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Technologies such as mobile, edge, and cloud computing have the potential to form a computing continuum

for new, disruptive applications. At runtime, applications can choose to execute parts of their logic on different

infrastructures that constitute the continuum, with the goal of minimizing latency and battery consumption

and maximizing availability. In this article, we propose A3-E, a unified model for managing the life cycle of

continuum applications. In particular, A3-E exploits the Functions-as-a-Service model to bring computation

to the continuum in the form of microservices. Furthermore, A3-E selects where to execute a certain function

based on the specific context and user requirements. The article also presents a  prototype framework that

implements the concepts behind A3-E. Results show that A3-E is capable of dynamically deploying microser-

vices and routing the application’s requests, reducing latency by up to 90% when using edge instead of cloud

resources, and battery consumption by 74% when computation has been offloaded.

1 INTRODUCTION

Mobile devices and edge and cloud computing have the potential to form a computing contin-

uum on which new and disruptive types of applications can be built. This continuum enables the

convergence of heterogeneous infrastructures, stretching all the way from cloud to mobile de-

vices, including intermediate steps such as ISP gateways, cellular base stations, and private cloud

deployments.

The heterogeneity of the computing continuum is profound and multifaceted. In the cloud, com-

puting resources are typically provided through virtualization and containerization [5, 17], and
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there is an illusion of infinite resource a vailability t hanks t o h orizontal s caling. I n c ontrast, in 
edge computing, computational resources are scarce and must be managed very efficiently [6, 27]. 
This is even truer for mobile devices, as they are strongly constrained by battery and other lim-

itations. Cloud resources are accessible by clients across countries and continents; conversely, in 
edge computing, a client can only access resources that are under the same network coverage, 
be it cellular (e.g., 5G) or local (e.g., domestic or office). On  the other hand, we  can consider the 
computational resources of a mobile device as always accessible, as long as it has a battery. While 
the cloud can provide vast computing power through elasticity, accessing these resources may in-

volve multiple hops of network communication, leading to prohibitive latency in the processing 
of client requests. Indeed, one of the main motivations for introducing edge-based computation is 
to mitigate network latency [8, 24, 27].

In this article, we propose A3-E, a unified model for the realization of the mobile-edge-cloud con-

tinuum. A3-E takes its name from its four main activities: (A)wareness, (A)cquisition, (A)llocation, 
and (E)ngagement. The proposed model exploits the Functions-as-a-Service (FaaS) computing par-

adigm [4, 6, 11] to allow stateless and lightweight functions to be autonomously fetched, deployed, 
and exposed as microservices by heterogeneous providers. A3-E conciliates providers’ goals and 
client applications’ needs with the efficient and scalable management of the life cycles of contin-

uum microservices. Since distinct providers and infrastructures will not be able to autonomously 
coordinate and decide who should serve a client request, A3-E enables a mutual client-provider 
awareness that allows for the opportunistic and context-dependent placement of microservices 
along the continuum.

The feasibility of A3-E has been demonstrated by means of a prototype infrastructure. Also, 
A3-E has been evaluated in the context of an Augmented Reality application. Thanks to A3-E, the 
application was able to autonomously proxy its requests to services that were dynamically de-

ployed to a computing continuum. Performed experiments show up to a 90% reduction of latency 
when edge replaced cloud, and a 74% decrease of battery consumption when computation is of-

floaded to edge/cloud servers. Moreover, by dynamically selecting what constituents to use in the 
continuum in different contexts, A3-E was able to maximize availability and prevent service inter-

ruptions while reducing the overall execution time and battery consumption. Finally, A3-E reduced 
deployment time by up to 70%, compared to a similar approach [32] for the resource management 
of edge nodes.

The rest of this article is organized as follows. Section 2 presents the continuum in terms of 
infrastructure and application models, formulates the life cycle management problem addressed 
by A3-E, and motivates the approach with a running example. Section 3 provides a detailed de-

scription of the A3-E model, whereas Section 4 introduces the prototype implementation of A3-E. 
Section 5 reports on the experiments performed to evaluate our proposal. Section 6 surveys related 
approaches, and Section 7 concludes the article.

2 THE CONTINUUM

2.1 Infrastructure Model

In our formulation, edge nodes are distinguished by the networking technology they use: mobile 
edge hosts (in the context of Multi-Access Edge Computing or MEC [9]) utilize cellular network 
infrastructures (e.g., 5G base stations), whereas local edge hosts integrate with local area network 
infrastructures (e.g., access points). Also, we assume that cloud and edge providers may be different 
from one another (e.g., Amazon AWS and telecom operators for MEC) and that the coordination 
among hosts (e.g., at different base stations) may not always be feasible.



In the continuum, mobile devices play two roles: they are both clients and providers of com-

putational resources. The motivation for including the resources of mobile devices in the model

is threefold: (1) the substantial increase in computational capacity exhibited by modern devices,

(2) the compatibility of these devices with the computation of continuum microservices (see

Section 2.2), and (3) the idea of giving applications zero network latency and highly available

alternatives.

In this article, we refer to cloud, edge, and mobile domains. A domain yields a common abstrac-

tion of the heterogeneous resources that make up the continuum: e.g., servers, virtual machines,

containers, CPU, memory, storage, and network components. According to MEC terminology, the

term domain extends the ETSI-provided concept of mobile edge host [3, 9].

2.2 Application Model

We propose an application model in which stateless components and immutable data form con-

tinuum services, which are dynamically deployed to mobile, edge, and cloud resources; stateful

components, which may still be needed in an application, are deployed to cloud data centers or to

the client’s device, depending on design-time decisions.

Continuum services can be defined as microservices1 [18], as they are small and modular, commu-

nicate through lightweight mechanisms (often through an HTTP RESTful API), and are indepen-

dently deployable by fully automated machinery. Moreover, continuum μ-services are aligned with

the Function-as-a-Service (FaaS) execution model [29]. FaaS has been proposed as an alternative

cloud paradigm in which business functionality2 is provided without preallocating computational

resources. Instead, shared resources (e.g., containers) are used to provision and execute functions

on demand, in only a few milliseconds.

The proposed application model prevents data consistency problems (and the corresponding

complexity of potential solutions) that would arise if stateful components such as databases were

deployed to finely distributed edge nodes. It also allows multiple service instances to coexist along

the continuum. Moreover, service instances may be deployed and undeployed independently with-

out the need for state migration, favoring the seamless transition from one service provider to

another. The latter is particularly important to cope with client mobility.

Figure 1 illustrates the architecture of a continuum application. The client-side application con-

sists of client-side logic, local persistence, and user interface components, whereas the cloud in-

frastructure consists of server-side logic and persistence components. Continuum μ-services are

responsible for stateless computations and are opportunistically deployed to different domains.

