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Abstract—Mobile traffic generated by a variety of services is
rapidly increasing in volume. Both network and computation
resources in a single edge network are therefore often too limited
to provide the desired Quality of Service (QoS) to mobile users.
In this paper, we propose a mathematical model, called JSNC,
to perform an efficient joint slicing of mobile network and edge
computation resources. JSNC aims at minimizing the total latency
of transmitting, outsourcing and processing user traffic, under
the constraint of user tolerable latency for multiple classes of
traffic. The constraints of network, link and server capacities are
considered as well. The optimization model results in a mixed-
integer nonlinear programming (MINLP) problem. To tackle it
efficiently, we perform an equivalent reformulation, and based
on that, we further propose two effective heuristics: Sequential
Fixing (SF), which can achieve near-optimal solutions, and a
greedy approach which obtains suboptimal results with respect
to SF. Both of them can solve the optimization problem in a
very short computing time. We evaluate the performance of the
proposed model and heuristics, showing the impact of all the
considered parameters (viz. different types of traffic, tolerable
latency, network topology and bandwidth, computation and link
capacity) on the optimal and approximate solutions. Numerical
results demonstrate that JSNC and the heuristics can provide
efficient resource allocation solutions.

Index Terms—Network slicing, edge computing, joint alloca-
tion, hierarchical network structure.

I. INTRODUCTION

5G networks aim to meet different users’ Quality of Service
(QoS) requirements in several different application scenarios
and use cases. Among the others, latency is certainly one
of the key QoS requirements that mobile operators have
to deal with. In fact, the classification devised by the In-
ternational Telecommunications Union-Radio communication
Sector (ITU-R), shows that mission-critical services depend
on strong latency constraints. For example, in some use cases
(e.g., autonomous driving), the tolerable latency is expected
to reach less than 1 ms [1].

To address such constraints various ingredients are emerg-
ing. First of all, through Network Slicing, the physical net-
work infrastructure can be split into several isolated logical
networks, each dedicated to applications with specific latency
requirements, thus enabling an efficient and dynamic use of
network resources [2].

Second, Multi-access Edge Computing (MEC) provides an
IT service environment and cloud-computing capabilities at
the edge of the mobile network, within the Radio Access
Network and in close proximity to mobile subscribers [3]. By

combining MEC and network slicing, we have the possibility
to address strong latency requirements of critical services
still ensuring highly efficient network operation and service
delivery, and offering an improved user experience.

In this line, we study the case of a complex network
organized in multiple edge clouds, each of which connected to
the Radio Access Network of a certain location. All such edge
clouds are connected through various topologies, typically
organized in some kind of hierarchy. This way, each edge
cloud can serve end user traffic by relying not only on its
own resources, but also offloading some traffic to its neighbors
when needed. We specifically consider multiple classes of
traffic and corresponding requirements, including voice, video,
web, among others. For every class of incoming traffic, the
corresponding edge cloud decides whether to serve it or to
offload it to some other edge cloud node. This decision
depends on the QoS requirements associated to the specific
class of traffic and on the current status of the edge cloud.

Our main objective is to ensure that the infrastructure is
able to serve all possible types of traffic within the boundaries
of their QoS requirements and of the available resources.
Therefore, our resource allocation approach, which we call
JSNC-Joint Slicing Network and Computation, aims at min-
imizing the total traffic latency of transmitting, outsourcing
and processing user traffic, under a constraint of user tolerable
latency for each class of traffic. This optimization turns out
to be a mixed-integer nonlinear programming (MINLP) one,
which is an NP-hard problem [4]. To tackle this challenge,
we transform it into an equivalent mixed-integer quadratically
constrained programming (MIQCP) problem, which can be
solved more efficiently by the Branch and Bound method.
Based on this reformulation, we further propose an effective
heuristic, named Sequential Fixing, that permits obtaining
near-optimal solutions in a very short computing time, even for
the large-scale scenarios. Furthermore, we propose a simple
heuristic, based on a greedy approach, that obtains slightly
suboptimal solutions with respect to the sequential fixing
approach, and still very fast. Finally, we systematically analyze
and discuss with a thorough numerical evaluation the impact
of all considered parameters (viz. different types of traffic, tol-
erable latency, network topology and bandwidth, computation
and link capacity) on the optimal and approximate solutions
obtained from our proposed model and heuristics. Numerical
results demonstrate that our proposed model and heuristics can



provide very efficient resource allocation solution for multiple
edge networks.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III introduces the
network system architecture we consider. Section IV illustrates
the proposed mathematical model and heuristics. Section V
discusses numerical results in a set of typical network topolo-
gies and scenarios. Finally, Section VI concludes the paper.

