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Abstract—This paper investigates the finite-time event-
triggered H∞ control problem for Takagi-Sugeno Markov jump
fuzzy systems. Because of the sampling behaviors and the effect
of the network environment, the premise variables considered
in this paper are subject to asynchronous constraints. The aim
of this work is to synthesize a controller via an event-triggered
communication scheme such that not only the resulting closed-
loop system is finite-time bounded and satisfies a prescribed
H∞ performance level, but also the communication burden is
reduced. Firstly, a sufficient condition is established for the finite-
time bounded H∞ performance analysis of the closed-loop fuzzy
system with fully considering the asynchronous premises. Then,
based on the derived condition, the desired controller design
method is presented. Finally, two illustrative examples are given
to explain the practicability and availability of the designed
controller.

Index Terms—Markov jump fuzzy systems, finite-time control,
event-triggered H∞ control, asynchronous premises.

I. INTRODUCTION

IN the last several decades, Markov jump systems (MJSs)
have developed into an actively investigated topic in the

control and system community. This is due mainly to the fact
that many practical systems experiencing random changes in
their parameters or structures are very appropriately described
by MJSs. A Markov jump system is composed of many inter-
connected subsystems, and the information exchange among
these subsystems is governed by the Markov chain or Markov
process. Hence, MJSs could be regarded as a particular class
of hybrid stochastic systems. The typical applicable examples
for such systems can be found in a broad range of areas, such
as networked control systems (NCSs), economic systems and
power systems [1], [4], [26]. In this context, therefore, a large
number of researchers have endeavored to investigate MJSs
and quantities of related results have been acquired, see, e.g.,
[6], [11], [13], [16], [22], [37], [38]. However, it is recognized
that many obtained research results are just available for the
linear MJSs owing to the inherent complex characteristics of
nonlinear MJSs. Thanks to the presented Takagi-Sugeno (T-S)
fuzzy model [5], [8], [9], [19], [24], [31], [41], such complex
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nonlinear MJSs could be successfully represented in an easy-
to-investigate form. As a consequence, it is not surprising that
the past years have witnessed a surge of research interest in
the study of nonlinear MJSs by using the fuzzy-model-based
approach. For details on research advances about this issue,
we refer readers to [3], [20], [28] and the references therein.

It is worth noting that all the aforementioned results related
to the primary stability analysis and control issues for MJSs,
especially for fuzzy Markov jump systems (FMJSs), are con-
centrated on Lyapunov asymptotic stability (LAS). The LAS,
as is known, is mainly described as the infinite time interval
asymptotic behavior of the state trajectories. Actually, it would
not be suitable in some scenarios, where the control objective
is to make sure that during a fixed time-interval, the states of
system keep in assigned threshold values. For example, the
orbital control of a space vehicle from an initial position to
the object region was discussed in [2]. Therefore, the finite-
time stability emerged from the far-reaching work of [7] has
received extensive attention during the past decades, such as
finite-time stability and stabilization [2], finite-time filtering
and state estimation [40], finite-time control [12], to name a
few. Despite the significance of the finite-time stability has
been acknowledged, there appears little progress toward on
this issue for FMJSs, which is one of the motivations behind
this work.

On the other hand, as an irresistible trend, in modern control
systems, the data among the sensors, controllers, and actuators
are frequently transmitted through a shared communication
network. The insertion of the network can offer many advan-
tages including reduced equipment weight, lower deployment
costs and easy maintenance. Such benefits have given a
tremendous amount of motivations to extensive applications of
NCSs [10], [21], [29], [32], [39]. It should be remarkable that
the communication bandwidth of the shared communication
network, as a scarce resource in NCSs, is usually limited.
In the widely used time-triggered control, all the sampled
data (SD) are required to be transmitted and the actuator
state is adjusted at each sampling instant (SI). However, when
the states of the controlled plant have arrived or are close
to the equilibrium point and no exogenous disturbance input
exists, there is little effect of the sensor measurement signal on
system performances over those specific time interval. In this
case, some unnecessary SD may be generated. Undoubtedly,
transmitting those unnecessary SD reduces the efficiency of
communication and leads to unnecessary energy consump-
tions. To cope with this problem, the event-triggered com-
munication scheme (ETCS), as an alternative communication
scheme, has been introduced to overcome the shortcomings
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of the time-triggered control strategy. Such a communication
scheme can efficiently utilize the communication bandwidth
since that the transmissions of the SD between the controller
and the plant occur only when a predefined event triggering
condition is satisfied rather than periodically as the case of
traditional setups. Up to now, a growing number of works have
been devoted to this topic [23]. To mention a few, to reduce
communication burdens, Wen et al. used an event-triggered
control method to study the load frequency control for multi-
area power systems in [30]; a discrete event-triggered scheme
was proposed to investigate the H∞ controller design for linear
NCSs in [33] and then expanded to the case of networked T-S
fuzzy systems (NTSFSs) in [18]. It should be mentioned that
how to use such a method to deal with the H∞ controller
design for FMJSs in the sense of finite-time stability is still
challenging.

Moreover, many works reported in the area of NTSFSs
are on the basis of the assumption that the controller/filter
completely shares the same premise variables with plant [25].
However, such an assumption cannot be satisfied in NTSFSs
because of the sampling behaviors and the effect of network
environment. Owing to this reason, the asynchronous premises
have been taken into consideration when concerning with the
modeling, analysis and control of NTSFSs. For instance, the
stability analysis was carried out in [15], the event-triggered
H∞ filtering issue was considered in [36], and the event-
triggered control problem was resolved in [18]. To the best
of our knowledge, however, there are no solutions available to
cope with the finite-time event-triggered H∞ control problems
for FMJSs when such an asynchronous constraint is fully
considered, and accordingly seeking satisfactory solutions to
this problem is the another primary motivation of the present
study.

Summarizing the above discussions, in this paper we are
interested in addressing the finite-time event-triggered H∞
control problem for T-S FMJSs. The main contributions of this
work lie in the following three aspects: 1) The ETCS, which
covers the traditional time-triggered communication scheme
(TTCS) as a special case by choosing some appropriate scalars
(i.e., setting σl ≡ 0 in (5)), is employed to address the finite-
time H∞ control problem for T-S FMJSs as a first attempt.
2) Different from some previous works in NTSFSs where the
controller/filter completely shares the same premise variables
with the plant, the asynchronous premises are here taken into
account here. Due to the effect of the network environment,
considering the asynchronous premises in NTSFSs is more
appropriate with the actual situation than considering the
synchronous ones. 3) Some auxiliary function-based integral
inequalities are established, that provide much tighter bounds
than Jensen inequality and the Wirtinger-based inequality.
With the help of those inequalities, some double integral terms
could be reserved and less conservative results can be obtained,
consequently. The rest of this paper is organized as follows.
Section II formulates the problem. The design of the finite-
time event-triggered H∞ controller for the considered FMJSs
is carried out in Section III. The effectiveness and superiority
of our developed scheme are demonstrated via two examples
in Section IV. Section V concludes this paper, finally.

Notations. In this paper, the notations employed are fairly
standard. Rn denotes the n-dimensional Euclidean space; for
symmetric matrices M, the notation M ≥ 0 (respective-
ly, M > 0) means that the matrix M is positive semi-
definite (respectively, positive definite); λmin (P) (respective-
ly, λmax (P)) represents the smallest (respectively, largest)
eigenvalue of symmetric matrix P; E {·} denotes the expec-
tation operator; Sym{M} represents M+MT and ⊗ denotes
Kronecker product; 0 and I stand for, respectively, the zero
matrix and identity matrix with appropriate dimensions. The
transpose of the matrix M is represented by the notation MT .
In complex matrix expressions or symmetric block matrices,
we use an asterisk (∗) to describe a term which is induced by
symmetry.

