence, for any q ∈ L2
P

(Θ; L2(D)) (or
q ∈ L2

P
(Θ; L2

0(D)) in the case Γd = ∂D), of vq ∈ U such that∇·vq = q andCis‖vq ‖U ≤ ‖q‖L2
P

(Θ;L2 (D)),
with Cis > 0 depending on D. Thus, we conclude

sup
0,v ∈U

b(v, q)
‖v ‖U

≥
−b(vq, q)
‖vq ‖U

≥

α‖q‖2
L2
P

(Θ;L2 (D))

‖vq ‖U
≥ α Cis‖q‖L2

P
(Θ;L2 (D)) .

�

In order to prove the stability estimate of Proposition 5 below, we infer from (19) a lower bound
for the specific storage coefficient c0. We rewrite (13), derived from the definition of α in (4) and the
Gassmann equation (12), in the form

(1 − α)(Km − K )
α

= K −
α

c0
.
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Since the left-hand side of the previous relation is always non-negative (according to [19, Chapter 4] we
have Kd ≤ K ≤ Km), we infer that α/c0 ≤ K and, as a result,

c−10 (x, θ) ≤
K (x, θ)
α(x, θ)

≤
K
α

a.e. in D × Θ. (22)

Proposition 5 (A priori estimate). Let (u, p) ∈ L2((0, tF);U×P) solve (17). Then, under Assumption 3,
it holds ∫ tF

0

[
a(u (t), u (t)) + c(p(t), p(t))

]
dt ≤

∫ tF

0
*
,

CK
2µ
‖ f ‖2L2 (D)

+
K
α
‖G‖2

L2 (D)
+
-
dt, (23)

with G : (0, tF) → L2(D) defined by

G(t) B
∫ t

0
g(s)ds + φ0. (24)

Proof. Since the loading f is deterministic, from (17a)we infer that a(u (t), v )+b(v, p(t)) =
(
f (t),E(v )

)
D ,

for a.e. t ∈ (0, tF) and all v ∈ U . Setting v (x, θ) = u (x, θ, t) and integrating the previous relation on
(0, tF), yields ∫ tF

0
a(u (t), u (t))dt +

∫ tF

0
b(u (t), p(t))dt =

∫ tF

0

(
f (t),E(u (t))

)
D dt . (25)

Adapting the argument of [9, Chapter 4] and [11, Remark 2], we infer that b(u (t), q) − c(p(t), q) ∈
H1((0, tF)) for all q ∈ P. Thus, we can integrate by parts (17b) and obtain

dt
[
c(p(s), q) − b(u (s), q)

]
+ d(p(s), q) =

(
g(s),E(q)

)
D , for a.e. s ∈ (0, tF).

Letting t ∈ (0, tF), integrating the previous identity on (0, t), and then taking q(x, θ) = p(x, θ, t), leads
to

c(p(t), p(t)) − b(u (t), p(t)) +
∫ t

0
d(p(s), p(t))ds =

∫ t

0
(g(s),E(p(t)))D ds + (φ0,E(p(t)))D .

We define z(t) =
∫ t

0 p(s)ds and observe that dt z(t) = p(t) and z(0) = 0. Using the linearity of d and
the formula dt z2(t) = 2z(t)dt z(t) to rewrite the third term in the left hand side of the previous relation,
and recalling (24), we get

c(p(t), p(t)) − b(u (t), p(t)) +
1
2
dt [d(z(t), z(t))] = (G(t),E(p(t)))D .

Then, integrating on (0, tF) and summing the resulting identity to (25), gives∫ tF

0
a(u (t), u (t))dt +

∫ tF

0
c(p(t), p(t))dt +

1
2

d(z(tF), z(tF)) =∫ tF

0

(
f (t),E(u (t))

)
D dt +

∫ tF

0
(G(t),E(p(t)))D dt . (26)

To establish the result, we now bound the right-hand side of the previous relation. First, we observe
that, owing to the Jensen inequality, for all v ∈ U it holds

‖E(v )‖2L2 (D) =

∫
D

E(v (x, ·))2dx ≤ E
(∫

D

v (x, ·)2 dx
)
= ‖v ‖2

L2
P

(Θ;L2 (D))
≤ ‖v ‖2U .

9



Using the previous relation and the Cauchy–Schwarz and Young inequalities followed by (20), it is
inferred that ∫ tF

0

(
f (t),E(u (t))

)
D dt ≤

∫ tF

0
(2µC−1K )−1/2‖ f ‖L2 (D) (2µC−1K )1/2‖u ‖Udt

≤
CK
4µ

∫ tF

0
‖ f ‖2L2 (D)dt +

1
2

∫ tF

0
a(u (t), u (t))dt .

Proceeding similarly for the second term in the right-hand side of (26) and recalling the lower bound (22),
one has ∫ tF

0
(G(t),E(p(t)))D dt ≤

∫ tF

0
‖c−1/20 G‖L2

P
(Θ;L2 (D)) ‖c

1/2
0 p‖L2

P
(Θ;L2 (D))dt

≤
K
α

∫ tF

0
‖G‖2

L2 (D)dt +
1
2

∫ tF

0
c(p(t), p(t))dt .

