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ABSTRACT   

The capability to achieve high count rates has become an imperative in the most areas where near-infrared single-photon 

counters are required to detect photons up to 1.7 µm. Hence, afterpulsing mitigation is a dominant theme in recent works 

concerning systems based on InGaAs/InP SPADs. Given the challenges inherent in reducing the density of defects that 

give rise to the carrier trapping events causing afterpulsing, the only viable approach is to reduce the potential number of 

carriers that can be trapped by limiting the charge flow per avalanche event.  

In this paper we present a sine-wave gating system based on the balanced detector configuration. The gate frequency is 

programmable in a wide range (1.0 – 1.6 GHz) for allowing synchronization with an external laser system and for exploring 

the best trade-off between afterpulsing and photon detection efficiency. The long-term stability can be achieved with a 

stable cancelation of the gate feedthrough. In this work this is guaranteed by a feedback loop that continuously monitors 

the residual output power at the gate frequency and adjusts the amplitude and phase of the two sinusoids fed to the SPAD-

dummy couple. 
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1. INTRODUCTION  

 

Single-photon detectors with high count rate (greater than a few Mcount/s), high photon detection efficiency (PDE >30%) 

at the near-infrared wavelengths (1 µm – 1.7 µm), low noise (few kcount/s), and narrow temporal response (full-width at 

half maximum – FWHM – lower than 100 ps) are key enabling technologies in many applications (e.g. Quantum Key 

Distribution – QKD). Currently, many research laboratories exploits superconducting nanowire single-photon detectors 

(SNSPDs), which withstand high count rates and are operated in free-running mode, but need to be cooled at cryogenic 

temperature (< 4 K), forcing to use bulky cryostats that impair their applicability at a larger scale. For widespread 

deployment of QKD systems, InGaAs/InP Single-Photon Avalanche Diodes (SPADs), suitable for compact and reliable 

single-photon counters, are the only practical solution. The bottleneck for high throughput QKD with InGaAs/InP SPADs 

is still their strong afterpulsing, which is due to deep levels, present in the InP multiplication region, where charge carriers 

can be trapped even for few microseconds. Afterpulsing can be reduced either by increasing the hold-off time after each 

avalanche ignition, though strongly limiting the count rate, or by reducing the charge per avalanche. The latter approach 

guarantees excellent results in terms of count rate (>100 Mcps). 

Short gating techniques exploit sub-ns gate pulses to quench the avalanche during its build-up, thus abruptly reducing the 

number of charge carriers that can be trapped. However, owing to the capacitive feed-through of gate pulses, the signal at 

discriminator input includes a small avalanche pulse (whose amplitude is just few millivolts) and a strong disturbance 

(whose amplitude is orders of magnitude higher than the avalanche pulse). Various solutions have been reported in 

literature, including: i) self-differencing circuits [1],[2], which require fine-tuned delays; ii) notch filters at the gate 

frequency and its harmonics [3]. However, hardware changes either on self-differencing delays or notch filters are needed 
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to adjust the gate frequency (e.g. when changing the frequency of the photon source). Conversely, broadband circuit 

solutions such as the harmonic subtraction technique [4] and the balanced detector configuration [5], which actively 

synthetize a signal that cancels the gate feedthrough, permit to adjust the gate frequency in a wide range and synchronize 

it to an external photon source. 

In ref. [4] we presented an experimental setup for GHz sinusoidal gating of an InGaAs/InP SPAD that exploits the balanced 

detector configuration [6] for cancelling the spurious capacitive coupling from the gate driver to the discriminator input. 

In detail, at a gating frequency of 1.3 GHz, we achieved very low afterpulsing probability (<1.5%), high dynamic range 

(maximum count rate is 650 Mcount/s), high photon detection efficiency (PDE >30% at 1550 nm), low and low timing 

jitter (<70 ps FWHM). Here we describe an improved version of such circuit, capable of operating continuously in real 

settings thanks to a feedback control loop that guarantees the long-term stability of the gate feedthrough cancelation. 

2. BALANCED DETECTOR CONFIGURATION 

 

In the balance detector configuration (Figure 1) the InGaAs/InP SPAD is paired with a “dummy” structure, i.e. a diode 

that mimics the electrical response of the detector, but it is insensitive to photons. The diodes are both reverse biased at 

the SPAD breakdown voltage, while two opposite sinusoids are AC coupled to their anodes. The SPAD gate feed-through 

is balanced with its own anti-phase copy (propagating through the “dummy” path) at the common cathode node, i.e. where 

the avalanche signal is picked-up. The SPAD is periodically biased above its breakdown voltage by the gate signal, while 

the “dummy” is always under its breakdown voltage. 

The system here described has been characterized with a 25 μm active area diameter InGaAs/InP SPAD developed at 

Politecnico di Milano [7]. In order to maximize the matching between the SPAD and dummy electrical responses and, 

eventually, the gate feedthrough cancelation quality, we fabricated both diodes in the same chip. The “dummy” is another 

p-n junction with breakdown voltage about 10 V higher than that of the SPAD. SPAD and “dummy” diodes have a common 

cathode contact on the chip backside and separate anode contacts on the chip frontside. Therefore the “dummy” mimics 

very well the parasitic capacitances and inductances, but no avalanche is triggered in it, since we never apply voltages 

exceeding its breakdown level (i.e. the maximum gate amplitude is lower than 10 V). The SPAD-dummy chip is mounted 

on a three-stage thermoelectric cooler and packaged in a hermetically sealed TO-8 package. Figure 2 compares the 

transmission responses from the SPAD and dummy anodes to the common-cathode at gate frequencies up to 4 GHz. So, 

referring to Figure 1, the forward transmission coefficient S31 is a measure of the power at port 3 when an RF stimulus is 

sent to port 1, while port 2 is terminated into 50 Ω. Similarly, S32 is the forward transmission coefficient between port 3 

and 2, while port 1 is terminated into 50 Ω. 