II. PROBLEM FORMULATION

Fixing a probability space (Ω,F ,P), consider the following
nonlinear Markov jump system represented by a T-S fuzzy
model:
Plant Rule i: IF ϑ1 (t) is µi1, and ϑ2 (t) is µi2, and · · · , and
ϑg (t) is µig , THEN

ẋ (t) = Ai (δ (t))x (t) +Bi (δ (t))u (t) + Ci (δ (t))ω (t) ,

(1)
z (t) = Di (δ (t))x (t) + Fi (δ (t))u (t) , (2)

where the scalar i = 1, 2, · · · , r, r is the number of IF-
THEN rules of the system; µij(i = 1, 2, · · · , r; j=1, 2, · · · , g)
present the fuzzy sets and ϑj (t) (j=1, 2, · · · , g) are the
premise variables. x (t) ∈ Rn and z (t) ∈ Rp are the
system state vector and system output vector, respectively.
ω (t) ∈ Rq is the exogenous disturbance input that belongs
to L2 [0,∞) and subjects to

∫ tp
0
ωT (t)ω (t) dt 6 ω̂. The

parameter δ (t), which takes discrete values in a finite state
space M = {1, 2, · · · , m̄}, is a right continuous homogeneous
Markov process and the jumping of δ (t) satisfies the transition
probability matrix (TPM) Π ∆

= {πlm} determined by

Pr {δ (t+∆t) = m |δ (t) = l}

=

{
πlm∆t+ o (∆t) , l ̸= m,

1 + πll∆t+ o (∆t) , l = m.

The dynamics of the fuzzy system model (1)-(2) can be derived
as follows:

ẋ (t) =
r∑

i=1

hi (ϑ (t)) [Ailx (t) +Bilu (t) + Cilω (t)] ,(3)

z (t) =

r∑
i=1

hi (ϑ (t)) [Dilx (t) + Filu (t)] , (4)

where hi (ϑ (t)) =
Πg

j=1µij(ϑj(t))∑r
i=1 Πg

j=1µij(ϑj(t))
is the fuzzy basis

function, in which µij (ϑj (t)) is defined as the grade of mem-
bership of ϑj (t) in µij . For each δ (t) = l ∈ M, Ail, Bil, Cil,
Dil and Fil are denoted as Ail

△
= Ai (δ (t)), Bil

△
= Bi (δ (t)),

Cil
△
= Ci (δ (t)), Dil

△
= Di (δ (t)), Fil

△
= Fi (δ (t)), respec-

tively, to simplify the notation. In this work, it is denoted that
Πg

j=1µij (ϑj (t)) > 0,
∑r

i=1 Π
g
j=1µij (ϑj (t)) > 0. Thus, we
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have hi (ϑ (t)) > 0 (i = 1, 2, · · · , r) and
∑r

i=1 hi (ϑ (t)) = 1
for all t.

In this paper, inspired by the work in [33], the event-
triggered mechanism is that all the transmitted SD are time-
stamped and only when the following condition is unsatisfied,
the SD are transmitted to the controller:

eTk (ikh)Ωlek (ikh) < σlx
T (ikh)Ωlx (ikh) , (5)

where ek (ikh) is the error between the state x (ikh) at the
current SI and the state x (tkh) at the latest transmitted SI,
i.e., ek (ikh) = x (ikh) − x (tkh). For l ∈ M, σl are given
positive scalars and Ωl are symmetric positive matrices to be
determined later.

Remark 1: According to (5), one can see that the next
release time tk+1h is determined by

tk+1h = tkh+ min
m>1

{
mh| ēTkΩlēk > σlx

T (ikh)Ωlx (ikh)
}
,

where ēTk = x (tkh+mh) − x (tkh). Therefore, the transmit
interval is tk+1h − tkh and the SD obtained by sensors
during the time interval (tkh, tk+1h) is not transmitted to the
controller completely, which means the ETCS can reduce the
bandwidth utilization.

Remark 2: It is easy to see that if we set σl ≡ 0, the
condition (5) cannot be satisfied all the time. In other words,
all the SD are transmitted to the controller. In this case, the
ETCS degenerates to the case of TTCS.

Before further theoretical development, in this paper, some
necessary assumptions are given below.

Assumption 1: [18] In the communication network, the
sensors are assumed to be time-triggered with the trigger
period h. Meanwhile, the controller and actuators are event-
triggered.

Assumption 2: The total network-induced delay considered
in this paper is τ̃tk , which is bounded and satisfies 0 < τ̃tk 6
τ̃M , where τ̃M is a known constant. The holding time of a logic
ZOH at the actuator is t ∈ Ωk = [ikh+ τ̃tk , ik+1h+ τ̃tk+1],
where ikh + τ̃tk is the instant when the control data packet
reaches the ZOH.

Under the above assumptions, when t ∈ Ω̄k =
[tnkh+ τ̃tk+n, t

n
kh+ h+ τ̃tk+n+1) , the error between the fu-

ture transmitted SI ik+1h and the current transmitted SI ikh
can be deduced as

ek (t
n
kh) = x (tnkh)− x (tkh) ,

where tnkh = ikh+nh is the SI between the above two states.
Define τ (t) = t−tnkh, then the expression of the transmitted

state x (tkh) can be described:

x (tkh) = x (t− τ (t))− ek (t
n
kh) . (6)

In light of the above definition about τ (t), it yields that τ̇ (t) =
1 for t ∈ Ω̄k and

0 < τ̃k 6 τ (t) 6 h+max {τ̃k, τ̃k+1} = h+ τ̃M
△
= τM .

In this study, the fuzzy-model based state feedback controllers
are designed as

Control Rule i: IF ϑ1 (tkh) is µi1, and ϑ2 (tkh) is µi2,
and · · · , and ϑg (tkh) is µig , THEN

u (t) = Kix (tkh) , t ∈
[
tkh+ τtk , tk+1h+ τtk+1

)
,

where Ki are the desired controller gains to be determined for
each i = 1, 2, · · · , r. Then, the overall fuzzy controller can be
represented by

u (t) =
r∑

i=1

hi (ϑ (tkh))Kix (tkh) . (7)

Remark 3: Most of the existing works in the area of
NTSFSs contain the implicit assumption that the premise
variables of fuzzy controller are consistent with the fuzzy
model. Then the fuzzy controller is chosen as u (t) =∑r

i=1 hi (ϑ (t))Kix (tkh). However, due to the sampling be-
haviors and the influence of the network environment, the
membership functions of the controller and the plant are no
longer equivalent in NBTSFSs. For this consideration, in this
work, the designed controller is chosen as the representation
of (7) rather than u (t) =

∑r
i=1 hi (ϑ (t))Kix (tkh).

Substituting (6) into (7), we can obtain

u (t) =
r∑

i=1

hj (ϑ (tkh))Ki [x (t− τ (t))− ek (t
n
kh)] . (8)

Inspired by [18], the membership functions are also subject
to the following constraints{

hj (ϑ (tkh)) = ρjhj (ϑ (t)) ,

|hj (ϑ (tkh))− hj (ϑ (t))| 6 ∆j ,
(9)

where ρj > 0, ∆j > 0 (j = 1, 2, . . . , r).
Using the same way in [18], on the basis of the asyn-

chronous constraints, it is clear that

κj
1

△
= 1− ∆j

hj (ϑ (t))
6 ρj

6 1 +
∆j

hj (ϑ (t))

△
= κj

2, κj
2 > 1,

which exhibits that

κi
1

κj
2

=
min {ρi}
max {ρj}

6 min

{
ρi
ρj

}
6 ρi
ρj

6 max

{
ρi
ρj

}
6 max {ρi}

min {ρj}
=

κi
2

κj
1

.

Denoting κ2 = max
j=1,2,...r

{
κj
2

}
, κ1 = min

j=1,2,...r

{
κj
1

}
and ϕ =

κ2

κ1
, we can get that

1

ϕ
6 ρi
ρj

6 ϕ, ϕ > 1.

