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Abstract It is safe to claim that we live in a Big Data world. In effect, many 
sectors of our economy are already guided by data-driven decision pro-
cesses. Big Data and Business Intelligence applications are facilitated by the
MapReduce programming model while, at infrastructural layer, cloud comput-
ing provides flexible and cost effective solutions to provide on demand large 
clusters. Capacity allocation in such systems, meant as the problem of provid-
ing computational power to support concurrent MapReduce applications in a 
cost effective fashion, represents a challenge of paramount importance.

In this paper we lay the foundation for a solution implementing admis-
sion control and capacity allocation for MapReduce jobs with a priori deadline 
guarantees. In particular, shared Hadoop 2.x clusters supporting batch and/or 
interactive jobs are targeted. We formulate a linear programming model able
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to minimize cloud resources costs and rejection penalties for the execution of
jobs belonging to multiple classes with deadline guarantees. Scalability anal-
yses demonstrated that the proposed method is able to determine the global
optimal solution of the linear problem for systems including up to 10,000
classes in less than one second.

1 Introduction

Nowadays, many sectors of world economy are influenced by data-driven deci-
sion processes [30]. The availability of massive data sets and suitable distribute
platforms to process them have in fact profoundly changed the way complex
systems are explored and modeled, as well as the hypotheses generation pro-
cess, to better grasp both the overall behavior and the component interactions.
This approach is particularly important in all scenarios that hardly fit in in-
tuitive models like natural sciences, social and engineered systems [22].

The impact of the Big Data has been epochal and its incidence has probably
not yet reached its peak. Indeed, a recent McKinsey study [39] estimates that
the impact of data intensive technologies on the US health care alone is worth
$300 billion. The analysis also shows that the European public sector could
potentially reduce expenditure of administrative activities by 15–20%, with an
increase of value ranging between $223 and $446 billion [22,39].

From the technological perspective, the MapReduce programming model
is recognized to be the prominent solution for Big Data applications [35]. Its
open source implementation, Hadoop, is mature and able to manage large
datasets over either commodity clusters and high performance distributed
topologies [56]. It has attracted interest of both industry and academia as
the processing of large amounts of unstructured data became a high prior-
ity task and it overtakes the scalability level achievable with traditional data
warehouses and business intelligence technologies [35].

Resource eager Big Data platforms, like Hadoop, often require very large
clusters of machines to process data fast enough to support reactive business
processes. For this reason, Big Data combines beautifully with the Cloud as
it can provide quasi-infinite computation on a pay-per-use basis. Also, Cloud
storage offers an effective and affordable solution for storing massive data set,
whereas modern NoSQL databases are recognized to feature good extensibility
and scalability in storing and accessing data [31]. For these reasons, many cloud
providers already include in their offering MapReduce based platforms such
as Microsoft HDinsight or Amazon Elastic MapReduce [6,10]. IDC estimates
that by 2020 nearly 40% of Big Data analyses will be supported by public
cloud [12].

In the very beginning, MapReduce-based systems were only meant to run
on dedicated clusters to support batch analyses through a FIFO scheduler [44,
45]. Over time, their mission has evolved and, nowadays, one of the main chal-
lenges is to provide tools to handle large queries, submitted concurrently by
different users to a shared cluster, possibly with some guarantees on their exe-



cution time [61,62]. Solutions with strong multi-tenant capabilities already
exist on the market. Hadoop in its second release, for example, has been
completely redesigned to separate computational resource allocation mech-
anisms from application management to ensure that different applications are
performed concurrently. The allocation of cluster resources, however, is still
largely manual as YARN does not support performance guarantees in the
resource management. This often results in a misuse of available resources,
oversized clusters, and high execution costs. In this context, the ability to al-
locate cluster capacity optimally is a problem of particular importance yet also
very challenging [49]. The problem is made even more complicated by the fact
that the execution time of a MapReduce application, which also depends on
the amount of resources assigned and the size of the data set to be processed,
is a priori unknown and difficult to assess [36,49].

The aim of this work is to provide the theoretical foundation for the cre-
ation of a deadline-guaranteed mechanism of admission control (AC) and ca-
pacity allocation (CA) on shared Hadoop 2.x cloud clusters supporting both
batch and interactive jobs. AC is an overload protection mechanism that re-
jects requests under peak workload conditions to prevent performance degra-
dation. A lot of work has been done in the last decade for optimal admis-
sion control in web servers and multi-tier applications [21,24,32,33,53,54].
Recently, some work has been performed also in the Hadoop context [20,25],
but to the best of our knowledge, our work is one of the first contributions
that provide a joint solution for AC and CA for MapReduce jobs. In particu-
lar, we first deal with the problem of assessing the application performance by
extending the work of Verma et al. [49] to the case of clusters running different
applications and multiple users; we then formulate the joint AC and CA prob-
lem by means of an optimization model whose objective is to minimize both
the cloud resources leasing costs and penalty costs due to rejections. In its
first formulation the problem is nonlinear, following subsequent transforma-
tions a linear formulation is obtained that can be quickly solved by the solvers
presently available. The scalability of the presented optimization approach is
demonstrated by considering a very large set of experiments, each including
up to 10,000 job classes. All the instances are solved to optimality in less than
one second in the worst case.