II. RELATED WORK

Workload offloading, that is, the possibility to delegate
to other nodes the management of a certain workload, is
considered in other approaches along with resource manage-
ment (see [5]–[10]). More specifically, in [5], the authors
propose to exploit mobile edge computing for jointly optimiz-
ing computation offloading, resource allocation and content
caching in cellular networks. In [6] the on-line joint radio
and computational resource allocation problem is studied with
the goal to minimize the long-term average weighted sum
of power consumption of the mobile devices and the MEC
server. In [7], the authors investigate a MEC system with
energy harvesting devices, and propose to jointly consider the
offloading decision and allocation of the CPU-cycle frequen-
cies and transmit power. The work in [8] aims at optimizing
energy efficiency by a joint design of virtual computational
resources, transmit beamforming, Remote Radio Head (RRH)
selection, and RRH-user association. In [9], a framework is
proposed to perform workload offloading decisions for mobile
users and optimize the resource usage of mobile edge and
the cloud by considering the tradeoff between system delay
and cost. Finally, the authors of [10] study the task admission
and resource allocation for MEC, while minimizing the energy
consumption under the latency constraints of devices.

While the papers mentioned above mainly consider a single
MEC system, in [11], the authors study task offloading and
wireless resource allocation in an environment with multiple
MEC servers. The work in [12] investigates collaborative
computation offloading in a multi-access edge computing
environment, while [13] studies the computing task offloading
in the context of small-cell base-station (SBS) networks, where
each SBS is equipped with an MEC server. However, they only
consider flat MEC nodes.

Differently from the above discussed related work, in this
paper we address the resource orchestration/allocation problem
in 5G networks leveraging both network slicing and MEC.
We explicitly model the delay due to computational resources
and workloads in a multiple MEC system encountered by the
mobile traffic at the access part of the mobile network (i.e.,
within network slices) as well as in the MEC. The scenario
we model and analyze is more realistic compared to the others
we have mentioned and, therefore, it results in an allocation
approach that is more precise than the others.

III. NETWORK SYSTEM ARCHITECTURE

Figure 1 illustrates our reference network system archi-
tecture. We consider a multiple edge network composed of
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Fig. 1: Network System architecture.

edge points. Each edge point i includes both an edge mobile
network of a specific capacity Ci and a co-located edge cloud
of computation capacity Si. We assume that different users’
traffics are aggregated according to their service types. Differ-
ent slices of the mobile network capacity Ci and edge cloud
computation capacity Si can be allocated to serve different
types of user traffic based on the Service Level Agreements
(SLAs) or user requirements, the colors in the figure represent
such slicing. Each link l between different edge points has a
fixed bandwidth, denoted by Bl.

The JSNC model is defined from the perspective of a user
ingress point (the one in the dash square box of the figure)
that is receiving user traffic and, when needed, offloads it
to the other interconnected edge clouds. The same modeling
approach can be applied to any of the edge points in the figure
when they receive traffic from their connected edge network.

From the ingress edge network, all types of user traffic can
be split and processed on all edge clouds. The red dashed
arrows shown in the figure represent a possible outsourcing
path of some traffic pieces.

In our scenario, we assume that the available network capac-
ity and computation capacity of each edge network are known,
for example through broadcast messages exchanged in the
network. The bandwidth of each link in the network topology
can be also estimated through periodic measurements. How-
ever, in real scenarios, these network parameters would change
dynamically. We cope with this problem by considering a time-
slotted system, where time is divided into equal-length slots
(short periods where network parameters can be considered
as fixed), and we study the optimal allocation of network and
computation resources inside such slots to minimize the total
latency of all traffic under latency constraints for each type
of traffic. The same optimization process can be repeated for
consecutive slots since, as shown in Section V, the computing
time of our proposed heuristics permits doing so.