Plugging the two previous estimates into (26), multiplying by a factor 2, and using d(z(tF), z(tF)) ≥ 0,
yields the conclusion. �

Some remarks are in order.
Remark 6 (Inf-sup condition). We observe that it is possible to derive the previous a priori estimate
without (22). Indeed, the inf-sup condition (21) together with (17a) and (19) allow to bound the second
term in the right-hand side of (26) using the following: for a.e. t ∈ (0, tF),

‖p(t)‖L2
P

(Θ;L2 (D)) ≤ (αCis)−1 sup
0,v ∈U

b(v, p(t))
‖v ‖U

= (αCis)−1 sup
0,v ∈U

( f (t),E(v ))D − a(u (t), v )
‖v ‖U

≤
1

αCis
‖ f (t)‖L2 (D) +

K
1/2

αCis
a(u (t), u (t))1/2.

The resulting stability estimate would have, compared to (23), an additional dependence on αCis.
Remark 7 (Data regularity). In order to prove the a priori bound (23), no additional time regularity
assumption on the loading term f and the mass source g are needed. However, under the additional
requirements f ∈ C1([0, tF];L2(Ω)) and g ∈ C1([0, tF]; L2(Ω)), a stronger version of (23) can be
inferred using the argument of [48] and [54].
Remark 8 (Quasi-incompressible media). In order to prove the stability estimate (23), no additional
assumption on the mobility κ : D × Θ → R+ is required. Thus, Proposition 5 can handle the case of
locally poorly permeable media (i.e. κ � 1). However, assuming (19) does not allow to consider quasi-
incompressible materials for which λ � 1. To obtain a robust estimate in the case of λ unbounded, we
can proceed as in [43, Theorem 1]. Assuming f ∈ H1((0, tF);L2(D)) and κ uniformly bounded away
from zero, the Darcy term gives a L2((0, tF); P) estimate of the pressure and, as a consequence, (19)
and (22) are not needed. We remark that, in amedium featuring very low permeability, an incompressible
fluid cannot flow unless the material is compressible, namely the two limit cases κ � 1 and λ � 1
cannot occur simultaneously. Therefore, the stochastic poroelasticity problem need to be dealt with
uncertainty models preventing this situation.
Remark 9 (Lamé’s coefficients). The well-posedness of problem (17) holds under weaker assumption
on µ and λ. More precisely, one can assume instead of (18) and (19), that P-a.e. in Θ it holds

0 < µ(θ) ≤ µ(x, θ), 0 ≤
2µ(x, θ) + dλ(x, θ)

d
≤ K (θ) a.e. in D,

where µ(θ)−1 and K (θ) are second-order random variables. An assumption of this type is convenient
when λ is an unbounded (e.g. Gaussian or lognormal) random variable at x ∈ D. See [2, Lemma 1.2]
and [14] for a discussion in the context of elliptic PDEs with random data.
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4 Probabilistic framework

In many applications, only limited information about the poroelastic coefficients in (7) and (11) is
available. In the context of geomechanics, e.g., even when it is possible to carry out a large number of
measurements, the actual knowledge of the soil properties typically suffers from inaccuracies: due to
the presence of different layers, the physical properties can have strong variations that are difficult to
estimate.

4.1 Uncertain poroelastic coefficients

In this section we present the probabilistic setting and we introduce the parametrization of the random
coefficients using canonical random variables. Some preliminary investigations on the possible choices
to model the uncertain coefficients are subsequently presented.

4.1.1 Parametrization with canonical variables

We use a set of canonical random variables, collected into a random vector ξ = (ξ1, . . . , ξN ) : Θ→ Ξ, to
describe the uncertainty of the poromechanical coefficients. To ensure the independence of the random
coefficients, it suffices to use one canonical random variable per coefficient, and rely on changes of
measure to define the mappings between the ξi and their respective coefficients. Specifically, we deal
with uniformly iid canonical variables, namely ξi ∼ U ([−1, 1]) and ξi ⊥ ξ j if i , j. Thus, the ξi’s have
zero mean, are independent with product form probability law Pξ and joint density function ρ(ξ ). We
denote by Bξ the Borel σ-algebra on Ξ and by (Ξ,Bξ,Pξ ) the image probability space. We also define
the space of second-order random variables on (Ξ,Bξ,Pξ ) as the weighted Lebesgue space L2

ρ (Ξ). The
expectation operator on the image space is denoted using brackets and is related to the expectation on
(Θ,B,P) through the identity

〈h〉 B
∫
Ξ

h(ξ )ρ(ξ )dξ =
∫
Θ

h(ξ (θ))dP (θ) = E(h ◦ ξ ).

The variance operator of h ∈ (Ξ,Bξ,Pξ ) is then defined by

Var(h) B
〈
(h − 〈h〉)2

〉
.

