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Abstract—A novel machine-learning based framework to eval-
uate the effect of design parameters affected by epistemic
uncertainty on the performance of textile antennas is presented.
In particular, epistemic variations are characterized in the
framework of possibility theory, which is combined with Bayesian
optimization to accurately and efficiently perform uncertainty
quantification. A suitable application example validates the pro-
posed method.

Index Terms—Bayesian optimization, epistemic uncertainty,
fuzzy variables, Gaussian process, textile antenna.

I. INTRODUCTION

Uncertainty quantification (UQ) problems for antenna de-
signs are usually defined in a statistical framework: the design
parameters under uncertainty effects are regarded as random
variables with specific distributions [1]–[5]. If the distribution
of the random variables is known in terms of, for example,
their joint probability density function, several techniques can
be adopted to estimate the effect of stochastic variations of de-
sign parameters on the antenna’s performance. These include
sampling-based methods such as Monte Carlo analysis [6],
which requires a large number of simulations or measurements
of the antenna under study, or stochastic spectral methods
such as Polynomial Chaos expansion [7]–[9], which builds
a suitable stochastic surrogate model describing the variations
of the antenna’s performance.

The accuracy of statistical approaches heavily depends on
the estimation of the distribution (i.e. probability density
function) of the random parameters considered, which is
a complex problem. One possibility is to choose a priori
the distribution of the parameters. For example, the uniform
probability density function is generally adopted to represent
a complete lack of knowledge, except for lower and upper
limits inferred from engineering insight. However, there is no
evidence that other distributions (e.g. Gaussian) may not be
more suitable to describe the UQ problem at hand. Addition-
ally, a probabilistic framework is not always applicable for
all types of UQ problems. For example, the geometry and
material characteristics of textile antennas heavily depend on
their operating conditions: while worn, a textile antenna will
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bend and the substrate will be compressed according to the
movements of the wearer, changing the antenna radiation char-
acteristics [10]. Rather than assuming that several geometrical
and electrical parameters of the antenna are unknown because
their values follow a specific distribution over an interval, it
is more realistic to assume that the uncertainty stems from
an inherent lack of knowledge about the antenna’s operating
conditions. In this situation, the design parameters are regarded
as epistemic variables and the UQ problem can be formalized
in terms of possibility theory [11].

In this contribution, for the first time the theory of fuzzy
variables (FVs) is combined with a machine-learning based ap-
proach, namely Bayesian optimization (BO) [12], to efficiently
propagate the epistemic uncertainty on the performance of the
antenna under study. The proposed methodology allows one to
solve UQ problems for textile antenna design, as the number
of full-wave simulations needed to evaluate the performance
of the antenna under study is minimized. A suitable case study,
being a dual polarized textile patch antenna whose substrate
parameters are affected by epistemic uncertainty, validates the
proposed method.

The manuscript is organized as follows. In Section II, the
relevant features of possibility theory and their application to
epistemic UQ problems are discussed. Section III introduces
the proposed BO-based approach and describes its application
to solve epistemic UQ problems. A representative numerical
example is presented in Section IV, while conclusions are
drawn in Section V.

II. PROBLEM FORMULATION

An overview of the relevant properties of epistemic vari-
ables in the framework of possibility theory is given in
Section II-A, while the definition of epistemic UQ problems
is discussed in Section II-B. For a complete reference to
possibility theory and epistemic UQ problems the reader is
referred to [11], [13]–[16].

A. Possibility theory and epistemic variables

In the framework of possibility theory, an epistemic variable
(i.e. a design parameter) x is represented by a possibility
distribution (PD) π (x), defined by:

π : R→ [0, 1] ,∃ x ∈ R : π (x) = 1. (1)

While the concept of probability represents the frequency
of occurrence of an event, the PD indicates the degree of
confidence that a specific event is possible or not. Hence,
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Fig. 1: (a) A uniform PD with support [x1, x2]. (b) A triangular
PD and two of its α-cuts (red lines) at different α levels.

the set [0, 1] contains the plausibility scores of x, where 0
corresponds to an impossible value, and 1 corresponds to
a perfectly possible value. For example, let us consider the
rectangular (or uniform) PD indicated in Fig. 1(a). All the
values of x in the interval [x1, x2] are perfectly possible, since
the PD is always equal to 1 in such interval, while all the
others are impossible, since π (x) = 0 for x /∈ [x1, x2]. It
is important to remark that a uniform probability distribution
function defined in [x1, x2] indicates that all values are equally
probable (they have the same probability of occurrence),
while a rectangular PD indicates that all values are possible,
without any assumption on how often each value occurs.
Hence, uniform PDs are particularly suitable to represent total
ignorance [13], [17] (where no information on the variation of
the design parameters is available).