Remark 4: For asynchronous constraints (9), it is not
difficult to find that when ϕ = 1, max

j=1,2,...r

{
κj
2

}
= κ2 =

κ1 = min
j=1,2,...r

{
κj
1

}
, which means ρj ≡ 1. In other words,

the membership functions of a fuzzy controller are always
the same with the fuzzy model (1)-(2), i.e. hj (ϑ (tkh)) =
hj (ϑ (t)), which has been widely considered in the existing
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literature. In this case, the controller is simplified into the gen-
eral point-to-point connected controller. Thus, the synchronous
premise can be deemed as a peculiar case of asynchronous
ones, which means that the considered asynchronous premise
for NTSFSs is more general in this paper.

Combining (1)-(2), (8) and (9), the closed-loop fuzzy system
(CLFS)

(
Σ̃
)

can be formulated as

ẋ (t) = Alx (t) + Blx (t− τ (t))− Ble (t
n
kh) + Clω (t) ,(10)

z (t) = Dlx (t) + Flx (t− τ (t))−Fle (t
n
kh) , (11)

x (t) = φ (t) , t ∈ [−τM , 0] , (12)

where

Al
△
=

r∑
i=1

hiAil, Bl
△
=

r∑
i=1

r∑
j=1

ρjhihjBilKj ,

Cl
△
=

r∑
i=1

hiCil, Dl
△
=

r∑
i=1

hiDil,

Fl
△
=

r∑
i=1

r∑
j=1

ρjhihjFilKj .

To describe the objective of this paper, the following lemmas
and definitions are introduced at first.

Lemma 1: [17] For any vectors ζ1, ζ2, matrices Υ > 0, z,
and real scalars k1 > 0, k2 > 0 satisfying k1 + k2 = 1, the
following inequality holds:

− 1

k1
ζT1 Υζ1 −

1

k2
ζT2 Υζ2 6 −

[
ζ1

ζ2

]T [
Υ z
∗ Υ

][
ζ1

ζ2

]
,

subject to [
Υ z
∗ Υ

]
> 0.

Lemma 2: [35] The following condition:{
∆+ ϑ∆1 < 0

∆ + ϑ∆2 < 0

are equivalent to the inequality as follows

∆+ ϵ∆1 + (ϑ− ϵ)∆2 < 0,

where constant matrices ∆, ∆1 and ∆2 are with appropriate
dimensions, ϵ ∈ [0, ϑ] and ϑ > 0.

Definition 1: [12] Given two fixed scalars a1 > 0, a2 > 0

and a positive matrix R > 0, system
(
Σ̃
)

with ω (t) ≡ 0 is
of finite-time stable (FTS) with regard to (a1, a2, tp, R), if the
following condition holds

sup
−τM6s60

E
{
xT (s)Rx (s) , ẋT (s)Rẋ (s)

}
6 a1

=⇒ E
{
xT (t)Rx (t)

}
6 a2, ∀t ∈ [0, tp] .

Definition 2: [12] Given three fixed scalars a1 > 0, a2 > 0,
ω̂ > 0 and a positive matrix R > 0, system

(
Σ̃
)

is of finite-
time bounded (FTB) with regard to (a1, a2, tp, R, ω̂), if the
following condition holds{

sup
−τM6s60

E
{
xT (s)Rx (s) , ẋT (s)Rẋ (s)

}
6 a1∫ tp

0
ωT (t)ω (t) dt 6 ω̂

=⇒ E
{
xT (t)Rx (t)

}
6 a2, ∀t ∈ [0, tp] .

Definition 3: [12] Given three fixed scalars a1 > 0, a2 > 0,
ω̂ > 0 and a positive matrix R > 0, system

(
Σ̃
)

is of FTB
with regard to (a1, a2, tp, R, ω̂) and satisfies a prescribed H∞

performance level γ, if (a) system
(
Σ̃
)

is of FTB with regard
to (a1, a2, tp, R, ω̂) in Definition 2; (b) under zero initial
state and for any non-zero ω (t) ∈ L2 [0,∞), the following
condition is ensured:

E
{∫ tp

0

zT (t) z (t) dt

}
< γ2E

{∫ tp

0

ωT (t)ω (t) dt

}
.

With those definitions, the issue to be addressed in this work
could be formulated as follows: design a controller of form (7)
for the given system (1)-(2) such that the CLFS (10)-(12) is
FTB with regard to (a1, a2, tp, R, ω̂) and satisfies the given
H∞ performance level γ in Definition 3.

III. MAIN RESULTS

For the addressed problem in this paper, this section will
develop a controller design method. Firstly, a FTB H∞ perfor-
mance analysis criterion for the CLFS (10)-(12) is established.
For presentation convenience, throughout this paper we denote
the following functions for ς = 1, 2, κ = 1, 2, . . . , 12 and any
matrix X

ϱTκ
△
=

[
0 . . . 0︸ ︷︷ ︸

κ−1

I 0 . . . 0︸ ︷︷ ︸
12−κ

]
,

Γ
△
=
[
Γ1 Γ2

]
,Ξ (X )

△
= diag {X , 3X , 5X} ,

Γς
△
=
[
(ϱ2ς−1 − ϱς+2) (ϱ2ς−1 + ϱς+2 − 2ϱς+4)

(ϱ2ς−1 − ϱς+2 + 6ϱς+4 − 12ϱς+6)
]
,

fς (X )
△
= 2 (ϱ2ς−1 − ϱς+4)X (ϱ2ς−1 − ϱς+4)

T

−4 (ϱ2ς−1 + 2ϱς+4 − 6ϱς+6)X (ϱ2ς−1 + 2ϱς+4 − 6ϱς+6)
T
,

gς (X )
△
= 2 (ϱς+2 − ϱς+4)X (ϱς+2 − ϱς+4)

T

−4 (ϱς+2 − 4ϱς+4 + 6ϱς+6)X (ϱς+2 − 4ϱς+4 + 6ϱς+6)
T
,

I △
= diag {I, I} ,

and denote the following functions, which will be used in
Theorem 1 in the sequel,

Θ1ijl
△
= ϱ1

(∑
m∈M

πlmP1m

)
ϱT1 − λ

[
ϱ1P1lϱ

T
1 + ϱ11P3ϱ

T
11

]
+Sym

{
ϱ1P1lϱ

T
2 + ϱ1P2 (ϱ1 − ϱ4)

T
+ λϱ1P2ϱ

T
11

}
− 2λ

τ2M
ϱ12T1ϱ

T
12 + ϱ1 (Q1l + τMT1) ϱ

T
1 − ϱ4Q1lϱ

T
4

+
τ2M
2
ϱ2 (2Q2l +Q3l +Q4l + T2 + τMT3) ϱ

T
2

−
∑
ς=1,2

[fς (Φ2l) + gς (Q3l) + Uςijl] + σlϱ3Ωlϱ
T
3

−Γ

[
Ξ (Q2l) Gl

∗ Ξ (Q2l)

]
ΓT − ϱ9Ωlϱ

T
9 − γ̃2ϱ10ϱ

T
10,

Θ2ijl
△
= Dilϱ

T
1 + FilKj (ϱ3 − ϱ9)

T
,

Ψςl
△
= −3 (ϱς+4 − 2ϱς+6)Φ1l (ϱς+4 − 2ϱς+6)

T
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−ϱς+4Φ1lϱ
T
ς+4 + Sym

{
ϱ2P2ϱ

T
ς+4 + (ϱ1 − ϱ4)P3ϱ

T
ς+4

}
,

S △
= (1 + τM )max

l∈M
{λmax (Pl)}+ τMmax

l∈M
{λmax (Q1l)}

+
1

2
τ3Mmax

l∈M
{λmax (Q2l)}+

1

2
τ2Mλmax (Z1)

+
1

3
τ3Mmax

l∈M
{λmax (Q3l)}+

1

6
τ3Mmax

l∈M
{λmax (Q4l)}

+
1

6
τ3Mλmax (Z2) +

1

6
τ4Mλmax (Z3) ,

with

Uςijl
△
= Sym

{
ϱςY

T
ς Ailϱ

T
1 + ϱςY

T
ς BilKj (ϱ3 − ϱ9)

T
}

+Sym
{
ϱςY

T
ς Cilϱ

T
10 − ϱςY

T
ς ϱ

T
2

}
,

Pl
△
= R− 1

2 P̂lR− 1
2 ,

Zζ
△
= R− 1

2TζR
− 1

2 (ζ = 1, 2, 3) ,

Qυl
△
= R− 1

2QυlR
− 1

2 (υ = 1, 2, 3, 4) ,

Φ1l
△
= λQ1l + T1 −

∑
m∈M

πlmQ1m,R
△
= diag {R,R} ,

Φ2l
△
= λτMQ2l +Q4l + T2 − τM

∑
m∈M

πlmQ2m,

Φ3l
△
= λQ4l + (λτM + 1)T3 + λT2 −

∑
m∈M

πlmQ4m,

Φ4l
△
= λQ3l + T3 −

∑
m∈M

πlmQ3m.