The outcome of the model is the optimal number of cloud resources to pro-
vision a cluster managed by the YARN Capacity Scheduler [5] and the number
of jobs from multiple classes that can concurrently run in it. Our work is one
of the first contributions facing the problem of optimal sizing of Hadoop 2.x
systems adopting the Capacity Scheduler. Further, a thorough study of the
properties of the optimization model (based on our preliminary works [37,38])
leads to theoretical results that allow determining the cluster capacity in a
closed form. Consequently, this result enables to establish beforehand whether
a cluster will be saturated or not and, given the current cost of resources, to
what extent it is cost-effective to enforce admission control policies and reject
jobs.
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Figure 1 Hadoop 2.x reference scenario.

This paper is organized as follows. In Section 2 we describe our Hadoop 2.x
reference framework and the underlying assumptions. The joint AC and CA
formulation is introduced in Section 3. Experimental analyses are reported in
Section 4, while Section 5 describes the related work. Conclusions are finally
drawn in Section 6.

2 An Optimization Framework for the joint Capacity Allocation
and Admission Control

In this section, we describe our reference system: a Hadoop 2.x cluster is
governed by a resource management framework (see Figure 1) composed by a
Recommender System, an Admission Controller and a Job Profiler.

We assume that the cloud cluster, based on HDFS, is shared among com-
peting job classes and the system relies on the YARN Capacity Scheduler [5].
This scheduler provides (hierarchical) queues to allow sharing a large cluster
while providing capacity guarantees.

YARN is the architectural core of Hadoop, which is a system for manag-
ing distributed applications. The fundamental idea of YARN is to split up the
functionalities of resource management and application scheduling/monitoring
into separate daemons. It consists of a central Resource Manager and per-node
Node Managers, which take directions from the Resource Manager and are
responsible for managing resources available on single nodes. The Resource
Manager is, primarily, a pure scheduler. It arbitrates all the available clus-
ter resources and thus helps manage the distributed applications running on
the YARN system. It optimizes cluster utilization against various constraints



such as capacity guarantees, fairness, and SLAs. The Resource Manager has
a pluggable Scheduler that allows for different algorithms, such as capacity
and fair scheduling, to be utilized as necessary. The Node Manager is the
per-machine framework agent that is responsible for logically splitting the re-
sources into containers, monitoring the usage and reporting to the Resource
Manager/Scheduler. YARN containers are resource units (characterized by
CPU and memory capacity) granted by the Resource Manager to applications
via Node Managers [8]. The Resource Manager works together with Applica-
tion Masters, which have the responsibility of negotiating (per application) an
appropriate number of resource containers from the Scheduler, tracking their
status and monitoring their progress.

In our work, we assume that jobs are submitted through an Admission
Controller, meaning that some of them can be rejected [23,59]. When a new
job is submitted, the Admission Controller decides to forward the execution
request to the Resource Manager or drop it. If the job is started, the Resource
Manager first allocates the related Application Master, which then will receive
a suitable number of YARN containers. In this configuration, the Capacity
Scheduler is configured with a two-layer queue hierarchy in work-conserving
mode1, but speculative execution is not enabled. The first layer queue, repre-
senting 100% cluster capacity, is partitioned among |U| queues, one per job
class. Such assumptions are introduced in order to obtain an approximate for-
mula that allows to estimate job performance quickly and to derive a model of
the joint admission control and capacity allocation problem that can be solved
analytically.

The aim of the Recommender System is to determine the optimal number
of virtual machines (VMs), either reserved or on demand (see Section 3.1),
the system is to use and the concurrency levels for each class, minimizing the
overall costs due to cloud resources and job rejections. Based on the configura-
tion of YARN, the allocated VMs will host the containers needed for running
the accepted jobs. Formally, the proposed recommender solves a joint AC and
CA problem which is the core of this paper contribution, formulated in the
next section, at fixed intervals of time reacting to changes in the workload
composition.

3 Optimization Model

In this section, we first summarize the main assumptions (Section 3.1) and
some grounding results we achieved in determining bounds and approximate
formulae for estimating MapReduce jobs execution time in shared Hadoop 2.x
cluster (Section 3.2). We then formulate the joint AC and CA problem for
the execution of MapReduce jobs in cloud environments and show that it
is equivalent to a linear programming problem (Section 3.3). Afterwards, in

1 A scheduler is defined to be work conserving if it never lets a processor lie idle while
there are runnable tasks in the system, i.e., Application Masters in a queue can borrow
containers from other empty queues.