4.1.2 Probabilistic model

In order to account for the uncertainty of the poroelastic material, a model for its properties is needed.
For the sake of simplicity, we assume that the fluid bulk modulus and the porosity are deterministic:
Kf = 2.2GPa and ϕ = 0.2. Our input uncertainty is then parametrized by a vector ξ of dimension N = 4.
The set of random coefficients consists in the two Lamé’s constants λ(ξ ) and µ(ξ ), the Biot–Willis
coefficient α(ξ ), and the hydraulic mobility κ(ξ ). These coefficients will be considered all mutually
independent, with no spatial variabilities. The case of spatial variability can be handled by introducing a
Karhunen–Loève expansion of the corresponding stochastic fields [47, 57] but involving a high number
of input random variables. Even if the experiments presented in this work are mainly academic model
problems, we try to consider realistic sets of parameters and have a particular regard for the underlying
physical phenomena. The ranges of variation of the uncertain input data are inspired from [56, Table
1], [67, Section 3], and [19, Table 4.1], and correspond to an ideal water filled sand soil with a 20%
reference porosity. In particular, for the numerical investigations of Section 5.1, we assume that µ, λ,

11
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Figure 1: Distribution of c0 obtained by solving (14) with random input coefficients λ, µ, and α distributed according to (27)
(data are in kPa−1). Densities are estimated using 105 realizations.

and κ have a log-uniform distribution, while α is uniformly distributed. We set

µ(ξ ) = 10(ξ1+1) kPa,
λ(ξ ) = 2 · 10(ξ2+1) kPa,

α(ξ ) =
αmax + αmin

2
+ ξ3

αmax − αmin
2

,

κ(ξ ) = 10(ξ4−1) m2kPa−1s−1.

(27)

According to (4) and (15), we take αmin = 3ϕ(2 + ϕ)−1 and αmax = 1. This choice yields

〈µ〉 ∼ 21.5 kPa, 〈λ〉 ∼ 43 kPa, 〈α〉 ∼ 0.64, and 〈κ〉 ∼ 0.22
m2

kPa s
,

cv(µ) ∼ 1.16, cv(λ) ∼ 1.16, cv(α) ∼ 0.33, and cv(κ) ∼ 1.16,
(28)

where cv(·) B Var( ·)1/2
〈·〉

denotes the coefficient of variation operator. In particular we observe that the
previous average values have the same magnitude as the coefficients considered in [29, Table 2]. The
case of other standard distributions can be handled similarly introducing the inverse of the cumulative
distribution function of the considered coefficient.

According to the results presented in Section 2.3, the constrained specific storage coefficient c0 can
be expressed in terms of the elastic moduli λ, µ and the coupling Biot coefficient α (see also [18, 36] for
theoretical and empirical investigations on the storage coefficient) as well as the porosity and the fluid
bulk modulus. Therefore, we let

c0(ξ) B c0(µ(ξ ), λ(ξ ), α(ξ ), ϕ, Kf ). (29)

The advantage of this approach is threefold: (i) it produces a strategy of perturbation with independent
model coefficients, (ii) it ensures that the set of poroelastic coefficients belong to the physical admissible
set, and (iii) it allows to reduce the uncertainty dimension and then the size of the sampling (i.e. the
number of sparse grid points). We illustrate here the definition of c0(ξ ) in (29), reporting its probability
distribution for random poromechanical coefficients as in (27). For each realization of the random
poromechanical coefficients, we solve (14) in order to compute the corresponding value of c0. In Figure
1 we plot the histogram and probability density function of c0, estimated using 105 realizations of the

12
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Figure 2: Marginal distributions of the bulk modulus K (left) and the Poisson ratio ν (right) corresponding to 106 realizations
for µ and λ distributed as in (27).

poromechanical coefficients. We observe that our choice leads to a specific storage coefficient c0 ranging
in (2 · 10−4, 3 · 10−1) kPa−1 and its probability density function is far from being uniform with a highest
probable value close to zero.

Different choices are possible to describe the mechanical behavior of the material and, in practice,
the selection of the particular coefficients defining the elastic properties of the medium is mostly one of
convenience. For instance, one might consider the Young modulus E (e.g. in [42]) or the bulk modulus
K and the Poisson ratio ν (e.g. in [56, 18]), as the independent driving coefficients. Here we choose
instead Lamé’s coefficients µ and λ as primary independent variables, because they explicitly appear
in the governing equations and are also more conveniently defined through simple transformations
of independent canonical variables. The corresponding couple (K, ν) can be deduced from Lamé’s
coefficients (µ, λ) using the relations

K (ξ ) =
2
d
µ(ξ ) + λ(ξ ) and ν(ξ ) =

λ(ξ )
2(µ(ξ ) + λ(ξ ))

.

Figure 2 shows the marginals of K and ν for independent primarymechanical variables (µ, λ) distributed
according to (27). Starting from independent K and ν results in a complex dependent distribution of
the coefficients λ and µ appearing in the model equations. This is due to the non-linear relation
(K, ν) 7→ (λ, µ) that can be appreciated from Figure 3 for the case where K is log-uniformly distributed
and ν is uniformly distributed.

4.2 Stochastic discretization

Now that the uncertain coefficients and their parametrization have been detailed, we introduce in this
section the Polynomial Chaos expansions of the random model solution and outline the Pseudo-Spectral
Projection algorithm used for its determination. The PSP method is one of the so-called non-intrusive
techniques, which rely on an ensemble of deterministic model simulations to estimate the expansion
coefficients of the solution.

4.2.1 Polynomial Chaos expansion

PC expansions were initially proposed by Wiener [65] for the approximation of second order random
quantities from standard iidGaussian variables. It was later proposed to use these polynomial expansions
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Figure 3: Scatter plot of 104 realizations (µ, λ) for K ∼ LU ([3, 300]) GPa and ν ∼ U ([0.1, 0.4]).

for UQ [35]. Concerning the generalization to non-Gaussian measure and non-polynomial expansions,
see [66] and references within [45].