Different types of PDs can be defined according to the
level of knowledge available for the epistemic variable x:
for example, the triangular PD of Fig. 2(b) indicates that a
higher degree of confidence is assigned to one value, where
π (x) = 1, that gradually decreases for all other values. Fixing
a confidence threshold α ∈ [0, 1] delimits an interval in the
PD. For example, in Fig. 2(b) α = 0.3 identifies the interval
[c, d], while α = 0.8 leads to [m,n]. Note that any PD is fully
identified by the knowledge of the intervals corresponding to
all the possible values of α. These intervals will be referred
to as α-cuts in the rest of the contribution.

Finally, the possibility Π and the necessity N functions of
an event A ∈ R are defined as

Π (A) = sup
x∈A

π (x) ; N (A) = 1− sup
x/∈A

π (x) . (2)

The measures Π and N can be interpreted in a probabilistic
sense: for a family of probability measures P (A), the relation
N(A) ≤ P (A) ≤ Π(A) holds [16], [18].

B. Epistemic UQ problems in antenna design

Denote the quantity of interest of the antenna under study
(i.e. its input reflection coefficient or, in general, its scattering
parameters) as f (x), where x is a vector collecting the
design parameters subject to uncertainty, which are regarded
as epistemic variables. The goal is to estimate the possibility
distribution (PD) of the objective function and, consequently,
the corresponding possibility Π and necessity N measures.
Indeed, Π and N form the upper and lower bounds, respec-
tively, for all possible cumulative distribution functions (cdfs)
of f (x) [16]. Hence, in the framework of possibility theory it

is possible to estimate, based on the experience, the boundaries
that delimit the actual distribution of f , but not the specific
distribution of f , since no probabilistic information about the
variables x is available.

In order to reach this goal, this letter adopts the theory of
FVs [19]. The interested reader is referred to [14], [15] for
a thorough discussion on the application of the FVs’ math-
ematical formalism in the framework of possibility theory.
First, the interval of possibility values [0, 1] is divided into
a finite set of Nα α-cuts. Each value α delineates a domain
Ωα, which is bounded in each dimension by the interval of the
corresponding α-cut of the pertinent epistemic variable in the
vector x. Next, for each α-cut, the minimum and maximum
of the objective function are computed for x ∈ Ωα. Finally,
the minimum minα(f) and the maximum maxα(f) of the
objective function for all the Nα α-cuts define the desired
π(f). Once the PD of the objective function is computed,
the corresponding possibility and necessity functions can be
obtained using (2).

Hence, a series of Nα minimization and maximization
problems must be solved. The standard “brute force” approach
is to adopt a dense sampling of x ∈ Ωα and to evaluate f (x)
for all the chosen samples in order to estimate the minimum
and maximum. This approach is computationally expensive,
since full wave simulations are often required to estimate the
objective functions (such as scattering parameters), and it can
offer only limited accuracy if the objective function is non-
smooth in Ωα. These issues become especially relevant when
the number of epistemic variables increases. In order to over-
come these limitations, a machine-learning based framework
is proposed in Section III.

III. PROPOSED METHODOLOGY

As discussed in Section II-B, solving epistemic UQ prob-
lems can be formulated in the framework of possibility theory
as solving Nα minimization and maximization problems in a
bounded domain. Regarding FVs, one interesting property of
the α-cuts is that they always define nested intervals [19],
[20], independently of the specific PD considered. Denote
by α0 and αNα the α-cuts associated with possibility 0 and
1, respectively; then, the following holds: Ωαi ⊆ Ωαi−1

for i = 1, . . . , Nα. This property can be easily verified
by inspecting Figs. 1(a) and 1(b). Hence, 2Nα optimization
(being Nα minimization and Nα maximization) problems can
be suitably defined on a bounded domain that progressively
decreases (starting from α0 until αNα ) or increases (starting
from αNα until α0).