Profile Parameters

U Set of job classes
cM

i Maximum number of Map containers that can be hosted in a VM of class i
cR

i Maximum number of Reduce containers that can be hosted in a VM of class i
ξM

i CPU time requirement for the Map phase of job class i
ξR

i CPU time requirement for the Reduce phase of job class i
ξ0

i Constant time term that depends on Map, Shuffle, and Reduce phases of class i jobs

Table 1 Optimization model: profile parameters.

SLA Parameters

pi Penalty for rejecting jobs from class i
Di Maximum duration for class i jobs
Hup

i Upper bound on the number of class i jobs to be executed concurrently
Hlow

i Lower bound on the number of class i jobs to be executed concurrently

Table 2 Optimization model: SLA parameters.

Section 3.4 we point out some important properties of the optimal solutions
of the problem, which are the starting point to derive, in Section 3.5, the
closed-form optimal solution of a system including two job classes.

3.1 Model Assumptions

In this paper we consider pure MapReduce job (we are planning to support
Tez [4] Directed Acyclic Graphs (DAGs) in our future work) consisting of two
main data manipulation phases, namely Map and Reduce; each phase performs
a user-defined function on input data. During the Map phase, the input data
is divided into input splits for analysis by Map tasks running in parallel across
the Hadoop cluster. The Reduce phase uses results from Map tasks as input
to a set of parallel Reduce tasks. Between the Map processing and the Reduce
processing, a shuffle step sorts all map output values with the same key into
a single reduce input.

Jobs are characterized by an execution profile, defined as the set of features
used to estimate the execution time, and a deadline, that is an upper bound
on the execution time. Jobs with the similar profiles and deadlines define a
class i ∈ U . As in [16,49], the profile encompasses the number of Map and
Reduce tasks (namely, NM

i and NR
i ), and the average and maximum duration

of Map, Reduce, first Shuffle and typical Shuffle2 phases (denoted by Mavg
i ,

Mmax
i , Ravg

i , Rmax
i , S1,avg

i , S1,max
i , Savg

i and Smax
i ). Execution profiles can be

obtained, for instance, through the analysis of logs of previous runs [29,43,
47] and we assume that the execution time of the individual Map and Reduce

2 During the Shuffle phase data from the mapper tasks are moved to the nodes where the
reducer tasks will run. As in [49] we distinguish between the first and the typical Shuffle,
since they are characterized by significantly different performance.



stages is independent of the system load as a first approximation. Note that
estimates on how the total Map, Reduce, and Shuffle duration depend on the
data set size can also be modeled [49,51]. Job deadlines will be denoted by Di.

Each class i is also identified by a certain concurrency level (denoted by hi),
i.e., the number of class i jobs allowed to execute concurrently. Hup

i denotes
a design-time prediction on the number of job per class i to be executed,
hence we have hi ≤ Hup

i . Furthermore, in order to avoid job starvation, we
also impose hi to be greater than a given lower bound H low

i ; pi indicates the
penalty due per class i job rejection.

For the sake of simplicity, we assume that all the YARN containers, as well
as all the supporting computational nodes (the VMs that host the containers),
are homogeneous with respect to memory and CPU. This setup is frequently
adopted by cloud providers [1,11] since it limits the occurrence of stragglers
(i.e., slower nodes that, due to the strict synchronization between the Map and
Reduce stages, limit job performance). Furthermore, as a first approximation,
we assume that the full container capacity can be assigned to either Map
or Reduce tasks3 (YARN assigns resources dynamically, hence there is not a
static partitioning of slots as it was the case for Hadoop 1.x) and job profiling is
independent of the cluster size (this assumption holds as a first approximation
if network is not the bottleneck [2,7,18]).

The last assumption concerns the cost model adopted by our reference sys-
tem. We assume that our reference system implementation is hosted in a cloud
environment that provides homogeneous VMs. Inspired by the Amazon EC2
pricing model [6], we consider two possible computational resources, referred
to as reserved and on demand instances, respectively. Both types are billed on
an hourly basis but, while the former can be booked with an upfront payment
that guarantees availability and lower hourly price, the latter can be requested
without long-term commitments at a relatively more expensive fee. The hourly
prices of reserved and on demand VMs are denoted by ρ and δ, respectively,
with δ > ρ, while r̄ refers to the number of VMs that have been reserved with
a long-term contract, that is the maximum number of reserved VMs that can
be leased at discounted price ρ.