Theorem 1: Given scalars λ > 0, γ̃ > 0, a1 > 0, a2 > 0,
ω̂ > 0, tp > 0, τM > 0, ϕ > 1, σl > 0 and matrix
R > 0. Then system (10)-(12) is of FTB with regard to
(a1, a2, tp, R, ω̂) with a prescribed H∞ performance level
γ = γ̃

√
exp (λtp), if there exist matrices Ωl, Gl, symmetric

matrices P̂l =

[
P1l P2

∗ P3

]
> 0, Q1l > 0, Q2l > 0, Q3l > 0,

Q4l, T1 > 0, T2, T3, satisfying Q4l + T2 + τMT3 > 0,
such that the following conditions hold for each l ∈ M,
i, j = 1, 2, · · · , r, i < j, ϖ ∈

{
ϕ, 1

ϕ

}
, ς = 1, 2,[

Θ1iil + τMΨςl ΘT
2iil

∗ −I

]
< 0, (13)

 Θ1ijl +ϖΘ1jil + τMΨςl ΘT
2ijl

√
ϕΘT

2jil

∗ −I 0

∗ ∗ −I

 < 0, (14)

[
Ξ (Q2l +Φ2l) Gl

∗ Ξ (Q2l +Q3l)

]
> 0, (15)

Φυl > 0, υ = 1, 2, 3, 4, (16)

exp (λtp)Sa1 + exp (λtp) γ̃
2ω̂

min
l∈M

{λmin (Pl)}
6 a2. (17)

Proof: Choose a stochastic Lyapunov functional for system(
Σ̃
)

as follows:

V (x (t) , δ (t) , t)
△
=

4∑
f=1

Vf (x (t) , δ (t) , t) , (18)

where

V1 (x (t) , δ (t) , t)
△
= ηT (t) P̂lη (t) ,

η (t)
△
=
[
xT (t)

∫ t

t−τM
xT (α) dα

]T
,

V2 (x (t) , δ (t) , t)
△
=

∫ t

t−τM

xT (α)Q1lx (α) dα

+

∫ 0

−τM

∫ t

t+β

xT (α)T1x (α) dαdβ,

V3 (x (t) , δ (t) , t)
△
= τM

∫ 0

−τM

∫ t

t+β

ẋT (α)Q2lẋ (α) dαdβ

+

∫ 0

−τM

∫ γ

−τM

∫ t

t+β

ẋT (α)Q3lẋ (α) dαdβdγ,

V4 (x (t) , δ (t) , t)
△
=

∫ 0

−τM

∫ 0

γ

∫ t

t+β

ẋT (α)

× (Q4l + T2 + τMT3) ẋ (α) dαdβdγ.

As operated in [34], we define the weak infinitesimal
operator L. Thus, we can get

E {L {exp (−λt)V (x (t) , δ (t) , t)}}

= E

{
ξT (t)

{
exp (−λt)

[
ϱ1

(∑
m∈M

πlmP1m

)
ϱT1

+Sym
{
ϱ1P1lϱ

T
2 + ϱ1P2 (ϱ1 − ϱ4)

T
}

+Sym
{
τ (t) ϱ5

[
PT
2 ϱ

T
2 + P3 (ϱ1 − ϱ4)

T
]}

+Sym
{
(τM − τ (t)) ϱ6

[
PT
2 ϱ

T
2 + P3 (ϱ1 − ϱ4)

T
]}

−λ
[
ϱ1P1lϱ

T
1 + Sym(ϱ1P2ϱ

T
11) + ϱ11P3ϱ

T
11

]
+ϱ1 (Q1l + τMT1) ϱ

T
1 − ϱ4 (t− τM )Q1lϱ

T
4

+
τ2M
2
ϱ2 (2Q2l + T2 +Q4l +Q3l + τMT3) ϱ

T
2

]}
ξ (t)

+ exp (−λt)

[
−
∫ t−τ(t)

t−τM

xT (α)Φ1lx (α) dα

−
∫ t

t−τ(t)

xT (α)Φ1lx (α) dα

−λ
∫ 0

−τM

∫ t

t+β

xT (α)T1x (α) dαdβ

−τM
∫ t

t−τM

ẋT (α)Q2lẋ (α) dα

−
∫ 0

−τ(t)

∫ t

t+β

ẋT (α)Φ2lẋ (α) dαdβ

−
∫ −τ(t)

−τM

∫ t−τ(t)

t+β

ẋT (α) Φ2lẋ (α) dαdβ

− (τM − τ (t))

∫ t

t−τ(t)

ẋT (α)Φ2lẋ (α) dα

−
∫ 0

−τ(t)

∫ t+β

t−τ(t)

ẋT (α)Q3lẋ (α) dαdβ

−
∫ −τ(t)

−τM

∫ t+β

t−τM

ẋT (α)Q3lẋ (α) dαdβ
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−τ (t)
∫ t−τ(t)

t−τM

ẋT (α)Q3lẋ (α) dα

−
∫ 0

−τM

∫ 0

γ

∫ t

t+β

ẋT (α)Φ3lẋ (α) dαdβdγ

−
∫ 0

−τM

∫ γ

−τM

∫ t

t+β

ẋT (α)Φ4lẋ (α) dαdβdγ

]}
, (19)

where

ξ (t)
△
=
[
ξ1 (t) ξ2 (t) ξ3 (t) ξ4 (t) ξ5 (t) ξ6 (t)

]T
,

ξ1 (t)
△
=
[
xT (t) ẋT (t) xT (t− τ (t)) xT (t− τM )

]
,

ξ2 (t)
△
=
[
c1
∫ t

t−τ(t)
xT (α) dα c2

∫ t−τ(t)

t−τM
xT (α) dα

]
,

c1
△
=

1

τ (t)
, c2

△
=

1

τM − τ (t)
,

ξ3 (t)
△
= c21

∫ 0

−τ(t)

∫ t

t+β

xT (α) dαdβ,

ξ4 (t)
△
= c22

∫ −τ(t)

−τM

∫ t−τ(t)

t+β

xT (α) dαdβ,

ξ5 (t)
△
=
[
eTk (tnkh) ωT (t)

]
,

ξ6 (t)
△
=
[ ∫ t

t−τM
xT (α) dα

∫ 0

−τM

∫ t

t+β
xT (α) dαdβ

]
.