2.3 Life Cycle Management

When managing the life cycle of continuum services, there are two conflicting goals: (1) the sat-

isfaction of application requirements and (2) the optimization of the resources consumed by these

applications. In this article, we focus on three kinds of application requirements: service latency,

battery consumption, and availability; simultaneously, we target the efficient and scalable usage

of computational resources—namely, CPU, memory, and storage—from cloud and edge providers.

In the continuum, a multitude of disjoint cloud and edge domains can host the execution of

μ-services; i.e., they must be able to handle operational aspects such as downloading and installing

the μ-services. Also, mobile clients will freely enter and exit geographical areas that are covered

by distinct edge domains; even cloud domains may see considerable variations to their aggregate

1Hereafter referred to as μ-service.
2Note that our approach targets application-level functions, whereas Virtualized Network Functions (VNFs [9]) are consid-

ered as part of the underlying infrastructure.



Fig. 1. The high-level architecture of a mobile application exploiting both the computing continuum, by

means of μ-services (μS) provided by mobile, edge, and cloud domains, and conventional mobile/cloud com-

puting, by means of local computation and cloud services (CSs).

demand over time. In such a scenario, it may be unfeasible to predict the origin and intensity of

the demand that the different μ-services at each domain might see.

From the provider’s perspective, an efficient and scalable allocation of the (virtualized) resources

in each of its domains must be able to cope with the maximum accepted latency of each provided

μ-service. To be efficient, the allocation of resources should be able to mimic the correspond-

ing fluctuations of demand, i.e., be highly responsive. Consequently, it is essential for the mech-

anisms governing resource allocation in each domain to be aware of the actual, and potential,

demand for each provided μ-service. To better express this problem, let us consider the set of μ-

services S = {sj | j = 1, 2, . . . , J }. Vector c̄ = (c1, . . . , c J ) holds the number of instances for each

μ-service. Each instance is bound to a container; the resources allocated to each container (i.e.,

CPU, storage, and memory) are considered fixed and equal for all μ-services, coherently to the

architecture of FaaS frameworks such as OpenWhisk [1]. Now let us assume that each provided

μ-service si ∈ S is bound to an SLA specifying its maximum accepted service latency Δj as well

as the minimum/maximum number of service instances Kminj/Kmax j . Given the fluctuations in

the workload and the response time τj (comprising both set-up time and execution time) of each

μ-service sj ∈ S , the aim of a domain manager is to find the minimum c j for each μ-service so that

τj ≤ Δj ∧ Kminj
≤ c j ≤ Kmax j

,∀sj ∈ S .

From the client’s viewpoint, the challenges for the materialization of the continuum are mainly

twofold: (1) domains may need to be dynamically discovered, and (2) the client may need to choose,

at runtime, among different domains that provide similar μ-services with different QoS. For a

continuum application, an optimal domain selection is the one that, given a set of requirements

(e.g., maximum response time, battery consumption) and the perceived QoS of different services,

satisfies the multiattribute decision of which provider to use for each μ-service. Moreover, since

continuum μ-services are modular and independently deployed, it consists of individual decisions

regarding each μ-service consumed by the application.

To better express the client-side allocation problem, let us extend the previous formula-

tion by considering a continuum application Ca that relies on the set of μ-services Sa = {sa,i |
i = 1, 2, . . . , Ia } and the set of disjoint continuum domains D = {dp | p = 1, 2, . . . , P } perceived

by the client. Each domain dp ∈ D provides a set of μ-services Sp = {sp, j | j = 1, 2, . . . , Jp }. For

each sa,i ∈ Sa , there is at least one domain providing that μ-service, that is, ∀sa,i ∈ Sa ,∃ sp, j ∈
⋃P

p=1 Sp ∧ sp, j = sa,i . Now let us consider that each sa,i ∈ Sa is bound to a set of QoS requirements

QoSa = {qa,u | u = 1, 2, . . . ,Ua } and that each qa,u ∈ QoSa is represented by a tuple (cta,u ,wa,u )



respectively defining a constraint (e.g., response time ≤ 300ms) and a weight for that attribute,

with wu ∈ 0 ≤ wu ≤ 1 ∧wu ∈ R. For each qa,u ∈ QoSa , actualp,a,u defines the value for that QoS

attribute as perceived by the client for domain dp. It follows that, for each sa,i ∈ Sa , the goal is

to select the domain dp ∈ D that maximizes the utility function Ua (p) =
∑Ua

u=1wa,u ∗ actualp,a,u ,

provided that actualp,a,u � cta,u ,∀qa,u ∈ QoSa , that is, that QoS constraints are satisfied.

2.4 Running Example

We illustrate the continuum with an example scenario that involves multiple applications that rely

on computations executed in the cloud, the edge, and the user’s device.

First, let us consider an Augmented Reality (AR) [6] application, employed by our user to ex-

plore the points of interest (POI) in the city she is currently visiting. This real-time application

involves heavyweight image processing for the extraction of features from captured scenes, as well

as a trained neural network model to match features from an extensive object catalog. This is a

computation-intensive and latency-sensitive kind of application; as such, it can definitely benefit

from adopting the continuum [7]. Indeed, despite the capacity of mobile devices, with these kinds

of applications, it is common for users to experience functional and nonfunctional degradation

(e.g., reduced object catalog, battery drain). By offloading the extraction and matching tasks to a

server, the user can enjoy an improved Quality of Experience.

Two continuum μ-services are modeled for this application: one relies on an image processing

library and a trained model, the other on a feature-based object catalog. Client-side logic is only

responsible for capturing scenes from the device’s camera and for updating the scene rendered by

the display with POI information. To support this application, mobile-edge servers have been de-

ployed to the base stations covering touristic areas. Their additional storage allows a broader set of

objects to be recognized, thanks to a more extensive trained model. Variations in the workload are

handled by means of a fast instantiation of AR μ-services, which must consider other applications

that may be relying on the same servers.

After her tour, our user calls for an autonomous vehicle (AV) to drive her back to the hotel.

During the drive back, she starts editing the pictures taken during the day; this activity is only

interrupted by notifications from the AR application providing nearby POI information. To reduce

the processing time and avoid battery drain, the vehicle features a local-edge server that provides

a dynamic catalog of μ-services, including those needed by the AR application. Also, the vehicle

uses a route planning μ-service to calculate the best plan to reach the destination. Since latency is

not a first-class requirement, the latter is served by a cloud domain.