3.2 Approximate Formulae for MapReduce Execution Time

Although MapReduce job performance metrics can be evaluated, for example,
by relying on simulations [14,27], there is a fundamental trade-off between the

3 Note that in Hadoop 1.X, each node resources can be partitioned between slots assigned
to Map tasks and slots assigned to Reduce tasks. In Hadoop 2.x, the resource capacity
configured for each container is suitable to both Map and Reduce tasks and cannot be
partitioned anymore [7]. The maximum number of concurrent mappers and reducers (the
slot count) is calculated by YARN based on administrator settings [2]. A node is eligible to
run a task when its available memory and CPU can satisfy the task resource requirement.
With our hypothesis above, we assume that the configuration settings is such that whatever
combination of Map and Reduce tasks can be executed within a container, no vCPU remains
idle because of a wrong setting of these parameters.



accuracy of the models and the time required to run them. Given the need to
compute capacity allocation at scale (Hadoop clusters nowadays run thousands
of jobs a day [48]), the high complexity of simulating even small-scale instances
of MapReduce jobs has prevented us from exploiting such results here. That
is why we have opted for a fast approximate approach (yet in line with the
accuracy requested for capacity planning activities [34]).

In [16] we demonstrated that, if we denote sM
i the number of Map con-

tainers and sR
i the number of Reduce containers devoted to the execution of

class i jobs, then both an upper bound and an approximate formula for the
job execution time can be expressed as:

Ti = ξM
i hi

sM
i

+ ξR
i hi

sR
i

+ ξ0
i , (1)

where ξM
i , ξR

i and ξ0
i are positive constants depending on the class execution

profile, the cluster resources and on the nature of the formula (upper bound
or average time estimate). It can be noted that the Shuffle phase does not
appear on its own in formula (1). This is due to the fact that the bulk of
the related processing happens during the synchronization between Map and
Reduce, without any dependency on the resource allocation, but only on the
dataset size: this effect is taken into account with an additive term in ξ0

i .
Another smaller fraction of the Shuffle-related service CPU time requirement
is observed as preliminary work in Reduce tasks, then it is part of ξR

i . The
expressions for ξM

i , ξR
i , and ξ0

i can be found in Appendix A.
In the case that equation (1) represents an upper bound for the execution

time, the resource allocation for a given class will be conservative and Di

can be considered hard deadlines. Vice versa, Di have to be considered soft
deadlines. The experimental results we presented in [16] demonstrated that
such approximate formulae are accurate (with respect to simulation) and the
difference between the simulated job execution time and our estimation ranges
between 5 and 10%, while the gap for upper bounds is between 11 and 19%.

Let us denote cM
i and cR

i the maximum number of Map and Reduce con-
tainers that can be hosted in each VM, respectively, i.e., each instance supports
either cM

i Map or cR
i Reduce concurrent tasks for each job class i, depending on

how YARN is configured with respect to vCPUs and memory [3]. As a conse-
quence, in order to provide sM

i and sR
i Map and Reduce containers to a certain

class, the number of VMs to be provisioned is bounded by sM
i /c

M
i + sR

i /c
R
i .

3.3 Problem Formulation

The aim of the joint AC and CA problem solved by the Recommender System
is to minimize the overall execution cost meeting, at the same time, the job
deadlines. The execution cost includes the VM leasing costs and rejection
penalties. Given pi the penalty cost for the rejection of one class i job, the



Provider Parameters

δ Cost of on demand VMs
ρ Cost of reserved VMs
r̄ Number of available reserved VMs

Table 3 Optimization model: provider parameters.

Decision Variables

sM
i Number of YARN containers to be allocated to class i for executing Map tasks
sR

i Number of YARN containers to be allocated to class i for executing Reduce tasks
hi Number of class i jobs to be executed concurrently
r Number of reserved VMs to be provisioned
d Number of on demand VMs to be provisioned

Table 4 Optimization model: decision variables.

overall execution cost can be calculated as

δd+ ρr +
∑
i∈U

pi (Hup
i − hi) , (2)

where we do not consider any term associated to execution times under the
assumption that the deadlines Di are all shorter than an hour. This means
that all the accepted jobs will finish within an hour from the provisioning of
the VMs and, therefore, the workload will complete in the one-hour time slot
billed by the cloud provider. Hence, the cost we incur per VM is exactly the
hourly price.

The decision variables are d, r, hi, sM
i and sR

i for any i ∈ U , i.e., the system
has to provide an indication on the overall number of reserved and on demand
VMs, plus the concurrency level and, as a by-product, the number of Map
and Reduce containers for every class i. The notation adopted in this paper is
summarized in Tables 1, 2, 3 and 4.