From (16), we can see that Φ1l > 0, Φ2l > 0, Φ3l > 0,
Φ4l > 0. Then applying the inequalities in Lemma 5.1 in
[17], it leads to

−
∫ t−τ(t)

t−τM

xT (α)Φ1lx (α) dα 6 − (τM − τ (t)) ξT (t)

×
[
ϱ6Φ1lϱ

T
6 + 3 (ϱ6 − 2ϱ8) Φ1l (ϱ6 − 2ϱ8)

T
]
ξ (t) ,(20)

−
∫ t

t−τ(t)

xT (α)Φ1lx (α) dα 6 −τ (t) ξT (t)

×
[
ϱ5Φ1lϱ

T
5 + 3 (ϱ5 − 2ϱ7) Φ1l (ϱ5 − 2ϱ7)

T
]
ξ (t) ,(21)

−λ
∫ 0

−τM

∫ t

t+β

xT (α)T1x (α) dαdβ

6 − 2λ

τ2M
ξT (t) ϱ12T1ϱ

T
12ξ (t) , (22)

−τM
∫ t−τ(t)

t−τM

ẋT (α)Q2lẋ (α) dα

6 − τM
τM − τ (t)

ξT (t) Γ2Ξ (Q2l) Γ
T
2 ξ (t) , (23)

−τM
∫ t

t−τ(t)

ẋ (α)Q2lẋ (α) dα

6 − τM
τ (t)

ξT (t) Γ1Ξ (Q2l) Γ
T
1 ξ (t) , (24)

−
∫ 0

−τ(t)

∫ t

t+β

ẋT (α)Φ2lẋ (α) dαdβ

6 −ξT (t) f1 (Φ2l) ξ (t) , (25)

−
∫ −τ(t)

−τM

∫ t−τ(t)

t+β

ẋT (α)Φ2lẋ (α) dαdβ

6 −ξT (t) f2 (Φ2l) ξ (t) , (26)

− (τM − τ (t))

∫ t

t−τ(t)

ẋT (α)Φ2lẋ (α) dα

6 −
(
τM
τ (t)

− 1

)
ξT (t) Γ1Ξ (Φ2l) Γ

T
1 ξ (t) , (27)

−
∫ 0

−τ(t)

∫ t+β

t−τ(t)

ẋT (α)Q3lẋ (α) dαdβ

6 −ξT (t) g1 (Q3l) ξ (t) , (28)

−
∫ −τ(t)

−τM

∫ t+β

t−τM

ẋT (α)Q3lẋ (α) dαdβ

6 −ξT (t) g2 (Q3l) ξ (t) , (29)

−τ (t)
∫ t−τ(t)

t−τM

ẋT (α)Q3lẋ (α) dα

6 −
(

τM
τM − τ (t)

− 1

)
ξT (t) Γ2Ξ (Q3l) Γ

T
2 ξ (t) . (30)

Additionally, from (10), for matrices Y1 and Y2 with any
compatible dimensions the following equality holds:

0 = Sym
{
exp (−λt)

[
xT (t)Y T

1 + ẋT (t)Y T
2

]
× [Alx (t) + Blx (t− τ (t))

−Ble (tkh) + Clω (t)− ẋ (t)]} . (31)

In view of (19)-(31), it follows that

E {L {exp (−λt)V (x (t) , δ (t) , t)}}

6 E


r∑

i=1

r∑
j=1

ρjhihjξ
T (t) exp (−λt)

[
Θ1ijl +ΘT

2ijlΘ2ijl

+τ (t)Ψ1l + (τM − τ (t))Ψ2l] ξ (t)

− exp (−λt)
[
zT (t) z (t)− γ̃2ωT (t)ω (t)

]}
= E


r∑

i=1

r∑
j>i

ρjhihjξ
T (t)

[
exp (−λt)

(
Θ1ijl +

ρi
ρj

Θ1jil

+ΘT
2ijlΘ2ijl +

ρi
ρj

ΘT
2jilΘ2jil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l)] ξ (t)

+

r∑
i=1

r∑
j=i

ρih
2
i ξ

T (t)
[
exp (−λt)

(
Θ1iil +ΘT

2iilΘ2iil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l)] ξ (t)

− exp (−λt)
[
zT (t) z (t)− γ̃2ωT (t)ω (t)

]}
. (32)

Using Schur complement and Lemma 2, (13)-(14) imply that

0 > Θ1iil +ΘT
2iilΘ2iil + τ (t)Ψ1l + (τM − τ (t))Ψ2l,

(33)

0 > Θ1ijl +
1

ϕ
Θ1jil +ΘT

2ijlΘ2ijl + ϕΘT
2jilΘ2jil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l, (34)
0 > Θ1ijl + ϕΘ1jil +ΘT

2ijlΘ2ijl + ϕΘT
2jilΘ2jil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l. (35)

When ϕ = 1, as pointed out in Remark 2, the membership
functions used in the controller are the same with the fuzzy
plant and ρi

ρj
≡ 1. In this case, it can be obtained from (34)

and (35) that for i < j, the following inequality holds:

0 > Θ1ijl +Θ1jil +ΘT
2ijlΘ2ijl +ΘT

2jilΘ2jil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l. (36)
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When ϕ > 1, define ϱ1 =
ϕ−

(
ρi
ρj

)
ϕ− 1

ϕ

> 0, ϱ2 =

(
ρi
ρj

)
− 1

ϕ

ϕ− 1
ϕ

> 0.
Since ϕ > ρi

ρj
, it could be obtained from (34) and (35) that

for i < j, the following inequality holds:

0 > ϱ1

(
Θ1ijl +

1

ϕ
Θ1jil +ΘT

2ijlΘ2ijl

+
ρi
ρj

ΘT
2jilΘ2jil + τ (t)Ψ1l + (τM − τ (t))Ψ2l

)
+ϱ2

(
Θ1ijl + ϕΘ1jil +ΘT

2ijlΘ2ijl

+
ρi
ρj

ΘT
2jilΘ2jil + τ (t)Ψ1l + (τM − τ (t))Ψ2l

)
,

that is,

0 > Θ1ijl +
ρi
ρj

Θ1jil +ΘT
2ijlΘ2ijl +

ρi
ρj

ΘT
2jilΘ2jil

+τ (t)Ψ1l + (τM − τ (t))Ψ2l. (37)

It follows from (32), (33), (36) and (37) that for ϕ > 1, the
inequality is established as below:

E {L {exp (−λt)V (x (t) , δ (t) , t)}}
6 − exp (−λt)

[
zT (t) z (t)− γ̃2ωT (t)ω (t)

]
. (38)

Integrating both sides of (38) from 0 to t and taking the
expectation, it may be calculated that for each l ∈ M

E {exp (−λt)V (x (t) , δ (t) , t)}

6 E
{∫ t

0

exp (−λs)
[
−zT (s) z (s) + γ̃2ωT (s)ω (s)

]
ds

}
+E {V (x (0) , δ (0) , 0)} . (39)

Since λ > 0 and exp (−λs) < 0 for 0 < s < t 6 tp, it follows
from (39) that

0 < E {V (x (t) , δ (t) , t)}

< E
{
− exp (λt)

∫ t

0

zT (s) z (s) ds

}
+ exp (λt)

×E
[
V (x (0) , δ (0) , 0) + γ̃2

∫ t

0

ωT (s)ω (s) ds

]
(40)

6 exp (λtp)
(
a1S + γ̃2ω̂

)
. (41)

What’s more, it is hard to observe from (18) that

E {V (x (t) , δ (t) , t)} > min
l∈M

{λmin (Pl)} E
{
xT (t)Rx (t)

}
,

which is combined to (41) and (17) implies that

E
{
xT (t)Rx (t)

}
6 a1 exp (λtp)S + exp (λtp) γ̃

2ω̂

min
l∈M

{λmin (Pl)} E {xT (t)Rx (t)}
6 a2.

According to Definition 2, the CLFS is of FTB with regard
to (a1, a2, tp, R, ω̂), i.e. the condition (a) in Definition 3 is
guaranteed.

Moreover, under zero initial condition, it can deduce from
(40) that

0 < E
{
− exp (λt)

∫ t

0

zT (s) z (s) ds

+exp (λt) γ̃2
∫ t

0

ωT (s)ω (s) ds

}

< E
{
−
∫ t

0

zT (s) z (s) ds

+exp (λtp) γ̃
2

∫ t

0

ωT (s)ω (s) ds

}
,

which means that

E
{∫ tp

0

zT (t) z (t) dt

}
< γ2E

{∫ tp

0

ωT (t)ω (t) dt

}
,

where γ = γ̃
√
exp (λtp). Here, one can see that the condi-

tion (b) in Definition 3 is also ensured. Therefore, in light
of Definition 3, the CLFS

(
Σ̃
)

is of FTB with regard to
(a1, a2, tp, R, ω̂) and accords with a prescribed H∞ perfor-
mance level γ. This completes the proof.