Once at her hotel room, our user continues to edit the images and videos that she shot during

the day. Later on, she decides to enjoy a Mobile Game (MG). The MG consists of client-side logic

and user interfaces, as well as complex calculations that pose a burden to the CPU of her device. To

support guest applications, the hotel provides a local-edge server. The server identifies the image

editing application and the MG and, after downloading and installing the necessary software, starts

providing the required μ-services. Last but not least, a conventional cloud infrastructure provides

stateful services (e.g., multimedia storage, authentication, and persistence).

3 A3-E

To realize the mobile-edge-cloud continuum, we propose A3-E, a model supporting the self-

management of the life cycles of continuum μ-services. A3-E inherits its name from its four main

activities, namely, (A)wareness, (A)cquisition, (A)llocation, and (E)ngagement.

A3-E targets the efficient and scalable placement of μ-services along the continuum and the

satisfaction of application requirements such as maximum response time, battery consumption,



Fig. 2. A3-E overview. A3-E’s activities—(AW), (AQ), (AL), (E)—are carried out by a domain manager and a 
mobile middleware and coordinate through asynchronous events depicted by arrows and labeled as follows: 
domain identification (DI), client identification (CI), client arrived (CA), client left (CL), μ-service identified (μI), 
μ-service acquired (μAQ), μ-service allocated (μAL), μ-service deallocated (μDA), domain found (DF), domain 
lost (DL), domain confirmed (DC), domain denied (DD), domain selected (DS), μ-service request (μRQ), μ-service 
response (μRS), C-request (CRQ), and C-response (CRS).

and availability. To achieve it, clients and heterogeneous domains take part in the automated and 
opportunistic decision of which continuum resources—among those of mobile, edge, and cloud 
domains—should be employed in provisioning each of the μ-services required by continuum ap-

plications. Figure 2 illustrates each activity in A3-E. Activities are refined by procedures that co-

ordinate asynchronously through events and are carried out by a domain manager and by a mobile 
middleware. To address the intrinsic heterogeneity of the continuum, A3-E is flexible with respect 
to how each of its activities is actually implemented.

3.1 Awareness

The latency of continuum μ-services can be decomposed into network latency and service latency. 
The latter can be further decomposed into three parts (see Figure 2): acquisition delay (ΔAQ), allo-

cation delay (ΔAL), and execution delay (ΔE). FaaS platforms like AWS Lambda [2] and OpenWhisk 
[1] adopt a cold start policy in which μ-services are allocated after the first call and kept for a while 
even if they are idle. The occasional ΔAL, however, may be disruptive for some applications.

Awareness has two benefits: (1) it alleviates ΔAL (cold start) by proactively allocating μ-services 
just before they are needed, and (2) it reduces ΔAQ and enables μ-service acquisition to be oppor-

tunistic (i.e., on demand) by triggering the download and installation of new μ-services as soon as 
the client becomes active in a specific domain (e.g., by starting the application or by entering the 
area of an edge domain).

While cloud domains are not likely to change and may be set up statically by clients, edge 
domains must advertise their existence (domain identification) with metadata (network address, 
static performance indicators) using protocols compatible with their network infrastructures: for 
example, through IP broadcasting in local-edge domains, and through Evolved Multimedia Broad-

cast/Multicast Service (eMBMS) in mobile-edge domains [3, 16]. In particular, edge domains exploit 
locality by triggering a client left event once mobile devices leave the coverage areas, while cloud 
domains rely on adjustable timeouts.



From the client’s perspective, Awareness corresponds to the discovery of domains (source of

domain found and domain lost events) and to the advertisement of required μ-services through a

client identification event that contains their metadata (name, repository URL), upon which the

domain manager triggers two client arrived and μ-service identified events. In this case, special-

purpose HTTP endpoints can be used for cloud domains; local area network protocols (e.g., IP

unicast over UDP) are used for local-edge domains; eMBMS protocols (e.g., FLUTE [16]), which

are carried over traditional UDP and IP multicast toward end-user devices, are used for mobile-

edge domains; and system-level events (e.g., intent broadcasting in Android) are used in mobile

domains.

3.2 Acquisition

Acquisition models the automated download and installation of continuum μ-service artifacts and

the confirmation that the domain can provide that μ-service. Its ultimate goal is to mitigate the

use of domain resources before the μ-service is actually needed, while also facilitating IT opera-

tions (Ops) for developers and administrators. Ops mitigation is particularly important in (finely

distributed) edge domains, since the manual administration of a large number of μ-services can

prove cumbersome and expensive. Nevertheless, this can also prove useful for cloud domains.

Indeed, to the best of our knowledge, current FaaS platforms only support uploading (pushing)

functions through public interfaces.

Acquisition is autonomously managed; therefore, it allows μ-services to be downloaded and in-

stalled on demand. A domain manager fetches the artifacts (e.g., compiled classes and dependen-

cies) from a repository upon the arrival of a μ-service identified event. Note that mobile domains

are exempt from performing Acquisition as local μ-services are assumed to be downloaded and

installed along with the client application.

From the client’s perspective, Acquisition corresponds to the confirmation (or denial) of the

capability of a domain in providing the μ-services required by the application. After a domain

found event, the mobile middleware listens for a μ-service acquired event—to be handled together

with the update of a list of capable domains and the subsequent triggering of a domain confirmed

(or denied) event.

In our running example, the assets that compose the μ-services of the AR, Image Editing, and

MG applications are once fetched and installed by the two local-edge domains upon the arrival of

a first μ-service identified event. While this is achieved, the applications momentarily continue to

rely on their mobile domain, or on any other domain in which the μ-services have already been

acquired and allocated due to a previous interaction (e.g., the mobile-edge domains in our example

skip the acquisition of AR artifacts due to previous contacts with tourist devices).

3.3 Allocation

Allocation models the deployment of continuum μ-services on a pool of resources provided by

the domain. It also captures the client-side selection of the domain(s) for each of the μ-services

employed by the application.

The scope of provider-side Allocation is limited by its domain boundaries. Cloud domains al-

locate μ-service instances to containers in resourceful data centers covering a large area. On the

other hand, edge domains rely on containers from one or more (virtual) machines serving an of-

fice or a building (local-edge) or a 5G base station area (mobile-edge). Finally, the allocation of

μ-services to mobile domains is platform-specific (e.g., based on the Android service life cycle).

Existing FaaS platforms handle Allocation with the on-demand instantiation of containers after

a first request, which may be kept warm before being deallocated after a period of idleness [1, 2].

A3-E generalizes this mechanism as a self-management loop [15] in which μ-service instances are



allocated to cloud and edge domains to guarantee that the latency and availability of each provided

μ-service are in line with the desired SLA. To achieve this goal, the self-management monitor

(M in Figure 2) measures the number of μ-service invocations and their execution times (QoS in

Figure 2) and detects client arrived and client left events from Awareness (CA and CL, respectively,

in Figure 2). The analyzer (A in Figure 2) aggregates monitored data over a predefined time window

and computes the arrival rate (α j ), response time (τj ), and number of clients for each μ-service.