IV. PROBLEM FORMULATION AND HEURISTICS

In this section we first formulate our Joint Slicing of mobile
Network and edge Computation resources (JSNC) model, and
analyze the possible solutions from an optimization perspec-
tive. Then, based on the analysis, we propose two effective
algorithms to solve the problem, one named Sequential Fixing
(SF), which provides near-optimal solutions in a short comput-
ing time, another based on a greedy approach that provides a



baseline for comparison. Table I summarizes the notation used
throughout this section.

TABLE I: Summary of used notation.

Parameters Definition

N Set of traffic types
E Set of edge clouds
Li Set of links in the shortest path from the user to i
Bl Bandwidth between two edge clouds connected with link l
Ci Network capacity of edge network i
Si Computation capacity of edge cloud i
λn User traffic rate for traffic type n
τn Tolerable delay for serving the total traffic of type n

Variables Definition

cn Slice of the network capacity for traffic type n
bn,i Indicator of whether traffic n is processed on node i
αn,i Percentage of traffic n processed on node i
βn,i Percentage of computation capacity Si sliced for traffic n

A. Mathematical Model

Our goal is to minimize the total latency of serving several
types of user traffic in multiple edge networks with a certain
network topology. This latency is the sum of the wireless
network latency of the user ingress point and the outsourcing
latency which, in turn, is composed of the processing latency
in the edge clouds and the link latency between edge clouds.

Wireless Network Latency: We model the transmission of
traffic in user ingress point as an M/M/1 processing queue.
The wireless network latency for transmitting the user traffic
of type n, denoted by tWn , can therefore be computed as:

tWn =
1

cn − λn
, ∀n ∈ N , (1)

where cn is the capacity of the network slice for traffic type n
in the ingress edge network and λn is the traffic rate for n. The
following constraints ensure that the capacity of all slices does
not exceed the total capacity Ci of the ingress edge network,
and cn is higher than the corresponding λn:∑

n∈N
cn 6 Ci, (2)

λn < cn, ∀n ∈ N . (3)

Processing Latency: We assume that each type of traffic can
be segmented and processed on different edge clouds, and each
edge cloud can slice its computation capacity to serve different
types of traffic. We denote with αn,i the percentage of type n
traffic processed on edge node i, and with βn,i the percentage
of computation capacity Si sliced for type n traffic. The
processing of user traffic is described by an M/M/1 model.
Let tPn,i denote the processing latency of edge cloud i for
user traffic n. Then, based on the computational capacity slice
(βn,iSi) and the amount of traffic served on node i (αn,iλn),
the processing latency tPn,i, ∀(n, i) ∈ N × E is expressed as
follows:

tPn,i =

{ 1
βn,iSi−αn,iλn

if αn,i > 0,

0, otherwise.
(4)

In the above equation, when traffic n is not processed on edge
cloud i (i.e., αn,i = 0), the latency is 0; at the same time, no
computation resource of i should be sliced to n (i.e., βn,i = 0).
The corresponding constraint is written as:{

αn,iλn < βn,iSi, if αn,i > 0,
αn,i = βn,i = 0, otherwise. (5)

αn,i and βn,i also have to fulfill the consistency constraints:∑
i∈E

αn,i = 1, ∀n ∈ N , (6)∑
n∈N

βn,i 6 1, ∀i ∈ E . (7)

Link Latency: When each type of traffic is outsourced from
user ingress point to edge cloud i, the transmission latency
depends on Bl,∀l ∈ Li, as well as on the total traffic passing
through these links, denoted by Fl. To compute Fl, we first
write the volume of traffic which flows to an edge network j
as
∑
n∈N αn,jλn. Then, Fl,∀l ∈ L =

⋃
i∈E Li, is written as:

Fl =
∑

j∈E,if l∈Lj

∑
n∈N

αn,jλn. (8)

Let tLn,i denote the link latency. When i is the user ingress
point, denoted by ingress point, Li = ∅ and tLn,i = 0.
∀(n, i) ∈ N × (E − {ingress point}), tLn,i is defined as:

tLn,i =


∑
l∈Li

1
Bl−

∑
j∈E,if l∈Lj

∑
n′∈N

αn′,jλn′
, if αn,i > 0,

0, otherwise.
(9)

Like Eq. (4), the link latency is counted only if a certain traffic
segment is processed on i. The constraint for Fl is written as:

Fl < Bl, ∀l ∈ L. (10)

Now we can define the outsourcing latency for traffic type
n, which depends on the longest serving time among edge
clouds:

tPLn = max
i∈E
{tPn,i + tLn,i}, ∀n ∈ N . (11)

Optimization Problem - JSNC: Our problem is to minimize
the total latency of network and computation slices under the
constraint of tolerable delay for each type of traffic:

min
cn,αn,i,βn,i

∑
n∈N
{tWn + tPLn }, (P0)

s.t. tWn + tPLn 6 τn, ∀n ∈ N , (12)
(2), (3), (5), (6), (7), (10).