The optimization problem can then be defined as follows:

min
d,r,h,sM,sR

δ d+ ρ r −
∑
i∈U

pi hi (P1a)

subject to:



ξM
i hi

sM
i

+
ξR

i hi

sR
i

+ ζ0,D
i ≤ 0, ∀i ∈ U , (P1b)

r ≤ r̄, (P1c)∑
i∈U

(
sM

i

cM
i

+
sR

i

cR
i

)
≤ r + d, (P1d)

Hlow
i ≤ hi ≤ Hup

i , ∀i ∈ U , (P1e)
r ≥ 0, (P1f)
d ≥ 0, (P1g)

sM
i ≥ 0, ∀i ∈ U , (P1h)

sR
i ≥ 0, ∀i ∈ U . (P1i)

The model aims at minimizing the cluster operational costs without ex-
ceeding either hard or soft deadlines. The objective function includes VM pro-
visioning costs and potential penalties for job rejection. Note that, with respect
to formula (2), the term

∑
i∈U pi H

up
i has been removed as it is independent

of the decision variables. Constraints (P1b) are derived from equation (1) by
imposing that each job class must be completed before the respective deadline,
that is requiring that Ti ≤ Di, where Di is the maximum duration allowed for
to class i jobs (deadline). By denoting ζ0,D

i the difference ζ0,D
i = ξ0

i −Di < 0,
constraints (P1b) are easily derived. Constraint (P1c) bounds the total num-
ber of reserved VMs to provision, whereas (P1d) guarantees that the number
of allocated VMs is sufficient to support the submitted jobs and meet their
deadlines. Indeed, the term sM

i /c
M
i + sR

i /c
R
i quantifies the number of VMs

required for class i by dividing the number of YARN containers required by
the job (sM

i and sR
i ) by the capacity of each computational node (i.e., the

number of containers that can be hosted, according to the way the scheduler
is configured). Constraints (P1e) bound the concurrency level for each class,
while constraints (P1f)–(P1i) specify the definition domain of all the variables
involved.

We remark that, although the variables participating in the formulation
represent indivisible entities (number of VMs), we did not impose the inte-
grality, as this would have greatly increased the solution times to the point of
being useless for the envisioned scenario. This approximation is widely used
in the literature (see, e.g., [15,58]) since relaxed variables can be rounded to
the closest integer at the expense of a generally small increment of the overall
cost, especially for large-scale MapReduce clusters running tens or hundreds
of VMs.

Formulation (P1) features a linear objective function. However, constraints
(P1b) are nonconvex (the proof is reported in [37]) and difficult to address even
by the most effective nonlinear solvers. To remedy this inconvenience, the
problem can be reformulated using a new set of decision variables Ψi = 1/hi

for all i ∈ U in lieu of hi. The formulation resulting from this transformation
is shown below:



min
d,r,Ψ ,sM,sR

δ d+ ρ r −
∑
i∈U

pi

Ψi
(P2a)

subject to:

ξM
i

sM
i Ψi

+
ξR

i

sR
i Ψi

+ ζ0,D
i ≤ 0, ∀i ∈ U , (P2b)

r ≤ r̄, (P2c)∑
i∈U

(
sM

i

cM
i

+
sR

i

cR
i

)
≤ r + d, (P2d)

Ψ low
i ≤ Ψi ≤ Ψup

i , ∀i ∈ U , (P2e)
r ≥ 0, (P2f)
d ≥ 0, (P2g)

sM
i ≥ 0, ∀i ∈ U , (P2h)

sR
i ≥ 0, ∀i ∈ U . (P2i)

where Ψ low
i = 1/Hup

i and Ψup
i = 1/H low

i .
As a consequence of this transformation, constraints (P2b), corresponding

to the constraints (P1b), are convex. The convexity is condition underlying
several important results. Indeed, Theorem 1 below provides in closed-form
the number sM

i and sR
i of YARN containers to be allocated to each class i for

executing Map and Reduce tasks, respectively. The importance of this result is
double: it allows computing the optimal YARN capacity scheduler weights αi

in terms of sM
i and sR

i , and reformulating problem (P2) as an equivalent linear
programming problem (see Theorem 2) which can be solved very efficiently
by commercial solvers. Finally, Theorem 3 is an important and innovative
theoretical result that describes some properties of the optimal solutions of the
linear programming model: 1) the execution cost of one job, 2) establishing
a priori if the execution of a job is profitable or has to be rejected, 3) under
which conditions on demand VMs will be used.

To the best of our knowledge, our work is the first contribution providing a
linear programming model that solves jointly the admission control and capac-
ity allocation problem providing formulae that allow estimating the number of
VMs that are needed to support MapReduce jobs with a priori performance
guarantees.