The planner (P in Figure 2) exploits these analyses and calculates the number of instances c j

so that τj ≤ Δj ∧ Kminj ≤ c j ≤ Kmax j , ∀sj ∈ S . To mitigate ΔAL (cold start), the planner reacts to a
client arrived event by anticipating the allocation of containers, if resources are available, and by 
keeping them allocated (warm) after each μ-service request. Given the resource limitations of edge 
domains, contentions between different μ -services may exist. Thus, the planner is also in charge 
of managing such situations by prioritizing applications. Back to our running example, critical 
applications, like the AR application for tourists, should have a higher priority with respect to 
the others. In such cases, some μ-services might become unavailable or available with a slower 
response time. Finally, the executor (E in Figure 2) carries out the new allocation scheme by means 
of commands to the container platform (e.g., Docker).

The fluctuations in the availability and latency are handled by clients by means of the dynamic 
selection of the domain that best satisfies their requirements. Analogously to the provider-side 
Allocation, the mobile middleware realizes this activity by means of a self-management loop [15] 
for each μ-service consumed by the client application. At each loop iteration, the monitor (M in 
Figure 2) measures the battery level and network latency of all capable domains D j ⊂ D and lis-

tens to QoS events from Engagement to keep track of the actual execution times. The analyzer (A 
in Figure 2) aggregates acquired data to compute the overall battery consumption and service la-

tency of each capable domain. The analyzer may also consider the static performance indicated 
by each domain during Awareness (e.g., the computational power of the distinct edge and cloud 
domains). The planner (P in Figure 2) uses these data to run a multiattribute rating algorithm [22] 
to compute the best domain for future invocations. Finally, the executor (E in Figure 2) enacts the 
selection if needed (i.e., the computed domain differs from the one in use) and eventually triggers 
a domain selected event. Meanwhile, the middleware handles domain acquired (lost) events by in-

cluding (disregarding) such a domain. A detailed description of this self-management loop can be 
found in Section 4.

3.4 Engagement

Engagement models the actual provisioning of a continuum μ-service by a domain after its suc-

cessful acquisition and allocation. Throughout Engagement, and as long as the client-domain inter-

action persists, the client is able to engage with that domain by means of invocations to provided 
μ-services. Remote domains (i.e., cloud and edge) are engaged through distributed protocols (e.g., 
HTTP requests or WebSockets). To enforce a standard interface between the mobile middleware 
and heterogeneous domains, the mobile domain is engaged by means of system-level events.

During Engagement, the domain manager handles μ-service request events by associating them 
with μ-service instances, given the constraints set by the used load balancing strategy. The deci-

sions taken during Allocation guide the manager to react to μ-service deallocated events by indicat-

ing that the μ-services have become unavailable and by queuing subsequent requests to them. In 
case of too high latency, the manager sends a μ-service response event along with a specific error 
code. Conversely, a μ-service allocated event indicates the recovery of a given μ-service; queued 
and subsequent requests are then processed accordingly.

From the client’s viewpoint, a C-request arrived indicates the client application has sent a new 
request to a continuum μ-service. The event contains the name of the target μ-service along with



Fig. 3. A timeline of events from the running example scenario.

required parameters; the middleware handles it by invoking (μ-service request) the μ-service from

the currently selected domain. Upon arrival of a μ-service response, the middleware triggers a

C-request reply event, which is then handled by the client application. During Engagement, the mo-

bile middleware listens for domain selected events that indicate the domain to interact. If no domain

is available for that specific μ-service, the middleware reacts by queuing subsequent C-requests

until a new domain selected event confirms a new domain or, in case of timeout, by triggering a

C-request reply with an error.

Figure 3 depicts a timeline of events from our Running Example scenario. The timeline starts

with our user initializing the AR application after entering the touristic area. The mobile middle-

ware receives a domain identification event (DI ) from its mobile domain and replies with a client

identification (CI ). Following the μ-service identification (μI ), the middleware triggers a μ-service

allocated (μAL) once the corresponding functions have been registered. After selecting this do-

main, the middleware triggers a domain selected (DS), which allows subsequent C-request (CRQ)

events to be handled locally. As our user enters the area covered by a mobile-edge domain pro-

vided by a base station (BSA), the middleware receives a domain identification (DI ) and repeats the

previous handshake procedure. To prevent battery drain, the self-management loop decides for the

mobile-edge domain and triggers a DC event once the μAQ event arrives. After a long period of

engagement with the mobile-edge domain, our user enters the vehicle and its local-edge domain.

Due to a change of network, the connection with the mobile-edge domain is lost (DL). To pre-

vent service interruption, the middleware momentarily switches back to its mobile domain (DS).

Meanwhile, as this is the first contact with the AR application, the edge domain goes through Ac-

quisition, which takes some time (ΔAQ) to complete (μAQ). Upon a domain confirmed event (DC),

the local-edge domain is selected (DS).

4 IMPLEMENTATION

To demonstrate the capabilities of A3-E in managing the life cycle of continuum applications, we

have implemented prototype versions of domain managers, for local-edge and mobile domains,

and of the mobile middleware, for Android devices. These prototypes have then been employed in

the evaluation of our model. In this article, we rely on existing FaaS platforms [1, 2] for handling

the Allocation of μ-services to a pool of dynamically allocated containers.

4.1 Domain Managers

The first domain manager3 manages a local-edge domain and encompasses Awareness and Acquisi-

tion; Allocation and Engagement are delegated to the FaaS platform (OpenWhisk), which allocates

3Documentation and source code available at https://github.com/deib-polimi/A3-E-DSM-local-edge/.

https://github.com/deib-polimi/A3-E-DSM-local-edge/


μ-services to its pool of containers and handles client application requests (fired by the middle-

ware) by means of RESTful endpoints.

The domain manager implements Awareness by broadcasting domain identification UDP events

at a constant interval. A client device that enters the network replies—by means of a UDP unicast—

with the client identification event that contains the μ-services the application requires, along with

the respective repository from which μ-service artifacts can be fetched during Acquisition (as de-

scribed in Section 3.1). For each identified μ-service, the manager proceeds with Acquisition, and

among downloaded files, a descriptor provides installation instructions (e.g., compilation of Java

classes and required dependencies). In particular, the prototype relies on Gradle,4 a state-of-the-art

build tool commonly employed in projects ranging from mobile applications to μ-services.

Once artifacts have been downloaded and built, Acquisition finishes with the deployment of μ-

service function(s) and dependencies to OpenWhisk by means of its command line interface and

with the generation of a μ-service acquired event with the same UDP unicast channel. In case of fail-

ure, the mobile middleware is informed with a μ-service denied event (as described in Section 3.2).