Remark 5: Theorem 1 provides a bounded real lem-
ma for the resulting CLFS (10)-(12). To reduce the
conservatism of the obtained condition, some integral
inequalities introduced in Lemma 5.1 in [17], which
present tighter upper bounds than those gained by ex-
tended Wirtinger inequality or Jensen inequality in [27],
are employed in this paper. For the same reason, some
double integral terms, e.g., 1

τ2(t)

∫ 0

−τ(t)

∫ t

t+β
xT (α) dαdβ,

1
(τM−τ(t))2

∫ −τ(t)

−τM

∫ t−τ(t)

t+β
xT (α) dαdβ are introduced in the

state-augmented vector ξ (t).
Remark 6: Like most of the literature on the analysis of

Markov jump delayed systems, some mode-dependent ma-
trices (that is, P̂l, Q1l, Q2l, Q3l, Q4l) are employed in the
proposed Lyapunov functional. In the derivation of the weak
infinitesimal operator L, one has to ensure that Φυl > 0,
υ = 1, 2, 3, 4. In the existing results, such a condition (i.e.,
(16)) was not fully considered in presenting the main condi-
tions (like (13) and (14) in Theorem 1). Since it is easy to
see that −Φυl < 0, υ = 1, 2, 3, 4, the inequality conditions
(13) and (14) can become more feasible by adding some
terms including Φυl, υ = 1, 2, 3, 4, such as −ϱς+4Φ1lϱ

T
ς+4,

−3 (ϱς+4 − 2ϱς+6)Φ1l (ϱς+4 − 2ϱς+6)
T , −fς (Φ2l).

On the basis of the FTB H∞ performance analysis criterion
conducted above, we are now in a position to address the
design issue of an H∞ controller by using an ETCS. The fol-
lowing theorem therefore puts forward the sufficient condition
which ensures that the solutions to such an issue are existed.
Before presenting the Theorem 2, we first denote the following
functions, which will be used in Theorem 2 in the sequel,

Θ̄1ijl
△
= ϱ1

(∑
m∈M

πlmP̄1m

)
ϱT1 + Sym

{
ϱ1P̄1lϱ

T
2

}
+Sym

{
ϱ1P̄2 (ϱ1 − ϱ4)

T
}
− λϱ1P̄1lϱ

T
1

−λSym(ϱ1P̄2ϱ
T
11)− λϱ11P̄3ϱ

T
11

− 2λ

τ2M
ϱ12T̄1ϱ

T
12 + ϱ1

(
Q̄1l + τM T̄1

)
ϱT1 − ϱ4Q̄1lϱ

T
4

+
τ2M
2
ϱ2
(
2Q̄2l + Q̄3l + Q̄4l + T̄2 + τM T̄3

)
ϱT2

−
∑
ς=1,2

[
fς
(
Φ̄2l

)
+ gς

(
Q̄3l

)
+ Ūςijl

]
+ σlϱ3Ω̄lϱ

T
3
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−Γ

[
Ξ
(
Q̄2l

)
Ḡl

∗ Ξ
(
Q̄2l

) ]ΓT − ϱ9Ω̄lϱ
T
9 − γ̃2ϱ10ϱ

T
10,

Θ̄2ijl
△
= DilVϱT1 + FilK̃j (ϱ3 − ϱ9)

T
,

Ψ̄ςl
△
= −3 (ϱς+4 − 2ϱς+6) Φ̄1l (ϱς+4 − 2ϱς+6)

T

−ϱς+4Φ̄1lϱ
T
ς+4 + Sym

{
ϱ2P̄2ϱ

T
ς+4 + (ϱ1 − ϱ4) P̄3ϱ

T
ς+4

}
,

Ŝ △
= (1 + τM )λ2 + τMλ3 +

1

2
τ3Mλ4 +

1

3
τ3Mλ5

+
1

6
τ3Mλ6 +

1

2
τ2Mλ7 +

1

6
τ3Mλ8 +

1

6
τ3Mλ9,

Ūςijl
△
= Sym

{
θςϱςAilVϱT1 + θςϱςBilK̃j (ϱ3 − ϱ9)

T
}

+Sym
{
θςϱςCilVϱT10 − θςϱςVϱT2

}
,

R △
= diag {R,R} , I △

= diag {I, I} ,

Φ̄1l
△
= λQ̄1l + T̄1 −

∑
m∈M

πlmQ̄1m,

Φ̄2l
△
= λτM Q̄2l + Q̄4l + T̄2 − τM

∑
m∈M

πlmQ̄2m,

Φ̄3l
△
= λS̄l + (λτM + 1) T̄3 + λT̄2 −

∑
m∈M

πlmQ̄4m,

Φ̄4l
△
= λQ̄3l + T̄3 −

∑
m∈M

πlmQ̄3m.

Theorem 2: Given scalars λ > 0, γ̃ > 0, a1 > 0, a2 > 0,
ω̂ > 0, tp > 0, τM > 0, θ1, θ2, ϕ > 1, σl > 0, matrices J1 =[

J11 J12

J13 J14

]
, Jφ1 (φ1 = 2, 3, . . . , 8) and R > 0. Then

system (10)-(12) is of FTB with regard to (a1, a2, tp, R, ω̂) and
accords with a fixed H∞ performance level γ = γ̃

√
exp (λtp).

The gain matrices of the controller (8) are Kj = K̃jV−1 with
the event-triggerd parameters Ωl = V−T Ω̄lV−1, if there exist
scalars λφ2 (φ2 = 1, 2, . . . , 9), matrices K̃j , Ω̄l, V , Ḡl, sym-

metric matrices P̄l =

[
P̄1l P̄2

∗ P̄3

]
> 0, Q̄1l > 0, Q̄2l > 0,

Q̄3l > 0, Q̄4l, T̄1 > 0, T̄2, T̄3 satisfying Q̄4l+T̄2+τM T̄3 > 0,
such that the following LMIs hold for ς = 1, 2, υ = 1, 2, 3, 4,

ζ = 1, 2, 3, each l ∈ M, i, j = 1, 2, · · · , r, i < j, ϖ ∈
{
ϕ, 1

ϕ

}
[

Θ̄1iil + τM Ψ̄ςl Θ̄T
2iil

∗ −I

]
< 0, (42)

 Θ̄1ijl +ϖΘ̄1jil + τM Ψ̄ςl Θ̄T
2ijl

√
ϕΘ̄T

2jil

∗ −I 0

∗ ∗ −I

 < 0, (43)

[
Ξ
(
Q̄2l + Φ̄2l

)
Ḡl

∗ Ξ
(
Q̄2l + Q̄3l

) ] > 0, (44)

Φ̄υl > 0, υ = 1, 2, 3, 4, (45)

exp (λtp)
(
Ŝa1 + γ̃2ω̂

)
< a2λ1, (46)[

−P̄l VT ⊗ I
∗ −R−1

λ1
⊗ I

]
< 0, (47)

[
−λ2R I

∗ J1P̄lJ T
1 − Sym

{
J T
1 (V ⊗ I)

} ] < 0, (48)

[
−λυ+2R I

∗ Jυ+1Q̄υlJ T
υ+1 − Sym

{
Jυ+1VT

} ] < 0,

(49)[
−λζ+6R I

∗ Jζ+5T̄ζJ T
ζ+5 − Sym

{
Jζ+5VT

} ] < 0. (50)

Proof: Define Y1
△
= θ1V−1, Y2

△
= θ2V−1, K̃j

△
= KjV , V̄ △

=

diag {V,V,V} , P̄l
△
= (V ⊗ I)T P̂l (V ⊗ I) , Ḡl

△
= V̄TGlV̄ ,

Ω̄l
△
= VTΩlV, Q̄υl

△
= VTQυlV , υ = 1, 2, 3, 4, T̄ζ

△
= VTTζV ,

ζ = 1, 2, 3, and V̂ △
= diag {V,V,V,V,V,V,V,V,V, I}. Then,

pre- and post-multiplying (42) by diag
{
V̂−T , I

}
and its trans-

pose respectively, it is easy to obtain (13). Using the same way,
pre- and post-multiplying (43) by diag

{
V̂−T , I, I

}
and its

transpose respectively, (44) by diag {V,V,V,V,V,V}−T and
its transpose, (45) by diag {V,V,V,V}−T and its transpose,
respectively, we can get (14)-(16).