Problem P0 contains both nonlinear and indicator con-
straints, therefore, it is a mixed-integer nonlinear programming
(MINLP) problem, which is hard to be solved directly [4].

Problem Reformulation: We now propose an equivalent
reformulation of P0 , which can be solved very efficiently with
the Branch and Bound method. Moreover, the reformulated
problem can be further relaxed and, based on that, we propose
our heuristic algorithms which can get near-optimal solutions
in a short computing time. To this aim, we first introduce the
binary variable bn,i to replace indicator αn,i > 0 in P0 , which



denotes whether traffic n is processed on i or not. Therefore
we have:

εbn,i 6 αn,i 6 bn,i, ∀(n, i) ∈ N × E , (13)

where ε > 0 is a small value.
Then, Eq. (11) can be written as tPLn > (tPn,i+t

L
n,i), ∀(n, i) ∈

N × E . Based on the definitions of tPn,i and tLn,i, it can be
rewritten as:

tPLn >
1

βn,iSi − αn,iλn
+
∑
l∈Li

1

Bl −
∑

j∈E,if l∈Lj

∑
n′∈N

αn′,jλn′
,

∀(n, i) ∈ N × E | bn,i = 1. (14)

Inequality (14) associates with bn,i, which is an indicator vari-
able. We observe that: if bn,i = 1, we have 1

βn,iSi−αn,iλn
>

1
Si

> 1
maxj∈E Sj

; otherwise βn,iSi − αn,iλn = 0 resulting in
tPLn →∞. Therefore, we define a new variable tP

′

n,i,∀(n, i) ∈
N × E to handle the above case:

tP
′

n,i =
1

βn,iSi − αn,iλn + b̄n,iSmax
, (15)

where b̄n,i = 1 − bn,i, and Smax = maxj∈E Sj . Using bn,i,
constraint (5) can be transformed into:

αn,iλn − b̄n,i < βn,iSi 6 bn,iSi, ∀(n, i) ∈ N × E . (16)

For tLn,i, we rewrite it as tLn,i = bn,i
∑
l∈Li

vl, where

vl =
1

Bl − Fl
, ∀l ∈ L. (17)

Then, inequality (14) can be equivalently transformed into:

tPLn > tP
′

n,i + tLn,i, ∀(n, i) ∈ N × E . (18)

Now, we aim at linearizing tLn,i = bn,i
∑
l∈Li

vl. We first
compute the boundaries on vl: B−1l 6 vl 6 Vl =

1
max{ε, Bl−

∑
n′∈N λn′} , where the max{·} function permits to

avoid the case of Bl ≤
∑
n′∈N λn′ . Based on above and

constraint (12), tLn,i is linearized:

bn,i
∑

l∈Li

B−1l 6 tLn,i 6 bn,iτn, (19)

b̄n,i
∑

l∈Li

B−1l 6
∑

l∈Li

vl − tLn,i 6 b̄n,i
∑

l∈Li

Vl. (20)

Finally, the equivalent reformulation of P0 can be written as:

min
cn,αn,i,βn,i,bn,i,

tWn ,tPL
n ,tP

′
n,i,t

L
n,i,vl

∑
n∈N

(tWn + tPLn ), (P1)

s.t. (1), (2), (3), (6), (7), (10), (12),
(13), (15), (16), (17), (18), (19), (20).

In problem P1, cn, αn,i, βn,i and bn,i are the main decision
variables, while others are auxiliary. All the variables are
bounded. Since constraints (1), (15) and (17) are quadratic
while the others are linear, P1 is a mixed-integer quadratically
constrained programming (MIQCP) problem.

B. Heuristics: Sequential Fixing and Greedy approaches

Since solving problem P1 can be still time-consuming,
especially in medium to large-scale-scenarios, we further pro-
pose two effective heuristics, detailed hereafter: the first is a
Sequential Fixing method, the second is a Greedy approach
and is mainly proposed for reference, as a baseline approach.
We will show in the numerical evaluation section that they
both achieve very good (in most cases near-optimal) solutions
in all the scenarios we considered, which are representative of
typical edge clouds, in a short computing time.