Theorem 1 In any optimal solution of problem (P2), constraints (P2b) hold
as equalities. Moreover, for any i ∈ U , the number sM

i and sR
i of YARN

containers to be allocated to support the execution of hi jobs of class i are
given by the following formulae:



sM
i =− hi

ζ0,D
i

(√
ξM

i ξR
i c

M
i

cR
i

+ ξM
i

)
, (3)

sR
i =− hi

ζ0,D
i

(√
ξM

i ξR
i c

R
i

cM
i

+ ξR
i

)
. (4)

Proof See Appendix B.
Theorem 1 allows transforming (P2) into an equivalent linear programming

formulation. In fact, equations (3) and (4) express variables sM
i and sR

i as linear
functions of hi, thus reducing the number of variables. In order to present the
model in a simplified form, we introduce the following constants:

γ1
i = − 1

ζ0,D
i cM

i

(√
ξM

i ξR
i cM

i

cR
i

+ ξM
i

)
, (5)

γ2
i = − 1

ζ0,D
i cR

i

(√
ξM

i ξR
i cR

i

cM
i

+ ξR
i

)
. (6)

Remark 1 Since hi is the number of concurrent jobs of class i supported by
the allocated VMs, the terms sM

i /hi and sR
i /hi represent the number of Map

and Reduce tasks of class i, respectively, that the cluster must uphold to
guarantee the execution of one single class i job. Therefore, it follows from
equations (3)–(6) that

γ1
i = sM

i

hi cM
i

and γ2
i = sR

i

hi cR
i

,

i.e., γ1
i and γ2

i indicate the number of VMs required to support the Map and
Reduce task of one class i job, respectively.

Theorem 2 Problem (P2) is equivalent to the following linear programming
problem (P3):

min
d,r,h

δ d+ ρ r −
∑
i∈U

pi hi (P3a)

subject to: ∑
i∈U

γi hi ≤ r + d, (P3b)

0 ≤ r ≤ r̄, (P3c)
d ≥ 0, (P3d)

H low
i ≤ hi ≤ Hup

i , ∀ i ∈ U , (P3e)

where the decision variables are d, r and hi for any i ∈ U , and parameters
γi = γ1

i + γ2
i .

Proof See Appendix B.



3.4 Properties of optimal solutions

The Karush-Kuhn-Tucker (KKT) conditions corresponding to problem (P3)
allow proving that any optimal solution of (P3) has the following important
properties.

Theorem 3 If (d∗, r∗, h∗) is an optimal solution of problem (P3), then the
following statements hold:

1. r∗ > 0, i.e., reserved instances are always used.
2.
∑

i∈U γi h
∗
i = r∗ + d∗, i.e., γi can be considered a computing capacity con-

version ratio that allows translating class i concurrency levels into resource
requirements.

3. If pi > γi δ, then h∗i = Hup
i , i.e., class i jobs are never rejected.

4. If pi < γi ρ, then h∗i = H low
i , i.e., class i concurrency level is set to the

lower bound.
5. If r̄ >

∑
i∈U γi H

up
i , then d∗ = 0: given property (2) interpretation, if the

total capacity requirement can be satisfied through reserved instances, on
demand VMs are never used.

6. If r̄ <
∑

i∈U γi H
low
i , then r∗ = r̄ and d∗ > 0, i.e., for property (2), if

the minimum job requirement exceeds reserved instance capacity, then on
demand VMs are needed.

Proof See Appendix B.

Property (1) is obvious, since reserved instances are the cheapest ones.
Property (2) leads to the most important theoretical result of this paper.
Indeed, the γi parameters can be interpreted as capacity conversion ratios that
make it possible to directly estimate VM requirements depending on class i
concurrency level. In light of such consideration, also properties (3) and (4)
become intuitive. The product γi δ represents the unit cost for the execution
of one class i job using on demand instances. If γi δ is lower than the penalty
cost, then class i jobs will always be executed, i.e., hi = Hup

i . Conversely, if
γi ρ, i.e., the class i job unit cost using reserved instances, is greater than the
penalty, then class i jobs are always rejected, yielding hi = H low

i .
Finally, properties (5) and (6) relate the overall minimum and maximum

capacity requirements (
∑

i∈U γi H
low
i and

∑
i∈U γi H

up
i , respectively) to re-

served capacity and allow establishing a priori whether or not on demand
VMs will be used and if the reserved VMs cluster will be saturated.

3.5 A Two-Class Case Study

In order to gain further insight into the properties of the optima in our setting,
let us focus on the two-class case, i.e., |U| = 2. This particular case is important
as it is possible to obtain analytically a closed-form formulation of the optimal
solution (d∗, r∗, h∗1, h∗2) of problem (P3).



The analysis shows that the formulae characterizing the optimal solution
(d∗, r∗, h∗1, h∗2) of problem (P3) vary depending solely on the value of r̄, ρ and
δ.