Using Schur complement, it could be observed from (47)
that

−P̄l + λ1 (V ⊗ I)T R (V ⊗ I) 6 0. (51)

Pre- and post-multiplying (51) by (V ⊗ I)−1 and its transpose,
we can get that −P̂l + λ1R 6 0, which implies that

min
l∈M

{λmin (Pl)} > λ1. (52)

Additionally,

J1P̄lJ T
1 − Sym

{
J T
1 (V ⊗ I)

}
> − (V ⊗ I) P̄−1

l (V ⊗ I)T

= −
{
(V ⊗ I)−T

P̄l (V ⊗ I)−1
}−1

. (53)

Combining (48) with (53) and using Schur complement, it
follows that −λ2R + (V ⊗ I)−T

P̄l (V ⊗ I)−1 6 0, that is,
−λ2I + Pl 6 0, which means that

max
l∈M

{λmax (Pl)} 6 λ2. (54)

Following a similar line, one can obtain from (49)-(50) that

max
l∈M

{λmax (Qυl)} 6 λυ+2, υ = 1, 2, 3, 4, (55)

λmax (Zζ) 6 λζ+6, ζ = 1, 2, 3. (56)

Combining (44), (52) and (54)-(56), one can get (17). This
completes the proof.

Remark 7: By means of Theorem 2, the designed method to
the desired fuzzy-model-based controller of the form in (7) is
presented for the underlying system (1)-(2). In order to convert
the design problem into a convex optimization problem readily
solved by the standard software, some scalars are introduced in
the derivation, such as λφ2 (φ2 = 1, 2, . . . , 9) . A possible way
to reduce the conservativeness is to replace these scalars with
some matrices, which could be considered as an extension of
the paper in the future.
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IV. NUMERICAL EXAMPLES

Two examples are given in this section. In the first example,
we investigate the relationship of σl, ϕ, τM , γ and obtain some
conclusions. In the second example, a nonlinear mass-spring-
damper mechanical system (MSDMS) is provided to explain
the effectiveness and practicability of our theoretical results.

Example 1: Consider the FMJSs (1)-(2) with r = 2, m̄ = 2
and the following parameters:

A11 =

[
−2.4 1.2

−0.9 −2.25

]
, A12 =

[
−2.1 0.45

1.95 0

]
,

A21 =

[
−1.35 0.75

−0.48 −1.2

]
, A22 =

[
−1.575 1.2

−0.225 −1.95

]
,

B11 =
[
0.24 0.5

]T
, B12 =

[
0.15 0.3

]T
,

B21 =
[
0.63 1.4

]T
, B22 =

[
0.45 0.13

]T
,

C11 =

[
0.5 0.4

0.2 0.3

]
, C12 =

[
0.1 0.6

0.8 0.7

]
,

C21 =

[
0.15 0.32

0.54 0.21

]
, C22 =

[
0.16 0.23

0.3 0.45

]
,

D11 = D12 =
[
0 −0.1

]
, D21 = D22 =

[
0.1 0

]
,

F11 = F12 = 0.1, F21 = F22 = 0.3,

π11 = −0.1, π22 = −0.8.

The fuzzy basis functions are given as

h1 (x1 (t)) = 1− x21 (t)

0.81652
, h2 (x1 (t)) =

x21 (t)

0.81652
,

where x1 (t) ∈ [−0.8165, 0.8165].

Algorithm I: Maximizing τM
Step I: Given some values for scalars λ, γ̃, a1, a2, ω̂,
tp, θ1, θ2, ϕ, σl, matrices Jφ1 (φ1 = 1, 2, . . . , 8) and R.
Step II: Given an accuracy coefficient ∆τ and
a search upper bound τ+ for τM . Then let τ− = 0.
Step III: Let τ = τ−+τ+

2
and solve the LMIs in Theorem 2.
Step IV: If LMIs in Theorem 2 are feasible and
τ − τ− 6 ∆τ , then τM max = τ , End; else go to Step V.
Step V: If LMIs in Theorem 2 are feasible and
τ − τ− > ∆τ , then let τ− = τ and go back to Step III;
else go to Step VI.
Step VI: If LMIs in Theorem 2 are unfeasible and
τ − τ− > ∆τ , then let τ+ = τ and go back to Step III;
else let τ = τ− and solve the LMIs in Theorem 2.
Step VII: If LMIs in Theorem 2 are feasible, then
τM max = τ , End; else restart Step I with other values.

Let λ = 0.1, θ1 = θ2 = 1, a1 = 1, a2 = 1.5, tp = 10,
ω̂ = 0.64, J11 = J14 = diag {0.1, 0.1}, J12 = J13 = 0,
Jφ1

= diag {1, 1} (φ1 = 2, 3, . . . , 8) and the exogenous

disturbance input ω (t) =
[ √

0.032
1+t2

√
0.032
1+t2

]T
. Then we

can see that
∫ tp
0
ωT (t)ω (t) dt 6 ω̂ = 0.64. Firstly, applying

Theorem 2 with γ̃ = 0.5, the relationship between τM ,
σl (l = 1, 2) and ϕ is analyzed with the aid of Algorithm I. The

TABLE I
MAXIMUM VALUE OF τM FOR DIFFERENT σl (l = 1, 2) AND ϕ IN

EXAMPLE 1

τM max σl = 0 σl = 0.10 σl = 0.15 σl = 0.25

ϕ = 1.0 1.2416 0.6992 0.6143 0.4471
ϕ = 1.5 0.7609 0.1718 0.0703 0.0123
ϕ = 2.0 0.7298 0.1246 0.0421 0.0058

TABLE II
MINIMUM VALUE OF γ FOR DIFFERENT σl (l = 1, 2) AND ϕ IN EXAMPLE 1

γmin σl = 0 σl = 0.10 σl = 0.15 σl = 0.25

ϕ = 1.0 0.0239 0.1810 0.2640 0.5492
ϕ = 1.5 0.1340 0.9014 1.3300 2.5034
ϕ = 2.0 0.1570 1.0041 1.6495 2.5974

Fig. 1. τM max for different σl (l = 1, 2) and ϕ in Example 1.

corresponding computation results are shown in Table I and
Fig. 1, respectively. As clearly shown in Table I and Fig. 1, the
maximum value of τM is decreasing with σl or ϕ increasing.

Moreover, using the similar method, the minimum optimal
H∞ performance γ can be computed by Theorem 2 with τM =
0.3 for different σl (l = 1, 2) and ϕ, that are presented in Table
II and Fig. 2, respectively. From Table II and Fig. 2, it is
obvious that the minimum value of γ is increasing with σl or
ϕ increasing.

Remark 8: It should be pointed out that from Table I and Ta-
ble II, we can find that the parameter ϕ affects the performance
of the system. It indirectly shows that the consideration of
asynchronous premise variables is necessary and reasonable.

Remark 9: From Table I and Table II, one can also observe
that the maximum value of τM and the minimum value of
γ are obtained at σl = 0. It is worth noting that when
σl = 0, as pointed out in Remark 2, the communication
scheme is time-triggered, i.e., all the SD are transmitted to the
controller. These facts imply that when the network bandwidth
is adequate, the system can acquire better performance by
using TTCS rather than ETCS. However, it is worth pointing
out that in NCSs, the communication bandwidth is a scarce
resource and in this case, the TTCS may be unavailable.
Fortunately, the ETCS can be employed to effectively reduce
the usage of bandwidth, which will be demonstrated in the
later.