1) Sequential Fixing (SF): This heuristic, detailed in Al-
gorithm 1, is based on the following rationale: first, it solves
a relaxation of the original problem (this step takes a very
short time, typically less than 1 second even for the largest
scenarios we evaluated). Then, based on the relaxed solution
b̃∗n,i, which can be seen as the probability of edge selection,
edge nodes are ranked and selected (see lines 1-2). We also
rank the traffic types, according to the rate and corresponding
tolerable latency, and allocate computing nodes to the different
types of traffic via a specific scheme (see lines 3-8). Finally,
we eliminate all unfixed bn,i to further prune the problem.

Algorithm 1 Sequential Fixing (SF)

1: Relax bn,i to continuous b̃n,i in P1, then solve the relaxed
problem to obtain optimal relaxed values b̃∗n,i;

2: Rank nodes in E by descending values of
∑
n∈N b̃n,i, and

keep top K ⊂ E (where |K| = 0.50 ∗ |E|);
3: Rank traffic types in N in descending order (λn first, τn

second);
4: Allocate nodes in K to ordered traffic types (i.e., setting
bn,i = 1) till either K or N is completely scanned;

5: if |K| < |N | then
6: Rank K in descending order (Si first, |Li| second);
7: Allocate K to (remaining N ) repeatedly;
8: else: Allocate (remaining K) to N repeatedly;
9: Set the remaining variables bn,i = 0.

2) Greedy approach: The greedy approach, detailed in
Algorithm 2, first ranks edge nodes according to the link and
computation capacities (see line 1). Then, it ranks the traffic
types and allocates edge nodes (with a fraction

⌈
λn|K|∑
n′∈N λn′

⌉
)

to each type (see lines 2-5). Finally, it branches the problem
in the same way as SF .

V. NUMERICAL RESULTS

In this section we evaluate and compare, in a set of typical
mobile edge network scenarios, the proposed model (identified
as Optimal in the following) the two heuristics, SF and
Greedy, and Random . This last one is used as reference
and is based on randomly selecting nodes (by setting bn,i; for
each network instance we ran it for 1000 times and selected
the best solution).

Experimental Setup: We implement our model and heuris-
tics using SCIP (Solving Constraint Integer Programs)1, an

1http://scip.zib.de/



Algorithm 2 Greedy Approach

1: Generate priority order of edge nodes E (|Li| first, Si
second, by rotating the topology graph (see Figure 2)
around the user ingress point and doing level traversal
of the graph), keeping the top K nodes (|K| = 0.50∗ |E|);

2: Rank traffic types N in descending order (λn first, τn
second);

3: Allocate K to N (∀n ∈ N , amount =
⌈

λn|K|∑
n′∈N λn′

⌉
) in

order, till either K or N is completely scanned;
4: while N has un-allocated elements do
5: Re-allocate K to (rest of N ) one by one repeatedly;
6: Set the remaining variables bn,i = 0.

open-source framework that solves constraint integer program-
ming problems. All numerical results presented in this section
have been obtained on a server equipped with an Intel(R)
Xeon(R) E5-2640 v4 CPU @ 2.40GHz and 126 Gbytes of
RAM. The parameters of SCIP in our experiments are set as
their default.

In our model we have 5 types of parameters: traffic λn,
computation capacity Si, network capacity Ci, link capacity
Bl and tolerable latency τn for each type of traffic. Table II
shows the initial values of all parameters. They are represen-
tative of a scenario with high traffic load and low tolerable
latency relative to the limited communication and computation
resources. The three types of traffic we considered can be inter-
preted straightforwardly as social (small traffic, low tolerable
latency), web (medium traffic, medium tolerable latency) and
video (high traffic, low tolerable latency). It is worth noticing
that unit “cycles/s” is often used for computation capacity;
for simplicity we transform it into “Gb/s” by using the factor
“8bit/1900cycles”, which assumes that processing 1 byte of
data needs 1900 CPU cycles in a BBU pool [14].

We conduct our simulations by scaling one parameter value
at the time, starting from the initial values in Table II, while
fixing all other parameters. The total latency (the objective
function value) and the model solving time are recorded and
plotted in the figures illustrated hereafter.