 
Figure 1. Simplified block diagram of the SPAD-dummy balanced configuration for cancelling the capacitive coupling of 

the gate at the discriminator input. LPF = low pass filter, SAW BPF = surface acoustic wave band pass filter. 



 

 
 

 

Despite the high degree of symmetry between the SPAD and dummy paths shown in Figure 2, component tolerances and 

temperature drifts may introduce some residual mismatches. Therefore, the relative amplitude and phase of the two 

sinusoids need to be finely adjusted for achieving a good cancellation. 

3. GATE SUPPRESSION FACTOR 

In order to avoid missing the small pulses due to avalanches triggered towards the end of the gate signal, a low discriminator 

threshold (<10 mV) is needed. We introduce a quantity called gate suppression (GS) factor, defined as the ratio between 

the gate power at the readout node with the dummy sinusoid off and disturbance power with the dummy sinusoid on: 

GS=10 log
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where A is the gate amplitude attenuated by the forward transmission coefficient S31, ω/2π is the gate frequency and V(t) 

is the disturbance voltage waveform, i.e. the combination of the two gate sinusoids sent to the SPAD and dummy: 

V(t)=A∙sin(ω∙t)+A∙(1+ε) ∙ sin(ω∙t+π+φ) 

As a reference, we consider an InGaAs/InP SPAD gated with a 14 V peak-to-peak sinusoid (i.e. 27 dBm) at 1.3 GHz and 

a discrimination threshold of 5 mV (-36 dBm). As shown in Figure 2, at 1.3 GHz the forward transmission coefficient S31 

is equal to -10 dB. Hence, the gate power at the discriminator input with the dummy sinusoid off would be 17 dBm (i.e. A 

= 2.24 V) and the gate suppression GS must be at least 53 dB. To achieve such a good cancellation, the resolution of the 

relative amplitude and phase control has to be very tight. If we neglect the amplitude difference (i.e. ε = 0), the disturbance 

amplitude is 2·A·sin(0.5φ), whose first term of the Taylor expansion, calculated in φ = 0, is Aφ. Hence, for a gate 

suppression of 53 dB, the phase control resolution must be about 2 mrad (i.e. 0.1°). Similarly, neglecting the phase shift 

(i.e. φ = 0), the amplitude error must be about 0.2%, i.e. 15 mV. 

Figure 3 reports the gate feedthrough power at the common cathode output measured by a spectrum analyzer. At t = 0 s two 

sinusoids of the same amplitude (27 dBm) and frequency (fG = 1.3 GHz), but with a phase difference of π+φ = 120°, are 

fed to the two anodes. It can be demonstrated that in such condition the gate feed-through power is 17 dBm (i.e. 27 dBm 

+ S31(fG) + 10log10(2+2cos(120°))). At t = 10 s, the feedback control loop starts minimizing the gate feed-through power 

by adjusting the relative amplitude and phase of the two sinusoids with progressively smaller step sizes. Once the gate 

feedthrough has been reduced below the desired avalanche discrimination threshold, the feedback loop keeps monitoring 

and adjusting the relative amplitude and phase shift to compensate for temperature drifts. 

 
Figure 2. S31: forward transmission coefficient from the SPAD anode port to the common-cathode port (dummy anode 

port terminated into 50 Ω). S32: forward transmission coefficient from the dummy anode port to the common-cathode port 

(dummy anode port terminated into 50 Ω). 



 

 
 

 

4. AVALANCHE SIGNAL 

 
Figure 4 shows a 1 µs oscilloscope trace acquired at the discriminator input. Thanks to the very low noise level (below 

1 mV), almost all avalanche events are distinguishable from the noise floor. However, the amplitude of the avalanche 

signals can be seen to vary widely from one avalanche event to another. This distribution has direct bearing on the excess 

bias that is not constant within the gate, and underscores the importance of a low discrimination threshold for preserving 

low-jitter temporal response of the detector. 

5. CONCLUSIONS 

 

We presented a photon-counting system based on InGaAs/InP SPADs gated by a high frequency sinusoid. The joint use 

of a balanced detector configuration, with SPAD and “dummy” integrated in the same chip, and proper fine-tuning of the 

relative amplitude and phase shift guarantees to achieve a good suppression of the gate signal coupling, thus allowing for 

detecting avalanches with low threshold. Moreover, this configuration allows to adjust the gating frequency in a wide 

range, from 1 to 1.6 GHz, with the gate sinusoid that can be different from that of the photon source. Finally, a feedback 

control loop automatically optimizes the gate feed-through suppression in order to have a stable system that can operate 

continuously in real settings. 
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Figure 3. Short-term monitoring of gate feed-through at the readout node. The feedback control loop is turned ON at t = 10 s. 
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Figure 4. Output signals after gate feed-through cancellation. The second plot shows avalanche “1” on faster time-scale. 