To solve this task, we adopt a machine-learning based
approach called BO, detailed in Section III-A and III-B.
Indeed, BO offers greater efficiency in terms of the number
of function evaluations compared to aforementioned “brute
force” approaches based on a dense sampling of x ∈ Ωα.
BO is also more advantageous compared to gradient based
optimization methods as it provides a global optimum rather
than a local one. Furthermore, it is a model-based strategy,
leading to an efficient optimization process. In this work, we
modify the standard formulation of BO in order to efficiently
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solve epistemic UQ problems: first, by leveraging on the
property that α-cuts always define nested intervals, the op-
timization problems for each α-cut considered are not solved
independently, but the accuracy of the computed solution
is improved by iteratively refining the BO surrogate model.
Second, the BO algorithm is suitably modified in order to solve
only Nα optimization problems, rather than 2Nα minimization
and maximization problems. The proposed methodology is
described in the following sections.

A. Brief overview of BO

BO is a sequential strategy to solve a global minimization
(or maximization) problem defined as follows:

min
x∈X⊂RD

f (x), (3)

where D is the number of design parameters x. BO is
particularly effective when the objective function f (x) is
computationally expensive to evaluate and has a non-smooth
behavior with respect to x, leading to the presence of sev-
eral local optima. This is quite common in electromagnetic
problems, where full-wave analyses are typically employed to
estimate output quantities, such as the scattering parameters.
A direct optimization of f (x), e.g. using a gradient method
[21], requires several evaluations (through simulations or mea-
surements) of the objective function for different values of the
parameters x. The computational cost of this operation can
be very high, since f (x) is expensive to evaluate. Hence, the
basic idea of BO is to progressively construct and optimize a
surrogate model instead, which is significantly more efficient
to evaluate than the objective function. However, contrary
to other surrogate-based optimization strategies, its surrogate
model in BO is stochastic, not deterministic. In particular, the
model uncertainty can be used to define a suitable sampling
strategy, which is called acquisition function in the BO frame-
work.

A flowchart of the BO algorithm is depicted in Fig. 2. First,
the objective function f (x) is calculated for an initial set of
the design parameters [xk]

K
k=1 ∈ X (chosen e.g. according to a

Latin hypercube). Then, a stochastic surrogate model of f (x)
is computed based on the data acquired so far. This model
is used by the acquisition function to determine the location
of the candidate optimum, which is then evaluated by a new
(expensive) simulation of the objective function. If none of
the stopping criteria is met, the surrogate model is updated.
Hence, each additional simulation refines the surrogate model,
increasing the probability of finding the solution to the opti-
mization problem (3).

In this work, Gaussian processes (GPs) [22] are chosen as a
stochastic surrogate model, because of its analytic inference,
accuracy and modeling power. In particular, the Matérn (5/2)
was chosen as GP kernel, due to its capability to model a wide
class of functions (including non-differentiable ones).

As a sampling strategy, different acquisition functions can
be adopted in BO, such as the Probability of Improvement
[23] and Expected Improvement (EI) [24]. In particular, EI
was chosen this work, which is defined as

E [I (x)]=E [max{0, fmin−y}] (4)

initial
samples
of design
parameters

evaluate
the

objective
function

max nr of
samples
reached?

return
optima

build
surrogate
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acquisition
function

accuracy
reached?

yes

nono

yes

Fig. 2: Flowchart of the BO algorithm.

where E is the expectation operator, I (x) is a suitable measure
of improvement defined at the point x, fmin is the current
evaluated minimum of the objective function and y is the
prediction of the GP surrogate model at point x. Since y is
a Gaussian random variable, the expectation in (4) can be
calculated analytically.

Finally, the training of the GP model parameters and the BO
have been performed via GPyOpt, a Bayesian optimization
package in Python [25]. A complete description of the BO
properties is given in [26]–[28].

B. BO for Epistemic UQ problems in antenna design

As described in Section II-B, it is essential to compute
both the minimum and the maximum of the objective function
in order to estimate a PD. For this purpose, the acquisition
function (4) is modified as follows:

EImm (x)=max{E [max{0, fmin−y}] ,E [max{0, y−fmax}]}
(5)

This approach is especially efficient, since the candidate points
in the space of the design parameters with higher potential
for a better optimum of either kind (minimum or maximum)
are evaluated. Hence, the proposed optimization strategy is
capable of finding both optima with the minimal number of
evaluations of the objective function f (x).