Table 5 reports the optimal solution for all the possible cases (see the
proof in Appendix B wherein we assume, without loss of generality, that
p1/γ1 < p2/γ2). Rows compare the ratio between penalties (pi) and num-
ber of VMs per single job (γi) compared to on demand (δ) and reserved costs
(ρ). Six are the possible cases, numbered from 1 to 6. The columns relate the
reserved computational capacity (r̄) with the minimum and maximum number
of resources (γiH

low
i and γiH

up
i , respectively) to be allocated to run full load

jobs. The four scenarios impacting the optimal solution are denoted by letter
a to d.

In particular, rows 1 and 6 represent the most extreme cases where high
(low) hourly machine leasing cost entail minimum (maximum) concurrency
levels. It is interesting to note that in the case of high leasing costs and low
number of reserved VMs (row 1, column a), the system is forced to allocate
all the available reserved machines, i.e., r∗ = r̄. However, since the capacity
requirement is not satisfied, the consequent imbalance must be corrected by
renting a suitable number of on demand machines (d∗ = γ1 H

low
1 + γ2 H

low
2 −

r̄). This, obviously, does not occur when reserved resources are sufficient to
fulfill the requirements (cases b to d). Similar considerations apply for the
the case of low leasing costs (row 6). In this case, however, due to the high
concurrency levels allowed, the depletion of reserved VMs is a more common
scenario (columns a to c).

Rows from 2 to 5 present a more complex solution structure wherein pe-
culiar and nontrivial situations emerge. It is the case, for instance, of cell 2b
(row 2, column b) in which the optimal concurrency level for class 1 (h∗1) is
set to the minimum possible value (as p1/γ1 < ρ < δ) whereas h∗2 depends on
the residual capacity of the cluster.

More details on the optimal solution for the two-class case are discussed
in Section 4.2.

4 Experimental Results

In this section we: (i) present the setup of our experiments and evaluate the
scalability of the joint AC/CA problem solution, (ii) provide a geometrical
description for the two-class case properties, (iii) investigate how different (P3)
problem settings impact on the leasing costs of the provided cloud cluster, (iv)
evaluate the gap between the job execution time and the deadline through
simulation and experiments on Amazon EC2.

The following section presents the scalability study, whereas Section 4.2
analyzes the two-class results investigating how our problem solution behaves
in different settings, while the analysis of Section 4.3 provides some insights
on the impact of the most important parameters of our model on the cluster
costs. Finally, Section 4.4 reports the results of the deadline guarantees study.
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Table 5 Closed-form optimal solution of problem (P3) for the two-class case.

4.1 Scalability Analysis

In this section, we report the scalability results of our optimization solution.
The analyses have been performed on a VirtualBox virtual machine based on
Ubuntu Server 12.04 running on an Intel Xeon Nehalem dual socket quad-
core system with 32 GB of RAM. Optimal solutions of (P3) were obtained by
running CPLEX 12.0 where we also restricted the decision variables d, r, hi to
be integer, i.e., we considered the Integer Linear Programming (ILP) version
of (P3). For completeness, we also show the solving times in the case where
the admission control mechanism is disabled. Note that in this scenario the
variables hi in (P3) are known, hence the problem can be further simplified.

For all the analyses presented in this work, instances have been randomly
generated as follows. We used uniform distributions within the ranges reported
in Table 6. These ranges have been chosen according to values observed in real
systems and MapReduce job logs. To determine a reasonable value for penal-
ties, we first evaluated the minimum cost associated with the execution a single
job, Ci, by setting Hup

i = H low
i = 1 and solving problem (P3), thus disabling

the admission control mechanism. Then, we determined the penalty value for
rejections as pi = 10Ci, following [13]. We varied Hup

i in the range [10, 30],
and we set H low

i = 0.9Hup
i . Moreover, as in [50], we assumed that deadlines

are uniformly distributed in the range [25, 45] minutes. The experiments are



Job Profile Class Population
NM

i [70, 700] Hup
i /Hlow

i [10, 30]
NR

i [32, 64]
Rejection PenaltyMmax

i [s] [16, 120]
Savg

i [s] [24, 120] pi [¢] [250, 2500]
Smax

i [s] [30, 150]
Rmax

i [s] [15, 75]
Cloud Instance PriceS1,max

i [s] [10, 30]
cM

i , c
R
i [1, 4] ρ [¢] [5, 20]

Di [s] [600, 1200] δ [¢] [5, 40]

Table 6 Cluster characteristics and Job Profiles.

performed considering different class sizes, varying the cardinality of the set U
between 100 and 10,000 with step 100. Finally, for a given instance size, each
experiment is executed ten times to mitigate the impact of possible disturbs
in the system.