Further, fixing τM = 0.3, σ1 = σ2 = 0.3, γ̃ = 0.7, ϕ = 1,
the sampling time h = 0.12 and the other parameters are
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Fig. 2. Minimum value of γ for different σl (l = 1, 2) and ϕ in Example 1.
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Fig. 3. State responses of the open-loop system in Example 1.

the same as the former. The corresponding trigger parameters
and gain matrices of the controller (8) can be computed by
Theorem 2, which are listed as below:

Ω1 =

[
11.5949 −14.0135

−14.0135 30.1296

]
,K1 =

[
0.2022

−0.4383

]T
,

Ω2 =

[
68.9458 −29.6763

−29.6763 36.4576

]
,K2 =

[
0.1740

−0.4112

]T
.

Firstly, the state responses of the open-loop system in Fig. 3
indicate that the open-loop system is not FTB. Then, under the
obtained trigger parameters and gain matrices of the controller
(7), the transmit interval is plotted in Fig. 4. The state respons-
es of the CLFS, xT (t)Rx (t) and possible mode evolution are
plotted in Fig. 5, where x (0) =

[
−0.4 0.8

]T
. From Fig.

4, we can compute that only about 4.8077% of all SD are
transmitted to the controller within simulation duration 50s,
which testifies that the ETCS can effectively reduce the usage
of bandwidth. From Fig. 5, we can see that the CLFS is of
FTB, which means that the developed design approach in this
work is effective.

Example 2: Consider the following nonlinear MSDMS
modified from [14], which is illustrated in Fig. 6.

Mθ̈ (t) +D
(
θ̇ (t)

)
θ̇ (t) + kθ (t) = ψ1u (t) + ψ2ω1 (t) ,

where the physical meaning and nominal values of the param-
eters are given in Table III.

Moreover, in this paper, we assume that k is unknown but
have four different modes, i.e. 100%, 102%, 104% and 108%
of its nominal values. The switching between four different
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Fig. 4. Transmit interval in Example 1.
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Fig. 5. State responses of the CLFS and mode evolution in Example 1.

Fig. 6. MSDMS in Example 2.

TABLE III
PHYSICAL MEANING AND NOMINAL VALUES OF THE MSDMS’S

PARAMETERS

Physical meaning Parameter Nominal value

Relative position of the mass θ (t) ——
External force u (t) ——
Exogenous disturbance input ω1 (t) ——
Mass of this system M 1kg

Stiffness of the spring k 0.1N/mm

Input coefficient ψ1 1

Exogenous disturbance
input coefficient ψ2 1

Damping coefficient

of the nonlinear damper D
(
θ̇ (t)

)
0.5 + 0.75θ̇2 (t)

modes is assumed to follow a Markov process with the TPM
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Π given as:

Π =


−0.3 0.15 0.05 0.1

0.1 −0.2 0.05 0.05

0.03 0.04 −0.1 0.03

0.3 0.1 0.4 −0.8

 .
Choosing the augmented state as x (t) =[
x1 (t) x2 (t)

]T
=

[
θ̇ (t) θ (t)

]T
, a state-space

representation of the MSDMS can be yielded as follows:

ẋ1 (t) =
(
−0.75x21 (t)− 0.5

)
x1 (t) + u (t)

−0.1 (1 + µ (δ (t)))x2 (t) + ω1 (t) , (57)
ẋ2 (t) = x1 (t) , (58)

where

µ (δ (t) = 1) = 0.0, µ (δ (t) = 2) = 0.02,

µ (δ (t) = 3) = 0.04, µ (δ (t) = 4) = 0.08.

Choosing ω (t) as ω (t) =
[
ω1 (t) ω1 (t)

]T and by adopt-
ing the same fuzzy sets used in [14], the system (57)-(58) can
be reconstructed as follows:

Plant rule 1: IF x1 (t) is about Γ1, THEN

ẋ (t) = A1 (δ (t))x (t) +B1 (δ (t))u (t) + C1 (δ (t))ω (t) ,

z (t) = D1 (δ (t))x (t) + F1 (δ (t))u (t) .

Plant rule 2: IF x1 (t) is about Γ2, THEN

ẋ (t) = A2 (δ (t))x (t) +B2 (δ (t))u (t) + C2 (δ (t))ω (t) ,

z (t) = D2 (δ (t))x (t) + F2 (δ (t))u (t) ,

where Γ1, Γ2 are defined in [14] and

A1 (δ (t)) =

[
−0.5 −0.1 (1 + µ (δ (t)))

1.0 0.0

]
,

A2 (δ (t)) =

[
−1.0 −0.1 (1 + µ (δ (t)))

1.0 0.0

]
,

B1 (δ (t)) = B2 (δ (t)) =
[
1.0 0.0

]T
,

C1 (δ (t)) = C2 (δ (t)) = diag {1.0, 0.0} ,
D1 (δ (t)) = D2 (δ (t)) =

[
1.0 2.0

]
,

F11 = 0.1, F12 = 0.2, F13 = −0.1,

F14 = 0.3, F21 = 0.2, F22 = 0.3,

F23 = −0.7, F24 = 0.7, δ (t) = 1, 2, 3, 4.

In addition, let the exogenous disturbance input be ω1 (t) =√
0.032
1+t2 . Applying Theorem 2 with the following parameters
γ̃ = 0.8, σl = 0.3 (l = 1, 2, 3, 4), λ = 0.1, ϕ = 1,
θ1 = θ2 = 1, τM = 0.3, a1 = 1, a2 = 3, tp = 10,
ω̂ = 0.64, J11 = J14 = diag {0.1, 0.1}, J12 = J13 = 0,
Jφ1 = diag {1, 1} (φ1 = 2, 3, . . . , 8), the corresponding trig-
ger parameters and gain matrices of the controller (8) are
obtained:

Ω1 =

[
36.3029 21.3056

21.3056 14.7233

]
,Ω2 =

[
36.0814 21.2761

21.2761 14.7033

]
,

0 10 20 30 40 50 60 70
t(s)

0

2

4

6

8

10

T
ra

ns
m

it 
in

te
rv

al

Fig. 7. Transmit interval in Example 2.
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Fig. 8. State responses of the CLFS and mode evolution in Example 2.

Ω3 =

[
31.8305 19.4141

19.4141 13.1587

]
,Ω4 =

[
43.9538 25.2538

25.2538 18.5945

]
,

K1 =
[
−1.5243 −0.9808

]
,K2 =

[
−1.5330 −1.0134

]
.

Under the obtained trigger parameters and gain matrices of
the controller (7), the transmit interval is plotted in Fig. 7. The
state responses of the CLFS, xT (t)Rx (t) and possible mode
evolution are plotted in Fig. 8 where x (0) =

[
−0.1 0.8

]T
.

From Fig. 7, it can compute that only about 6.6895% of all
SD are transmitted to the controller within simulation duration
70s, which means that the communication burden is largely
reduced by using the proposed ETCS. From Fig. 8, one can
see that the CLFS is of FTB, which indicates the availability
of the developed design approach.

V. CONCLUSIONS

The issue of event-triggered finite-time H∞ control for
T-S FMJSs with asynchronous premises is investigated in
this paper. The ETCS is employed to reduce the communi-
cation burdens. By using the asynchronous premise recon-
struct method, the asynchronous constraints on membership
functions are well utilized. Moreover, by utilizing finite-time
analysis theory and Lyapunov–Krasovskii approach, some suf-
ficient conditions for finite-time boundness with a prescribed
H∞ performance analysis of the considered system have been
derived and the corresponding H∞ controller design have
been carried out. Finally, both a numerical example and a
nonlinear MSDMS are provided to show the utilizability and
practicability of our theoretical results. It is noteworthy that the
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results presented in this work can be broadly extended to more
complex FMJSs, such as FMJSs with parametric uncertainties,
fuzzy semi-MJSs and delayed FMJSs, which deserves further
exploration.
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