Let us denote by {φk (ξ ) : k ∈ NN } an Hilbertian basis of L2
ρ (Ξ), where φk is a multivariate

polynomial in ξ and k = (k1, . . . , kN ) is a multi-index indicating the polynomial degree in the ξi’s. The
total degree of φk is |k |1 B

∑N
i=1 ki . The basis functions are commonly chosen to be orthogonal with

respect to the inner product in L2
ρ (Ξ) characterized by the probability density function ρ : Ξ→ R+,

〈φk, φl 〉 =

∫
Ξ

φk (ξ )φl (ξ )ρ(ξ )dξ = δk,l . (30)

In our case, where Ξ is the hypercube [−1, 1]N with uniform density, the φk are in fact the multivariate
Legendre polynomials. If X (ξ ) ∈ L2

ρ (Ξ) is a second-order random variable, then it admits the PC
expansion [65, 12],

X (ξ ) =
∑

k ∈NN

Xkφk (ξ ), (31)

where the deterministic coefficients of the series {Xk : k ∈ NN } are called the spectral modes. The PC
approximation XK (ξ ) of X (ξ ) is obtained by truncating the expansion above to a finite series,

XK (ξ ) B
∑
k ∈K

Xkφk (ξ ), (32)

where K ⊂ NN is a finite set of multi-indices. Observing that the degree zero polynomial is φ0 = 1,
the expectation and variance of X (ξ ) simply express as

〈XK 〉 = X0, Var(XK ) =
∑

k ∈K \0
X2
k . (33)

Different truncation strategies, i.e. the selection of the setK , can be considered, with different resulting
error eK (ξ ) := X (ξ ) − XK (ξ ). In particular, if the approximation is defined as the L2-orthogonal
projection of X , the spectral coefficients are defined by

Xk B 〈X, φk 〉, (34)

and it is clear that the L2-error norm does not increase whenK is enlarged. Indeed, we have in this case

‖X − XK ‖2L2
ρ (Ξ)
=

∑
k ∈NN \K

|Xk |
2.
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A classical truncation strategy is based on the degree of the expansion; for instance, one can define
K such that the approximation basis contains all multivariate polynomials with total (|k |1 ≤ p) or
partial (|k |∞ B max1≤i≤N ki ≤ p) degree up to a prescribed value p ≥ 0. The convergence rate of the
PC expansion of X with respect to the degree p depends on the regularity (in ξ) of X . In particular,
an exponential convergence is expected for analytical variables; more details about the convergence
conditions can be found in [12, 27].

4.2.2 Sparse Pseudo-Spectral Projection

Several methods have been proposed to compute the spectral modes of the PC expansion [45, 40].
Among these methods, we distinguish between the intrusive and non-intrusive ones. The former involve
a reformulation of the problem to derive a set of governing equations for the solution modes, while the
latter rely on the availability of a deterministic solver only. As a first attempt to apply PC expansions
to propagate uncertainty in the Biot model, we opted for a non-intrusive projection method which, in
our experience, presents the best trade-off between numerical complexity and precision, compared to
alternatives such as regression and compressed sensing.

The Non-Intrusive Spectral Projection (NISP) method is based on approximating the correlation in
the right-hand-side of (34) by a deterministic numerical quadrature formula, such as

Xk = 〈X, φk 〉 '
Nq∑
q=1

w(q) X (ξ (q))φk (ξ (q)), (35)

where the Nq quadrature nodes ξ (q) and weights w(q) are classically constructed by tensorization of
one-dimensional quadrature rules (e.g. Gauss, Féjèr, Clenchaw–Curtis, . . . ). The complexity of the
NISP method is governed by the number Nq of evaluations of the model, while the accuracy depends on
the basis which can be considered given the quadrature rule. Clearly, these two aspects are intertwined,
as larger expansion bases require higher order quadrature rules with larger computational efforts. In
practice, the basis is defined as the largest one such that the discrete projection is exact for any function
belonging to the linear-span of the basis or, in other words, that the non-intrusive projection incurs no
internal aliasing. Equivalently, the multi-index set K must satisfy

∀k, l ∈ K ,

Nq∑
q=1

w(q)φk (ξ (q))φl (ξ (q)) = δkl .

Exploiting the product structure of the stochastic space, sparse tensorizations of one-dimensional
quadrature rules [31, 32] have been proposed to mitigate computational complexity, especially for
a larger number N of canonical random variables. The sparse constructions generally rely on the
Smolyak’s formula [59] and lead to the so-called sparse-grid projection methods. One drawback of
using sparse quadrature rules, as opposed to fully tensorized quadrature rules, is that some of the
weights w(q) are negative even for one-dimensional formulas with positive weights only. Therefore, the
sparse quadratures are not constituting discrete inner products, with some restrictions on the possible
aliasing-free bases as a result.