The second domain manager considers Android devices as particular mobile domains, and the

resulting implementation was packaged as a module within the mobile middleware (described in

Section 4.2). The prototype implements Awareness by triggering a system-level domain identifica-

tion event once it has been loaded by the middleware and by listening to a client identification reply

event. In contrast to cloud and edge domains, each μ-service identified event contains the qualified

name (e.g., the system path of a Java class that implements the static function), which is added to a

service registry that implements Acquisition. This domain manager supports two types of μ-service

functions: Java methods, which are natively supported, and JavaScript functions, which require a

JNI wrapper for their execution on Android devices. Note that existing FaaS platforms support

a variety of other languages and runtimes. More comprehensive implementations of the mobile

domain manager may either use additional wrappers or require developers to provide native im-

plementations of needed μ-service functions.

Once a μ-service function is registered, the mobile domain manager triggers a μ-service acquired

event, which enables its selection by the middleware. During Engagement and upon the selection

of this domain, μ-service request events are handled by looking up for the corresponding functions.

Once found, the function is called with the parameters in the original C-request and produces a

μ-service response to return the result.

4.2 Mobile Middleware

This middleware5 targets Android devices, but it does not use any Android-specific feature and

can be generalized to other mobile platforms.

To implement Awareness, the middleware listens for domain identification events triggered by

its mobile domain and broadcasted by edge domains through UDP. To avoid battery drain, the

middleware limits discovery to a short time period after the mobile middleware is first launched

or the mobile device changes network (e.g., from a local area WiFi to a 5G cellular network). For

every domain found, the middleware proceeds by sending a client identification event containing

the address of the repository from which μ-service functions and dependencies can be downloaded,

for remote domains, or the qualified name of Java/JavaScript classes, for its local (mobile) domain.

Each corresponding μ-service acquired (denied) event is handled by means of a system-level domain

confirmed (denied) event. Since cloud domains have been evaluated in this article by exploiting an

4https://gradle.org/.
5Documentation and source code available at https://github.com/deib-polimi/A3-E-CSM.

https://gradle.org/
https://github.com/deib-polimi/A3-E-CSM


existing FaaS platform, which lacks Awareness and Acquisition, these domains have been set up

programmatically at startup.

The middleware also implements the self-managing loop required by Allocation (see Section 3.3).

The loop takes into account three types of requirements: location constrains the μ-service to be

local, on a local edge, on a mobile edge, or in the cloud (or any combination of the above), while

service latency and battery consumption can be set to any, low, or very low. For each μ-service, the

middleware monitors network latency for each of the corresponding capable domains; it then adds

the execution time to the aggregated network latency and plans for the changes in the selected

domain by means of a multiattribute rating algorithm; finally, it enacts the change by triggering a

domain selected event.

To estimate the execution time for different domains, the middleware relies on scores that range

from 1 to 5 and defines the computational power of the domains.6 By default, the score of mobile

domains is 1 and the score of cloud domains is 5 to reflect their shortage/abundance of computa-

tional resources. In particular, the score of edge domains is determined by the static performance

indicator part of their domain identifications (see Section 3.1). Battery consumption follows a sim-

ilar, dual path: 5 for mobile domains, while 1 and 3 are the default values used to characterize edge

and cloud domains, respectively. These values can be updated at runtime based on the service

latency of each domain: the longer the connection stays open waiting for a response, the more

battery is consumed.

ALGORITHM 1: A3-E Selection Algorithm

1: function selectDomain(A3EService service , A3EDomain[] capableDomains)
2: scoreRanдe ← 5

3: maxLatency ← computeMaximumLatency(capableDomains )
4: maxBattery ← computeMaximumBattery(capableDomains )
5: latencyWeiдht ← service .дetLatencyRequirement ()
6: batteryWeiдht ← service .дetBatteryRequirement ()
7: maxScore ← 0

8: selectedDomain ← null
9: for all domain ∈ capableDomains do

10: serviceLatency ← computeServiceLatency(domain.дetNetworkLatency (),domain.
дetCptPower ())

11: batteryConsumption ← computeBatteryConsumption(domain, service )
12: latencyScore ← latencyWeiдht ∗ ((scoreRanдe − 1) ∗ (1 − latency/maxLatency) + 1)
13: batteryScore ← batteryWeiдht ∗ ((scoreRanдe − 1) ∗ (1 − batteryConsumption/

maxBattery) + 1)
14: score ← (latencyScore + batteryScore )/(latencyWeiдht + batteryWeiдht )
15: if score ≥ maxScore then

16: maxScore ← score
17: selectedDomain ← domain
18: end if

19: end for

20: return selectedDomain
21: end function

Algorithm 1 describes the procedure used by the planner. The algorithm computes a score that

ranges from 0 to 5 (line 2). First, it retrieves the maximum network latency and computational

6Labeling computational power is also common in the cloud where different tiers of virtual machines are available: e.g., 
https://aws.amazon.com/ec2/instance-types/.

https://aws.amazon.com/ec2/instance-types/


power from available domains (lines 3 and 4). Then, it retrieves the weights assigned to each QoS

metric (lines 5 and 6), which correspond to the values required for service latency and battery

consumption: any corresponds to a weight of 0, low corresponds to 1, and very low to 2.

For each domain, the algorithm computes the overall score (lines 9 to 14). For each QoS attribute,

it normalizes the actual value with the previously computed maximum. Since a higher score should

mean lower service latency/battery consumption, the algorithm computes each score by means of

the complement of the normalized value and adds 1 to avoid 0 scores. The overall score is then

calculated as the weighted average between the scores obtained by the domains for service latency

and battery consumption. The loop concludes (lines 15 to 18) with the selection of that domain

if its overall score is greater than the previous (maximum) one. In particular, Algorithm 1 is an

instantiation of SMART [22], in which multiple competing QoS attributes are taken into account

using the following formula:

Smart (p) =

∑U
u=1valueu (p) ∗weiдhtu
∑U

u=1weiдhtu
, (1)

where p is a domain, the considered QoS attributes are service latency and battery consumption

(thus U = 2), and their weights are represented as explained above.

To implement Engagement, the middleware handles C-requests triggered by client applications

by invoking the services provided by the previously selected domain. Domains are bound to in-

vocation resolvers: those for edge and cloud domains fire HTTP requests, while those for mobile

domains broadcast Android events that contain the requests. Analogously, each resolver handles

invocation responses by triggering the corresponding C-response events, which are then handled

by client applications.