Network Topologies: Figure 2 shows the four different
topologies of the mobile edge network we selected for mea-
suring the performance of our proposed approaches: 3 tree and
1 chain topologies. These are typically used for performance

TABLE II: Parameters setting - Initial values (for the case of
high incoming traffic load with low tolerable latency)

Parameter Initial value

N {1, 2, 3}
E {1, 2, · · · , 15}
L Links in the graphs (see Figure 2)
Bl (Gb/s) 72(×14) (l = 1, 2, · · · , 14)
Ci (Gb/s) 75 (i = 15)

Si (Gb/s) 30(×1), 25(×2), 20(×4), 15(×8) (i = 1, 2, · · · , 15)
λn (Gb/s) 15, 20, 35 (n = 1, 2, 3)
τn (ms) 1.0, 1.5, 1.0 (n = 1, 2, 3)
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Fig. 2: Four selected network topologies (15 nodes).

assessment in MEC scenarios, which are similar to [15]. Each
node in the figures represents the computing node and each
edge between any two nodes represents a communication link.
The user’s ingress point for each case can be one of the leaf
nodes in the bottom tier of graphs. For simplicity, we set
node 15 (marked in light gray) as the user’s ingress point
for all 4 topologies in our simulations. All topologies have
the same parameters settings. We underline that our model
and heuristics are general, and can be applied in any topology
with a predetermined routing among different nodes, which
can be performed in a pre-processing phase.

Overview of the Evaluation: We investigate the effect of
all parameters on the total latency (see Figures 3, 4, 5, 6, 7,
and 8). In Figure 7, we investigate, in particular, the effect of
the network topology and parameter scaling. In Figure 8, we
further study a larger problem instance obtained by increasing
the number of traffic types from 3 to 15 without changing
the total amount of traffic (scaling both network capacity Ci
and traffic rate λn to achieve feasible solutions). Finally, we
compare the computing time of all 4 approaches in Figure 9.

A. Effect of the traffic λn
Figure 3 shows the total latency variation versus traffic rate

under the case of |N | = 3, |E| = 15. Specifically, we scale
λn, ∀n ∈ N from 0.1 to 1 based on the initial value in Table
II, while fixing all other parameters. The total latency in all
scenarios increase when the traffic raises and the increasing
rates grow rapidly with the scale approaching to 1.0. Our
proposed SF and Greedy approaches have almost the same
performance (SF being always better than Greedy), and
they are very close to the optimum, especially when traffic
scales above 0.5. The Random approach exhibits a larger
total latency with respect to the other allocation schemes, the
difference being around 0.3 ms. All the curves have the shape
of a typical flipped inverse-proportional function due to the
expression of λn in the model objective function. Finally, we
observe that all our approaches are characterized by smooth
curves, including the Optimal JSNC model, which indicates
stability in the solving approach.

B. Effect of the tolerable latency τn
We now illustrate (Figure 4) the total latency with respect

to the tolerable latency τn, with different scaling factors (from
0.70 to 0.86 w.r.t. the initial value). The vertical dashed lines
represent the threshold for each approach, showing the mini-
mum tolerable latency that can be requested in order to gener-
ate a feasible solution. The thresholds are Optimal (0.715) <
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under 8 scenarios - SF heuristic.
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Fig. 8: Scaling Ci with a large number
of traffic types (|N | = 15, |E| = 15).

SF (0.725) < Greedy (0.735) < Random (0.77). When
τn increases beyond the threshold, the total latency values
under the Optimal, SF and Greedy approaches decrease
and converge to different values at almost the same point
around 0.8 (for example, the tolerable latency of Optimal
decreases from 2.49 to 2.39). Parameter τn serves in our model
as an upper bound (see constraint (12)), and limits the solution
space. In fact, with a low τn value, the feasible solution set is
smaller and the total latency increases, and vice versa.

We observe that the gap between the proposed Sequential
Fixing (SF ) approach and the Optimal solution is indeed
very small, around 1.43%.

C. Effect of the computation capacity Si
Figure 5 shows the total latency as a function of the

computation capacity Si,∀i ∈ E , which is scaled from 1 to
2 w.r.t. its initial value. The total latency decreases when the
computation capacity increases, which is also consistent with
the real case. As Si increases by a factor of two, the latency
in all cases decreases of about 0.3 ms. Regarding the different
approaches we considered, Random performs the worst, SF
is very close to Optimal, and practically overlapping in the
(1.2, 1.5) range. The Greedy algorithm also performs well,
with a gap that reaches 1.76% w.r.t. to the Optimal solution.