These limitations were recognized in [16, 17], where the authors proposed the so-called Pseudo-
Spectral Projection (PSP) methods. The key-idea of PSP is to apply the Smolyak’s formula directly on
the projection operator, rather than on the integration operator. The projection is seen as a sequence
of nested subspace-projections, where each subspace-projection is computed using a fully-tenzorized
quadrature rule. Consequently, the determination of each spectral mode uses an adapted fully-tensorized
quadrature rule with improved properties compared to the unique one in (35). Specifically, for the same
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sparse grid, with Nq nodes k (q), the PSP method can compute without internal aliasing the projection
coefficients Xk of a larger set K of basis functions φk , compared to the NISP approach.

In this work, we then use a sparse PSP method, constructed on nested one-dimensional Clenshaw–
Curtis quadrature rules. As the canonical random variables account for uncertainties in different
poromechanical coefficients whose respective influences on themodel solution are unknown, we decided
to rely on an isotropic construction. In the PSP context, it amounts to consider isotropic partial
tensorization, with a unique parameter controlling the complexity and accuracy of the approximation:
the maximum level l ∈ N of isotropic the sparse grid. As the level l of the PSP method increases, both
the number of sparse grid nodes Nq (l) and the multi-index set K (l) increase.

5 Test cases

We now assess the performance of the PSP method detailed in the previous section to treat the stochastic
part of the Biot problem (16) due to parametric uncertainties. Recall that the PSP method requires to
solve Nq deterministic Biot problems (discretized by the method of [8]) for different values of uncertain
input parameters. Note that the PSP method can be applied with alternative solvers, possibly based on
a non-monolithic formulation (i.e., splitting methods). Our numerical experiments feature a simplified
model with spatially homogeneous random coefficients. More sophisticated uncertain models, requiring
(possibly strongly correlated) spatially varying input coefficients with non-standard distributions will
be the object of future works. We begin this section with two validation cases; the first one has a fluid
forcing term while a mechanical boundary condition drives the second one. An injection-production
test case at large spatial scale is then presented to assess the methodology on a more realistic problem
and perform a sensitivity analysis to illustrate the interest of the method.

5.1 Validation test cases

To start, we implement two experiments to study the convergence of the PSPmethod on the Biot problem.
These two test cases are complementary in the sense that they consider a fluid or mechanical solicitation
of the porous medium. More precisely, the first case is an injection test designed to investigate the
effect of a fluid source on the deformation of the domain, while the second case is meant to evaluate
the mechanical effect of a traction term on the fluid pressure. These two cases are defined on the unit
square domain D = [0, 1]2 and the loading term f in (16a) as well as the initial condition φ0 in (16g) are
both equal to zero. The probability distributions of the random poroelastic coefficients are defined in
Section 4.1. After describing the test cases, we numerically investigate the convergence of the stochastic
error with respect to the level of the sparse grid. We also analyze the variance and covariance fields of
the PC solutions.

5.1.1 Point injection

The first experiment is inspired by the Barry and Mercer test case [8, Section 6.2] (see also [3, 55]) in
which the displacement and pressure fields are driven by a stationary fluid source

g(x) = 10 δ(x − x0),

where x0 = (0.25, 0.25) denotes the source location and δ the Dirac delta function. Homogeneous
mechanical and fluid boundary conditions are enforced on the whole boundary of the domain,

u · τ = 0, on ∂D,

∇un · n = 0, on ∂D,

p = 0, on ∂D,
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Figure 4: Mean (left) and variance (right) of the pressure field plotted on the deformed domain at t = tF = 1s (data are in kPa).
Solution for the PSP method with level l = 5 and Nq (l) = 2561.

where τ denotes the tangent unit vector on ∂D such that τ ⊥ n with arbitrary orientation. The following
results have been obtained using the method of [8] with polynomial degree k = 3 on a Cartesian
mesh containing 1,024 elements. Using the static condensation procedure [8, Section 5], the discrete
system has 27,648 unknowns. We are interested in the stationary solution, namely the pressure and
displacement fields manifesting after the initial transient phase, and report the solution at the final time
tF = 1s obtained after 10 time steps of the implicit Euler scheme.

Figure 4 represents the two first statistical moments (33) of the pressure field approximated using a
level l = 5 sparse grid. We plot the solution on the deformed configuration obtained by applying the
(scaled) computed mean displacement field to the reference unit (undeformed) square domain D. As
expected, we observe a dilatation of the domain caused by the injection. The computed solutions are
symmetric with respect to the diagonal according to the source location and the homogeneous boundary
conditions and to the fact that the computational mesh also has the same symmetry. The mean pressure
field exhibits maximum values at the source, while only small perturbations are observed near the
boundary. The variance of the pressure field has the same behavior as the mean, with higher values
close to the injection point. We notice that the magnitude of the standard deviation, i.e. the square root
of the variance, is comparable to the mean field range. We draw attention to the fact that the variance
(and covariance) fields must be carefully computed since the spatial dependence involves the products
of broken polynomial functions on the mesh and its skeleton.

5.1.2 Poroelastic footing

As a second example, we examine the 2D footing problem proposed in [52, 29], where the domain is
assumed to be free to drain and fixed along the base and vertical edges. A uniform load is applied on
a central portion of the upper boundary ΓN = {x = (x1, x2) ∈ ∂D : x2 = 1} simulating a footing step
compressing the medium. The boundary conditions are defined as

σn = (0,−5 kPa) on ΓN,1 B {x ∈ ∂D ; 0.3 ≤ x1 ≤ 0.7, x2 = 1},
σn = 0, on ΓN \ ΓN,1,
u = 0, on ∂D \ ΓN ,

p = 0, on ∂D.