5 EXPERIMENTAL EVALUATION

To assess the proposed computing continuum, we performed different experiments with four dis-

tinct domains. The first experiment studies how latency changes and how the remote domains

scale with a varying workload. The second experiment evaluates all domains from a client’s per-

spective, in terms of both battery consumption and execution time. The third experiment evaluates

the capabilities of selecting domains dynamically and targets availability. Finally, the last experi-

ment evaluates the performance of Acquisition and Allocation. When possible, we compared A3-E

against Enorm, a framework for edge resource management.

5.1 Setup of Experiments

Table 1 summarizes the four domains used in the evaluation. The Mobile domain was deployed

on an Android smartphone that hosted both the A3-E middleware and a continuum, Augmented

Reality application that invokes μ-services7 responsible for feature extraction and object detection,

which are placed along the continuum. The application is a typical use case for the continuum due

to its demanding requirements in terms of low latency and high computational power [6, 7].

The prototype domain manager (see Section 4.1) was deployed on two local-edge domains.

Local-edge-1 represented a situation in which latency is ultra low but the computational resources

are more constrained and scaling up is not possible due to the inherent physical restrictions of the

underlying infrastructure (e.g., a lightweight, office-wide server). In turn, Local-edge-2 had more

computational resources and, again, low latency could be achieved due to physical proximity (e.g.,

a robust edge server that is supposed to cover an entire floor of a building).

7Implementation available at https://github.com/deib-polimi/A3-E-image-recognition.

https://github.com/deib-polimi/A3-E-image-recognition


Table 1. Domains Setup in the Continuum for the Experimental Evaluation

Domain Machine Resources Execution Environment

Mobile Samsung Galaxy S6 SM-G90, 3Gb

RAM, 8x Cortex CPU 2Ghz

Android 5.0.2 + Java Functions +

OpenCV

Local-edge-1 ubuntu/trusty64-2, 4x vCPUs, 4Gb

RAM

OpenWhisk, 256Mb/Action, Python 2.7

+ OpenCV

Local-edge-2 ubuntu/trusty64-2, 8x vCPUs, 16Gb

RAM

OpenWhisk, 256Mb/Action, Python 2.7

+ OpenCV

Cloud-FaaS N/A AWS Lambda, 256Mb/Function, Python

2.7 + OpenCV

Cloud-IaaS Auto Scaling Group with t2.micro

instances + Amazon Linux AMI 2017

NodeJs 6.11 server + Python 2.7 +

OpenCV

As for cloud domains, we used AWS Lambda [2] (Cloud-FaaS), the most mature FaaS solution

on the market. To be consistent with our formulation of the computing continuum, functions and

associated dependencies were deployed to the AWS Lambda data center in Europe. Additionally,

we also deployed the functionality onto a traditional setup using the IaaS provided by AWS (Cloud-

IaaS). The main goal of this setup was not to compare traditional cloud services against an FaaS

solution, but to demonstrate that the proposed continuum could outperform the cloud under the

tested circumstances and requirements.

5.2 Service Latency and Scalability

The first experiment assessed different domains in terms of service latency and scalability when

subjected to a varying workload. We simulated an increasing number of clients, each one making

100 requests for the μ-services required by the application at a rate of two per second. This setup

was conceived by taking into account the default limit of concurrent executions in AWS Lambda

[2] and Openwhisk [1].

This experiment excluded the mobile domain and focused on the remote domains, that is, the

edge- and cloud-based ones. In this experiment, requests were emulated using Postman,8 an open-

source application designed to perform load testing. The payload used for this experiment was

an example image of approximately 65KB, which is a reasonable size for this use case when con-

sidering the requirements related to low latency and computation time. To mitigate the cost of

cloud-based providers, the execution time was profiled once for each domain, and then we fo-

cused on network latency, which is subject to higher fluctuations; the results on network latency

were averaged through five executions.

Figure 4 shows the average latency for each increment in used clients. Note that the computation

time (light gray) is different from the overhead (dark gray). The latter includes network communi-

cation (routing and forwarding) and queuing time (when no resources are available to process the

request). If we use Cloud-FaaS as baseline, latency reduction was up to 90% for Local-edge-1 and

up to 82% for Local-edge-2. Interestingly, with Cloud-FaaS, the latency decreases when the num-

ber of simultaneous clients increases. This is due to the extra infrastructure provided under the

hood by AWS Lambda to compensate for the initialization overhead of cold requests: higher reuse

rates correspond to higher stress levels of requests [20]. For a few service invocations, the load

distribution adopted by AWS is uneven across hosts. This uneven use of the infrastructure may

8https://www.getpostman.com/.

https://www.getpostman.com/


Fig. 4. Latency and scalability for each domain and different number of clients.

lead to the early deallocation of some containers (incurring in cold starts) if client workloads do

not utilize all hosts. Thus, the decrease in the execution time with a higher level of workload is

justified by the fact that more containers are kept warm.

Despite its virtually unlimited resources, the Cloud-FaaS has tunable limits for the maximum

number of concurrent executions (default is 1,000) due to budget constraints [31]. This is reflected

in the substantial increase in latency when we consider the Cloud-FaaS domain and 64 clients.

If we use the Cloud-IaaS domain as baseline, the reductions when using Cloud-FaaS are up to

77% and 58% with respect to Local-edge-1 and Local-edge-2, respectively. Interestingly, Cloud-IaaS

outperformed Cloud-FaaS (46% less overhead) for light workloads (up to two simultaneous clients).

This can be due to the additional steps performed by the API Gateway to forward RESTful calls to

AWS lambda functions in Cloud-FaaS.9 Nevertheless, this advantage is mitigated by the fact that

Cloud-FaaS can better react to workload bursts, given its faster horizontal scaling [11, 31].

For light to medium workloads (up to 16 simultaneous clients), the overhead added by the local-

edge domains is less than in both cloud alternatives. Under heavier workloads (from 32 simultane-

ous clients onward), these domains present restricted availability and degraded performance—as

one can observe with Local-edge-1, the most resource-constrained domain. One may argue that

a local-edge domain is intended to cope with light workloads (e.g., a single office or a floor in a

building). When edge domains must cope with hundreds of simultaneous clients (e.g., a mobile-

edge domain), the computation, storage, and memory capabilities are expected to be orders of

magnitude higher.

5.3 Battery Consumption and Execution Time

The main goal of this experiment was to evaluate the compute continuum from the client’s view-

point in terms of battery consumption and execution time. Differently from the previous experi-

ment, we set up a mobile device with the mobile middleware (see Section 4.2).