D. Effect of the link capacity Bl
Figure 6 illustrates the total latency variation as a function

of the link capacity Bl,∀l ∈ L, which is scaled from 0.82 to
1.2 with respect to its initial value. Like in the case shown
in Figure 4, here there also exist thresholds of the feasible
solutions for scaling link capacity (0.825 for the Optimal

scheme, which has a maximum total latency of 3.47 ms, and
0.838 for all the other approaches). This is due to the fact that
when the links’ capacity is low, only part of traffic can be
routed through them, hence making the local processing time
become too long to satisfy the maximum tolerable latency for
each traffic type. As Bl increases above the threshold, the total
latency in all cases decreases and converges to different points
(around 2.27 ms for Optimal, SF, Greedy, around 2.38 for
Random). SF performs very close to Optimal, and overlaps
with it in the (0.838, 0.92) range. The Greedy approach also
exhibits a good performance, with a gap of 1.44% w.r.t. the
Optimal solution.

E. Effect of the network topology and parameter scaling

Figure 7 illustrates the results achieved by SF when scaling
the computation capacity Si (|N | = 3, |E| = 15) in the 4 net-
work topologies and two parameter scaling cases. Specifically,
the solid lines show the results of scaling Si, ∀i ∈ E (tag “all”),
while the dashed lines stand for S15 (tag “single”), which is the
user ingress node. Evidently, there are large performance gaps
between scaling one node computation capacity and scaling
all, and it can be observed that all tree topologies outperform
the chain topology with a gap around 16.7%.

F. Effect of the network capacity Ci - Multiple traffic types

We now consider a scenario with a larger number of traffic
types (|N | = 15). Figure 8 illustrates the total latency with
respect to the network capacity Ci (scaled from 1 to 2 w.r.t.
to its initial value). Note that the results for |N | = 3 exhibit a
similar trend, and are not shown for the sake of space. Since
obtaining the optimal solution in such large-scale scenario is
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Fig. 9: Computing time (increasing |N | values, |E| = 15).

impossible in a reasonable amount of time, we only show the
performance of our proposed heuristics as well as the Random
approach. SF ensures the lowest latency, while Greedy is
6.24% higher, in average. The total latency decreases from
about 16 to 7 ms, while for Random, from approximately 17
to 14 ms. Our heuristics can thus handle large-scale problems
and provide good solutions.

Computing time: We select one case (increasing the number
of aggregated traffic types, |N |, which increases the problem
scale) to compare the computing time of the four approaches
we considered in this paper (see Fig. 9). Obtaining the optimal
results takes a very long time (around 1000 seconds and
beyond even for the smallest instances with |N | = 3, while
it was impossible for larger |N | values). Our proposed ap-
proaches are extremely fast in all considered network instances
and topologies. With |N | = 3, the solving time of SF is
around 0.11s and Greedy 0.18s. When |N | increases to 15, the
solving time is still very low and less than 1s. This permits to
perform in real-time network slice dimensioning and resource
allocation, which is a key feature for providing the necessary
QoS levels in next-generation mobile architectures.

VI. CONCLUSION

This paper proposed a novel mathematical model to perform
a joint allocation of mobile network and edge computational
resources. We investigated the problem by minimizing the total
latency of multiple classes of user traffic with corresponding
tolerable delay requirements, considering multiple edge net-
works in typical hierarchical network topologies. Furthermore,
we transformed the original MINLP problem into an equiva-
lent MIQCP one, and proposed two heuristics, i.e., Sequential
Fixing (SF) and a greedy approach, based on the reformula-
tion. Then we evaluated the performance of our model and
heuristics, showing the effects of all considered parameters on
the optimal and approximate solutions. Numerical results show
that our SF approach can obtain near-optimal solutions in a
very short computing time (around 0.11s) even for large-scale
scenarios. When evaluating the maximum latency tolerated by
user traffic, the performance of SF has a gap around 1.43%
w.r.t. the optimal one, while in all other cases it is very close
to the optimum. As for our greedy approach, it obtains slightly

suboptimal solutions compared to SF (with a maximum gap of
1.76% w.r.t. the optimum), still in a short time (around 0.1s).
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