As f = 0 and φ0 = 0, the displacement and pressure fields are determined only by the stress boundary
condition. We set k = 2 in the method of [8] and discretize the domain using a triangular mesh with
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Figure 5: Mean (left) and variance (right) of the pressure field plotted on the deformed domain at t = 0.2s (pressures are in
kPa). Solution computed using the PSP method with level l = 5 and Nq (l) = 2561.

3,584 elements. We focus here on the pressure profile at early times and, for each sparse grid node,
the linear system of dimension 54,720 is solved twice to reach tF = 0.2s. Because of the free drainage
boundary condition, the fluid is promptly squeezed out of the soil to reach an equilibrium configuration
with no pressure and where the displacement balances the Neumann condition. We mention, in passing,
that the spurious pressure oscillations observed in [52] do not occur with our discretization in agreement
with results in [8, Section 6.2].

Figure 5 shows the mean and variance of the pressure field over the deformed domain. The
deformation of the domain corresponds again to the mean displacement field. The domain is particularly
warped on the load segment and the maximum pressure is found near the center of the domain. As
in the previous test case, we observe that the magnitude of the standard deviation is comparable to the
mean field range.

5.1.3 Convergence analysis

We evaluate the accuracy of the PC expansions of the stochastic solution by using a validation set
independent from the sparse grid nodes. The Mean-Squared Error (MSE) is computed from N∗ = 500
Latin Hypercube Samples (LHS), denoted ξ (i),

MSE(X − XK )(x) B
1

N∗

N ∗∑
i=1

(
X (x, ξ (i)) − XK (x, ξ (i))

)2
,

where X (x, ·) denotes the exact (pressure or displacement) field and XK (x, ·) its PC approximation. We
plot on Figures 7 and 8 theMSE fields of the PC solutions. Owing to the symmetry of each configuration,
we only represent the error of the first component of the displacement field for the injection test and
the second displacement component for the footing test. The results are plotted for the sparse grids
of level l = 1, 3, 5, and we observe a rapid decrease of the error for the two test cases and both the
displacement and pressure fields. We especially notice the strong decay of the maximum error value
with the increasing sparse grid level. To complete the convergence analysis, we also plot inn Figure 6
the L2(D)-norm of the mean-squared error fields, ‖MSE(u − uK )‖L2 (D) and ‖MSE(p− pK )‖L2 (D) up
to a sparse grid level equal to 5. The linear trends observed in the semi-log scale of the successive PC
approximations suggest that the method achieves roughly an exponential convergence rate with respect
to the level of the sparse grid, as predicted by the theory for a sufficiently regular quantity of interest.
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Figure 6: Errors ‖MSE(u − uK )‖L2 (D) and ‖MSE(p − pK )‖L2 (D) vs. level l of the Sparse Grid. Point injection test (left)
and footing test (right) with model coefficients µ, λ, α, κ distributed according to (27).

5.1.4 Covariance fields

Wefinally analyze the correlation between the displacement and pressure fields. The covariance between
two random variables h1, h2 ∈ (Ξ,Bξ,Pξ ) is defined by

Cov(h1, h2) B 〈(h1 − 〈h1〉), (h2 − 〈h2〉)〉 .

In the case of two random variables represeneted on by PC expansions in the same basis, XK and YK ,
the covariance reads

Cov(XK ,YK ) =
∑

k ∈K \0
XkYk .

On Figure 9 we plot the covariance fields of the injection test case. As expected, we observe a
symmetry with the domain diagonal of the covariance field between the two displacement components
(left plot). The sign of the covariance depends on the joint variation of the variables. Indeed the
covariance field of uK ,1 and uK ,2 is in accordance with the fact that both u1 and u2 are negative on the
bottom-left area, both u1 and u2 are positive on the top-right area, while either u1 or u2 is positive when
the other component is negative on the top-left and bottom-right areas of the domain. High values of
Cov(uK ,1, pK ) and Cov(uK ,2, pK ) (middle and right panel) are found close to the injection point, where
the pressure and mechanical effects of the fluid source are maximum. We also remark that, owing to the
symmetric configuration of the injection test, the covariance field Cov(uK ,1, pK ) corresponds roughly
to the 90◦ clockwise rotation of Cov(uK ,2, pK ).

Figure 10 represents the covariance fields for the footing test case. The covariance field of uK ,2 and
pK (right panel) has the same pattern as the pressure variance field plotted on Figure 5 with the highest
value below the loading segment. The covariance is here negative since the pressure increases during the
vertical compression. On the middle panel, the covariance of the horizontal displacement uK ,1 and the
pressure pK is lower by one order of magnitude consistently with the vertical loading of this test case.
The sign and the location of maximum and minimum values of Cov(uK ,1, uK ,2) and Cov(uK ,1, pK ) (left
and middle panel) are consistent with the deformed configuration plotted on Figure 5.