This experiment featured four different scenarios: the first three consider one domain each

(Cloud-FaaS, Local-edge-2, and Mobile-device), and the last one (all-domains) combines the previous

ones to form the continuum.10 The experiment consisted of cascading 2,000 sequential requests

9http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https.html.
10Details on the availability of each domain in the all-domains scenario are discussed in Section 5.4.

http://docs.aws.amazon.com/lambda/latest/dg/with-on-demand-https.html


Fig. 5. A3-E experimental evaluation results.

for feature extraction and matching of an example image (with a size of 65KB). We measured the

total execution time, that is, the time between a request and its response, the battery consumption,

and the average time per call. Figure 5 shows the obtained results, averaged on five executions for

each scenario.

If we consider the total execution time (Figure 5(a)) and Cloud-FaaS domain as baseline, Local-

edge reduced it up to 72%, while Mobile-device and All-domains reduced it up to 69% and 49%,

respectively. In turn, we measured the battery consumption (Figure 5(b)) in the Mobile-device do-

main and noticed a drop of 4.5% after 750 seconds (i.e., 12.5 minutes) of execution. Starting from

this baseline, the savings with Cloud-FaaS, Local-edge, and All-domains were 49%, 35%, and 49%, re-

spectively. The time per call (Figure 5(c)), with Cloud-FaaS as baseline (1, 137 milliseconds per call),

was improved by 76%, 68% and 47% for Local-edge, Mobile-device, and All-domains, respectively.

These experiments tell us that the total execution time, when using only the cloud, was two

times higher than when using the continuum (All-domains). Since the requests were performed

in cascade and given the higher latency per call in the cloud, the total time increases accordingly.

Clearly, the use of A3-E to switch to edge domains when possible would substantially reduce

latency and would improve the perceived QoS.

Battery consumption was substantially lower when offloading computation rather than per-

forming it on the device. The Mobile-device domain lasted half the time but used twice as much

battery (a prohibitive 20% of battery drain per hour) than the All-domains one, given that it was

performing CPU-intensive operations. This recalls the importance of computation offloading to

preserve the resources of mobile devices.

5.4 Domain Selection and Availability

We evaluated the capability of A3-E to select the best domain given the requirements on ser-

vice latency and battery consumption. In this experiment, we used the three aforementioned do-

mains together to form the continuum and simulated their availabilities using a probability dis-

tribution. The mobile middleware was configured to ping for domain availability and network

latency every 2 seconds. We considered that the cloud domain could be unavailable mainly due

to the absence of mobile network coverage since downtimes of cloud services are minimal [10].

To simulate this, the average network unavailability was set to once every 15 minutes, while the

average time for it to become available again was 2 minutes, which resulted in an availability

of 88%.

The rationale for the edge domain was analogous, yet with a higher probability of being unavail-

able (e.g., due to the lack of memory or CPU). In this case, the edge domain was unavailable once

every 10 minutes, and it needed an average of 5 minutes to become available again, resulting in an

availability of 66%. If we consider that edge nodes are only reachable within network coverage, the

resulting availability is calculated by the product of the two availabilities, that is, 0.88 ∗ 0.66 = 58%.

Finally, the mobile device is considered as always available, as we aimed to stress the tradeoff



Fig. 6. All-domains scenario results.

between battery consumption (when the mobile domain is employed) and latency (when remote 
domains are used).

To set an optimal baseline for this experiment, we calculated the theoretical number of calls 
to be served per domain, given the probabilities explained above. Upon this, we calculated the 
optimal execution by assuming no overhead for domain switching and by always using the best 
domain available. Figure 6 shows the results for the All-domains scenario, with respect to avail-

ability. The experiment showed (see Figure 6(a)) an average perceived availability of 93% without 
considering the Mobile-device domain (5% and 35% improvement with respect to the cloud and 
edge domains, respectively) and 100% availability when also considering the Mobile-device domain 
(which is always available).

Figure 6(b) shows the distribution of calls per domain in the continuum: 63% served by Local-

edge, followed by Cloud-FaaS (30%) and Mobile-device (7%)—with an optimal of 66%, 22%, and 12%

respectively. In terms of consistency, given that all requests were served, on average 70% of the 
requests perceived low latency, while the 30% that relied on the cloud had a degradation in QoS but 
still were processed successfully. Finally, Figure 6(c) shows an increase of 33% in the total execution 
time using A3-E w.r.t. the optimal, where the former includes the overhead of domain selection 
and switching.

The experiment showed that A3-E is capable of performing domain selection and computation 
distribution at runtime. We achieved 100% availability, given that the mobile domain is always 
available. The All-domains scenario reflects the underlying rationale of the computing continuum: 
one should exploit edge domains as much as possible (by giving them high scores in Formula 1), 
leading to a better balance among computation time, latency, and resource consumption. Note 
that the computational power of the mobile domain has the lowest possible score (see Section 4.2), 
and thus the cloud was often selected as the first alternative in case of unavailability of the edge 
domain.

5.5 Enorm

Finally, we compared Local-edge-2 against Enorm [32], which assumes a similar, resource-

constrained configuration f or e dge nodes. F igure 7 (a) shows the l atency reduction when using 
both A3-E and Enorm, that is, an edge alternative, instead of a cloud-based solution. Both edge-

based solutions are better than a cloud alternative for up to 50 simultaneous clients (from 35% to 
55% latency reduction), and A3-E is always better (higher reduction) than Enorm. Both approaches 
perform worse than the cloud solution with heavier workloads (from some 50 to 64 simultaneous 
clients on).

The last experiment evaluated the performance of Acquisition and Allocation. Given the re-

source limitations of edge domains and the potential benefits of exploiting the client arrival/exit 
awareness provided by edge locality, we targeted the evaluation of Local-edge-2 as a domain. The



Fig. 7. Comparison of A3-E (Local-edge-2) and Enorm against a cloud-based solution.

experiment focused on the scenario in which no edge resources are preallocated, that is, a worst-

case cold-start scenario (ΔAQ + ΔAL).

The μ-service we used was similar to the ones used in the previous experiments. Along with the

metadata related to client identification, the client informed the server of the repository to fetch

required assets (some 30Mb including the μ-service function and dependencies). Also, the experi-

ment only measured the domain-side performance, as the service latency perceived by clients was

evaluated in the previous experiments. After each successful Acquisition and Allocation, we unin-

stalled and deleted all the μ-service-related assets to allow subsequent measurements to capture a

worst-case cold start.

We executed cascading sequential requests for periods of 5 minutes, with different utilization

levels of the edge node: low (10% server load and low network traffic, equivalent to eight clients),

medium (55% server load and 16 clients), and high (85% server load and 32 clients). Again, we were

able to compare A3-E against the Enorm framework, given that our acquisition and awareness

are analogous to the provisioning phase in Enorm, which consists of deploying application server

partitions from the cloud to containers’ edge nodes.