Now, a single optimization problem must be solved for
each of the Nα nested intervals Ωαi . The procedure adopted
in this work is described as follows: first, BO is performed
at the top α level (α = 1), using a small portion of the
total computational budget. Then, the optimization for all the
consecutive α levels is carried out by making use of the
samples already evaluated for the “upper” α levels, while
only few additional samples are evaluated for each subsequent
α level. However, in case a better optimum is found in
the current α level, the optimum for previous levels can
be updated accordingly, whenever possible. Hence, the GP
surrogate model computed for αNα is sequentially refined
for each α-cut until α0 is reached. Note that this strategy is
applicable because the intervals Ωαi are nested.

IV. APPLICATION EXAMPLE

The proposed approach is applied to the dual-polarized
textile patch antenna presented in [29]. This antenna operates
in the [2.4, 2.4835] GHz ISM band, with a nominal substrate
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Fig. 3: Bounds of the magnitude of S11 (dB) obtained with
the proposed BO-based method at different α levels.

height h = 3.94 mm and permittivity εr = 1.53. Both param-
eters are regarded as epistemic variables defined in the support
[3.44, 4.44] mm and [1.43, 1.63], respectively. In particular, a
uniform PD is chosen for the height and a triangular one
for the relative permittivity, in order to demonstrate that the
proposed approach is general and independent of the specific
PDs assigned to the epistemic variables. The goal is to estimate
the uncertainty of the antenna scattering parameters for 50
frequency samples in the [2.4, 2.4835] GHz band. The Mo-
mentum electromagnetic field simulator of Advanced Design
System (ADS) [30] is adopted to estimate the scattering
parameters as a function of the frequency and the epistemic
variables. For each frequency point, 36 α-cuts ranging from
possibility level 0 to 1 are considered.

A computational budget of 11 (h, εr) samples is assigned
to the BO for α = 1, while a budget of 2 additional samples
is given for each following α level, for a total maximum
computational budget of 81 (h, εr) samples. Figure 3 shows
the estimated PD at different α levels over the considered
frequency range. The shades illustrate the minima and the
maxima of all possible values of |S11| computed by the
proposed BO-based method at different α levels.

Next, the results of the proposed technique are compared to
the grid search (GS) method described in Section II-B for two
different numbers of sample points. The corresponding Π and
N measures are presented in Figs. 4 and 5. In particular, first,
a uniform grid of 9 × 9 (h, εr) samples is allocated for the
GS approach. Clearly, for the same computational budget the
BO offers greater accuracy than the approach based on GS.
However, in this particular case the BO is more expensive
compared to the GS: the first requires 16 minutes per single
frequency point to estimate the PDs, while the second requires
13 minutes. The 3 minutes difference is due to the GP model
building process and the optimization performed in the BO
framework. Second, in order to achieve a comparable accuracy,
a uniform grid of 51 × 51 (h, εr) samples is adopted for the
GS method, in which case the elapsed time is 8 hours and
11 minutes per single frequency point. The results show that,
compared to GS, in order to reach the same accuracy, the
proposed method requires less computational resources.

Finally, as an additional illustration, the parameters h and
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Fig. 4: Possibility and Necessity functions of the magnitude
of S11 (dB) at 2.4557 GHz estimated with the GS and the
proposed BO-based method for different number of samples.
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Fig. 5: Possibility and Necessity Functions of the magnitude
of S21 (dB) at 2.4557 GHz estimated with the GS and the
proposed BO-based method for different number of samples.

εr are now considered as tradional uniform random variables
with support [3.44, 4.44] and [1.43, 1.63], respectively, and
the corresponding cdf, computed with 10000 (h, εr) samples,
is shown in Figs. 4 and 5 for |S11| and |S21|. As indicated
in Section II-A, the cdf is always in the domain defined by
the possibility and necessity functions. The calculations have
been performed on a computer with 8 GB and 8 cores Intel(R)
Core(TM) i7-2600 CPU @ 3.40GHz.

V. CONCLUSION

A novel machine-learning based modeling framework is
presented in this contribution to solve epistemic UQ prob-
lems. The proposed approach characterizes epistemic varia-
tions using possibility theory, and leverages on the theory of
fuzzy sets combined with a suitable BO-based approach to
solve UQ problems in antenna design. Contrary to stochastic
approaches, no characterization of the parameters’ variability
in a probabilistic sense is needed. Owing to the flexibility of
BO, the proposed technique can be applied to a large variety
of problems, leading to an accurate characterization of non-
smooth behaviors with respect to the epistemic parameters. A
suitable application example validates the performance of the
proposed method.
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