5.2 Realistic problem

The last numerical experiment deals with a fluid injection-extraction process and is inspired by [43,
Section 7]. Since we aim to assess the propagation of the uncertainty of input parameters on the solution,
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Figure 7: Displacement MSE(u1 −uK ,1) field (left) and pressure MSE(p− pK ) field (right) of the injection test case. Results
are computed using the PSP method with l = 1 (top), l = 3 (middle), and l = 5 (bottom). Notice the change of scales when
increasing the sparse grid level.
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Figure 8: Displacement MSE(u2 − uK ,2) field (left) and pressure MSE(p − pK ) field (right) of the footing test case. Results
computed using the PSP method with l = 1 (top), l = 3 (middle), and l = 5 (bottom). Notice the change of scales when
increasing the sparse grid level.
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Figure 9: Cov(uK ,1, uK ,2) [m2] (left), Cov(uK ,1, pK ) [m · kPa] (middle), and Cov(uK ,2, pK ) [m · kPa] (right) fields of the
injection test case computed at tF = 1s using the PSP method with level l = 5 and Nq (l) = 2561.

Figure 10: Cov(uK ,1, uK ,2) [m2] (left), Cov(uK ,1, pK ) [m · kPa] (middle), and Cov(uK ,2, pK ) [m · kPa] (right) fields of the
footing test case computed at t = 0.2s using the PSP method with level l = 5 and Nq (l) = 2561.

we assume that all the coefficients µ, λ, α and κ are log-uniformly distributed with the same coefficient
of variation cv(µ) = cv(λ) = cv(α) = cv(κ) ∼ 0.63. We set

µ(ξ ) = 3.75 · 10
ξ1+1
2 GPa,

λ(ξ ) = 2.5 · 10
ξ2+1
2 GPa,

α(ξ ) = 10
ξ3−1
2 ,

κ(ξ ) = 5 · 10
ξ4−3
2 Km2GPa−1day−1.

(36)

We remark that all the possible realizations of α satisfy (15) if ϕ ≤ 2/29. Thus, we consider a medium
with reference porosity ϕ = 2/29 that is filled with water, namely Kf = 2.2 GPa. For each realization of
the poromechanical coefficients, c0 is again computed according to (14). We observe that the average
values of µ and λ in (36) have the same magnitude as the mechanical coefficients considered in [43,
Table 1] and, assuming that µf = 10−3 Pa · s (water), the average value of κ corresponds to an intrinsic
permeability of order 1D = 10−12m2.

5.2.1 Computational case description

The rectangular domain D = [0, 4Km] × [0, 1Km] includes two holes representing the injection and
extraction wells (see Figure 11). For the sake of simplicity, we impose steady Dirichlet conditions on
the holes boundaries,

p = p1, on Γd,1,
p = p2, on Γd,2,
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Figure 11: Mesh of the injection-extraction test case. The construction uses the PolyMesher algorithm of [60].

Figure 12: Mean pressure field in kPa (left) and mean vertical displacement in mm (right) for the injection-extraction test case.
Fields are plotted on the mean domain (deformation scaled by a factor 105) at steady state.

where Γd,1 and Γd,2 denote the left and right hole boundaries, respectively. We remark that, due to
the linearity of the Biot model, any solution with the conditions above can be reconstructed from a
combination of the solutions of two elementary problems: one with p1 = 0, p2 = 1 and another with
p1 = 1, p2 = 0. We treat in this section the case p2 = −p1 and consider the following set of boundary
conditions:

σn = 0, on ΓN B {x ∈ ∂D ; x2 = 1 Km},
u = 0, on ΓD B Γd,1 ∪ Γd,2 ∪ {x ∈ ∂D ; x2 = 0},

σn · τ = 0, on ∂D \ (ΓN ∪ ΓD ∪ Γd,1 ∪ Γd,2),

u · n = 0, on ∂D \ (ΓN ∪ ΓD ∪ Γd,1 ∪ Γd,2),

κ∇p = 0, on ∂D \ (Γd,1 ∪ Γd,2),

p = −100 kPa, on Γd,1,
p = 100 kPa, on Γd,2,

where τ denotes again the tangent vector on ∂D with arbitrary orientation. The loading term f in (16a),
the fluid source g in (16b), and the initial condition φ0 in (16g) are all set to zero. We use k = 1 in
the method of [8] with the Voronoi mesh having 10,000 elements depicted in Figure 11. This choice
yields a spatial discretization of dimension 151,240. The steady state of the Biot model is considered
achieved at tF = 1 day, simulated with 10 time steps. The PC approximations are computed using the
PSP method with level l = 3 for a total of Nq (l) = 209 sparse grid nodes.

Figure 12 shows the mean of the pressure (left) and vertical displacement fields (right). We verify
that the mean pressure is equal to deterministic the boundary conditions, namely ±100 kPa, at the holes
boundary. It increases linearly between the two holes (in the x-direction) and remains nearly uniform
away from the holes. Regarding the displacement, within vertical sections, the vertical component
increases from the bottom of the domain (where it is equal to the homogeneous boundary condition) to
its maximum value at the free surface. The mean displacement is negative on the left part of the domain
(extraction side) and positive on the right part (injection side), consistently with the imposed pressure
boundary conditions. Further, the mean displacement vanishes at the vertical centerline of the domain,
owing to the symmetry of the problem.
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(a) Var(pK ) [kPa] (b) Cov(uK ,1, pK ) [mm · kPa]

(c) Var(uK ,1) [mm2] (d) Cov(uK ,2, pK ) [mm · kPa]

(e) Var(uK ,2) [mm2] (f) Cov(uK ,1, uK ,2) [mm2]

Figure 13: Variance (left) and covariance (right) fields for the steady state injection-extraction test case computed using the
PSP method with level l = 3 and Nq (l) = 209.