Figure 7(b) shows obtained results. The average time between the detection of a client identifi-

cation event and a successful Allocation was 12.5 and 44 seconds for A3-E and Enorm, respectively,

without considerable variations regarding the current load of the edge node. Such a reduction of

provisioning overhead (up to 70%) is one of the main advantages of adopting an FaaS model for

the continuum. The underlying FaaS solution (OpenWhisk in this experiment) reduces the burden

of downloading and installing new functionality: thanks to the highly shared platform, μ-service

functions can be created and deleted in a fraction of the time needed to do it with complete con-

tainers (as in Enorm and most of the state-of-the-art solutions).

5.6 Threats to Validity

The experiments only targeted one example application and, in the case of the experiments of Sec-

tions 5.3 and 5.4, one single client device. Further tests are needed to also consider multiple clients

that use several applications composed of μ-services with conflicting requirements, whose corre-

sponding functions are deployed along the continuum. Additionally, it is currently not possible to

test with real mobile-edge domains, that is, to provide computational capabilities on base stations.

This could be approximated either by simulation or by deploying edge domains by following the

current specifications of mobile edge computing in terms of computational power and latency, to

better capture the heterogeneity of the continuum. Nonetheless, the fact that specifications and



technologies are still under development limits the accuracy with which mobile-edge domains can 
be evaluated.

6 RELATED WORK

The first notion of a  computing continuum was based on cloudlets (trusted, resource-rich com-

puters, or clusters of computers, connected to the Internet and available for nearby mobile devices 
[24]) for a mobile-cloudlet-cloud architecture that aimed to reduce response time [28]. Cloudlets 
are homogeneous and connected to coordinate the offloading of computationally intensive tasks. 
Static data (e.g., template images for face recognition) are stored in the cloudlets beforehand.

A number of works have tackled the problem of placement among the set of computational enti-

ties from edge to cloud computing. Some (e.g., [30]) focus on the placement problem of single com-

ponents/applications, whereas others (e.g., [34, 36]) consider multiple components/applications: 
the problem in both cases proved to be NP-hard [36].

With respect to these works, our formulation allows multiple instances of (static and light-

weight) μ-services to coexist across the computing continuum and, from the viewpoint of cloud 
and edge providers, A3-E focuses on the opportunistic allocation of instances within disjoint do-

mains. On one hand, domain autonomy copes with scenarios in which cloud and edge resources 
are managed by distinct providers and interdomain coordination is not feasible. On the other hand, 
the cooperation among nearby edge nodes (as part of an extended domain) may further increase 
the robustness and scalability of the edge layer and is considered for future work.

More closely related to our service model, Jia et al. [14] tackled the QoS-aware offloading of tasks 
to distributed cloudlets with Virtual Network Functions (NVFs), while [33] proposed an online 
approximation algorithm for the placement of service instances. In our model, we rely on state-of-

the-art load balancing mechanisms to distribute requests to existing instances of services, which 
are opportunistically allocated to autonomous domains in collaboration with clients.

From a different p erspective, s everal w orks [ 19, 2 3, 3 5, 3 7] h ave f ocused o n t he d ecision of 
whether to offload co mputation fr om/to mo bile, ed ge, or  cl oud no des. In  th is ca tegory, Orsini 
et al. [23] proposed CloudAware, a comprehensive context-aware mobile middleware that handles 
offloading to edge and cloud nodes. Similarly to A3-E, clients select the alternative that best suits 
their requirements, including the option of performing computations locally. CloudAware deals 
with stateful components, which renders the offloading decision—controlled by the client—more 
critical. Instead, A3-E influences, but does not dictate, the opportunistic allocation of stateless and 
lightweight μ-services onto edge and cloud providers.

The Enorm framework [32] for edge node resource management exhibits similarities with A3-E. 
In Enorm, cloud managers are responsible for the allocation of server-side application partitions 
on edge nodes with the aim of reducing service latency and the volume of data sent to the cloud. 
Server allocation follows a handshake between cloud and edge managers. If successful, servers 
are deployed, and clients are bound to specific ports following a network-level reconfiguration. In 
contrast, in A3-E, μ-services are dynamically deployed after a direct handshake between clients 
and autonomous domains, including mobile, edge, and cloud domains. Also, clients decide on the 
best domain given their requirements and perceived QoS. As in Enorm, our model takes into ac-

count both priority and latency; nonetheless, in A3-E, requests from different clients are not bound 
to specific instances but decided by a load balancer, favoring seamless mobility. Accordingly, allo-

cation in A3-E can be based on a controller able to deal with a high workload churn and a large 
number of concurrent requests.

As for the Network Function Virtualization (NFV) field, s everal f rameworks, m ainly based 
on the ETSI MANO standard [13], have been proposed to cope with the fluctuating demand of



network infrastructure11 [26]. These frameworks provide an abstraction layer over a mobile edge

infrastructure, making the shift among the different parts of the continuum utterly transparent to

applications. However, A3-E focuses on the opportunistic placement of Application-Level Func-

tions (following the FaaS model) rather than on VNF elements. We see NFV/VNF as part of the

underlying infrastructure, and thus the work on them complementary to ours.

7 CONCLUSIONS AND FUTURE WORK

This article proposes A3-E, a unified model for creating and managing the computing continuum

formed by mobile, edge, and cloud resources. Due to its self-management capabilities and effi-

ciency, which complement the functionality provided by FaaS platforms, A3-E provides a suitable

approach for the realization of the convergence among mobile, edge, and cloud nodes. It overcomes

the heterogeneity of the different domains thanks to stateless functions exposed as μ-services and

tackles the opportunistic placement of computation along the continuum through mutual client-

provider awareness. A3-E has been assessed through experiments that demonstrated its ability

to support applications with the opportunistic placement and selection of μ-services. The experi-

ments also showed a substantial reduction of both latency and battery drain when edge services

are used instead of cloud or local ones, while availability was maximized by the mobile domain.

Ongoing and future work include advanced resource management along the continuum. Sev-

eral approaches in the literature tackle the dynamic resource allocation problem by using heuris-

tics [25], artificial intelligence [21], or queue theory [12]. Resource provisioning for continuum

applications poses new challenges: one has to consider their low-latency nature and their highly

dynamic workload (e.g., from users that quickly enter and leave a particular edge area). To tackle

this problem, we are working on a self-management loop based on lightweight control theoretical

algorithms (as proposed in [5]) that could handle the fast allocation of μ-service instances.

To further improve robustness and scalability, we would also like to work on a decentralized

placement approach that considers the coordination among surrogate edge and cloud domains

from the same provider. In the same direction, we would like to consider mobility to anticipate

acquisition and allocation. Finally, we would like to explore scenarios related to computation of-

floading in which devices that provide more computational resources can be seen as mobile do-

mains for constrained devices in case nearby edge domains are not available and the latency to

the cloud is prohibitive.
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