Figure 13 shows the variance fields of the Biot solution, on the left column, and the three covariance
fields, in the right column. The pressure and vertical displacement variances are small in between the
two holes. Indeed, for the considered configuration, the pressure profile at steady state is linear in the
x-direction and mostly independent of the model coefficients. Thus the pressure variance is maximal
at the lateral boundaries where the uncertainty in poroelastic coefficients is the most significant. In
contrast, the horizontal displacement variance is the highest between the holes (note that the range of
Var(uK ,1) is half that of Var(uK ,2)).

The three covariance fields display different features. Concerning the correlations Cov(uK ,1, pK )
and Cov(uK ,2, pK ), it is seen that the later reaches higher magnitudes at the top corners of the domain,
as one could have guessed from the variance fields. Further, the pressure and vertical displacement
are anti-correlated everywhere in the domain, when the horizontal displacement and pressure have a
covariance that alternates sign in the domain. Finally, consistently with the symmetry of the problem,
the covariance between the two displacement components is negative (resp. positive) in the injection
(resp. extraction) side of the domain.

5.2.2 Sensitivity analysis

We conclude the numerical tests by evaluating the different contributions of the input parameters on the
variance of the solution. We are mainly interested here in illustrating the information carried by the PC
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Figure 14: Comparison between the total variance Var(uK ,2) and the sum of the first-order partial variances
∑

i Vari (uK ,2).
The variances are reported in mm2.

expansion to assess the effect of the random coefficients on the deformation caused by the injection-
extraction. We perform the sensitivity analysis of the vertical displacement only. Similar analyses can
be conducted for the other components of the solution. We compute the first-order partial variances
Vari (uK ,2(x, ξ )) defined by

Vari (uK ,2) B Var(E(uK ,2 |ξi )).

As for the variance, these partial variances can be explicitly derived from the PC expansion of the
considered field [20], and we use here the level l = 3 sparse grid PSP approximation. Since each
ξi in (36) parametrizes only one of the poromechanical model coefficients, the first-order variances
characterize the contributions to the variance of the individual poro-mechanical parameters (µ(ξ1),
λ(ξ2), α(ξ3) and κ(ξ4)) on the displacement. We also report the total-order variance associated to the
ξi , denoted VarTi (uK ,2), which are defined by

VarTi (uK ,2) B Var(uK ,2) − Var(E(uK ,2 |ξ\i )),

where we have denoted ξ\i =
(
ξ j,i

)
the triplet containing all the random variables but ξi . The total-

order variance VarTi measure the variability induced by ξi (that is the poromechanical coefficient it
parametrizes) including all its interactions with other uncertainty sources.

In Figure 14 we compare the total varianceVar(uK ,2) with the sum of the first-order partial variances∑4
i=1Vari (uK ,2) of the vertical displacement. The difference between these two fields amounts to the

contribution of higher order partial variances, namely, the part of the variance incurring to interactions
between random coefficients. Here, these interactions are seen to be small but not negligible. We
expect coupled effects between uncertain parameters in the present uncertainty model, because of the
dependence of c0 on the three first coefficients (see (14)). In Figure 15 we plot the first-order (left
half) and total-order partial variances (right half) related to each input parameter. We observe that the
parameter with the main influence on the vertical displacement is the shear modulus µ (parametrized
by ξ1), while the effects of the dilatation modulus λ (parametrized by ξ2) and hydraulic mobility κ

(parametrized by ξ4) are much weaker. In particular, we notice that κ has almost no influence on the
solution variability. Finally, we remark that the effect of the uncertain Biot-Willis coefficient α on the
vertical displacement at the surface is less important than the one associated to µ, but considerably
larger than the one related to λ.

6 Conclusion

This paper contains a theoretical and numerical study of the poroelasticity problem with random
coefficients. It contains three major contributions. The first one is a study of the dependence between
the physical coefficients, leading to an uncertainty model where the specific storage coefficient is
expressed in terms of the other coefficients. This construction ensures that the resulting problem
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Figure 15: First and total-order partial variances of the vertical displacement (in mm2), associated to µ(ξ1) (top left), λ(ξ2)
(top right), α(ξ3) (bottom left) and κ(ξ4) (bottom right). The first-order (resp. total) partial variance is plotted in the left
(resp. right) half of each plot.

remains almost surely within the set of physically possible configurations. This uncertainty model
also results in a reduction in the number of independent coefficients for the stochastic problem to be
solved. The second contribution concerns the well-posedness of the stochastic Biot problem; we prove
the existence of a second order solution provided for random model coefficients satisfying some weak
mathematical assumptions that we detail. The existence of a second order solution appears to be a
new mathematical result. The third contribution is a discretization of the stochastic Biot problem using
a (non-intrusive) sparse pseudo spectral projection method. This approach relies on an ensemble of
deterministic simulations carried out using a Hybrid High-Order discretization. The proposed method
is further tested on a set of model problems.
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