The results reported in Figure 2 show that the time required to determine
the global optimal solution of the ILP problem can reach up to 1967 ms in
the worst case, but takes less than a second in every other case: a time sig-
nificantly lower than the one required to start a large Hadoop cluster in a
public cloud. Note that a system with 10,000 classes is at least one order of
magnitude larger than scenarios of practical interest4. Hence, we argue that
our recommendation system can be used in practice for the configuration of
real Hadoop clusters. Figure 2 also shows the measures related to the solution
of (P3) when considering only capacity allocation. Since they are generally
smaller by orders of magnitude than solving the ILP, Figure 3 details only
these values. Similarly, there is a clear linear dependency on the number of
classes considered in each instance, yet the maximum solution time is 23 ms.

4.2 Two-class Case Analysis

The purpose of this section is to give the reader a clear vision of the equa-
tions reported in Table 5. To do this, we report a three-dimensional graphical
representation of the behavior of the decision variables h1 (Figure 4) and r∗
(Figure 5) relative to the half-plane defined by the axes p1/γ1 and p2/γ2, with
p1/γ1 < p2/γ2. The variables h2 and d∗ follow a similar pattern and, therefore,
they have not been reported here. Instead, we decided to present a small set
of scenarios that cover the cases a, b, c, and d (i.e., the columns of Table 5)
under several conditions (the rows of the same table). It is worth noticing that,
geometrically, such conditions split the definition domain in several areas cor-
responding to possible different values of h1 and r∗, which have a staircase
shape.

4 For example, the TPC-DS benchmark, designed to be representative of real data ware-
house systems, includes 99 queries that, in the worst case, can be modeled as individual job
classes.
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In more detail, Figure 4a represents h1 under the condition r̄ < γ1 H
low
1 +

γ2 H
up
2 (a and b of Table 5) and in this case h1 can assume only two values:

Hup
1 , if δ < p1/γ1, and H low

1 , otherwise. A similar pattern can be identified in
Figure 4c, where the discriminant condition is ρ < p1γ1 < p2γ2 < δ. Condi-
tion c (i.e., γ1 H

low
1 + γ2 H

up
2 < r̄ < γ1 H

up
1 + γ2 H

up
2 ), instead, is represented



(a) h1: conditions a and b (b) h1: condition c

(c) h1: condition d

Figure 4 Two-class use case: h1 distribution for different values of p1/γ1 and p2/γ2 when
p1/γ1 < p2/γ2.

in Figure 4b, where h1 shows three possible values, namely H low
1 (conditions 1,

2, 3), (r̄ − γ2 H
up
2 ) /γ1 (conditions 4 and 5) and Hup

1 (condition 6).
As regards the distribution of the optimal number r∗ of reserved VMs, we

can see that, if condition a holds, the system exploits all the VMs available
(Figure 5a), whereas in the remaining cases two or three values of r∗ are
possible. In particular, the lowest possible value is, in the latter case, equal to
γ1 H

low
1 + γ2 H

low
2 and the highest value can be either r̄ (conditions b and c)

or γ1 H
up
1 + γ2 H

up
2 (condition d).

4.3 Case Studies

In this section, we investigate how different settings for problem (P3) affect
the cloud cluster costs. In particular, we analyze three case studies to address
the following research questions: (1) Is it better to consider a shared cluster or
to devote a dedicated cluster to individual job classes? (2) What is the effect
of concurrency on the cluster costs? (3) What is the impact on the cost of
more strict deadlines? Along the same lines, is there a linear relation between
the costs and job deadlines?

The studied instances have been generated as explained in Section 4.1.
Moreover, to ease the interpretation of outcomes we excluded reserved VMs
and assumed a single pricing model. Additionally, we exploited the results



(a) r∗: condition a (b) r∗: condition b

(c) r∗: condition c (d) r∗: condition d

Figure 5 Two-class use case: r∗ distribution for different values of p1/γ1 and p2γ2 when
p1γ1 < p2/γ2.

gathered for each research question to confirm the applicability of Theorem 3,
devised for a relaxed linear model, also in case of integer variables.

4.3.1 Effect of Cluster Sharing

In this case study, we want to examine the effect of cluster resource sharing.
In particular, we considered two scenarios. The first one is our baseline, taking
into account the presented (P3) formulation. The second one considers the
same workload, in terms of job profiles, deadlines, etc., but |U| (P3) single-
class problems are solved independently, which is equivalent to assuming a
dedicated cluster devoted to each job class. To perform the comparisons we
consider different numbers of classes. We varied the cardinality of the set U
between 20 and 1,000 with step 20, randomly generating ten instances per
cardinality value.

For each instance we calculate two values: the first one is the objective
function of the baseline scenario, to which we refer as dependent objective
function; the second one, which we call independent objective function, is eval-
uated by summing up the |U| objective functions of the individual problems.
The comparison is performed by considering the ratio between the dependent
and independent objective function. Figure 6 illustrates the average of these
ratios for different numbers of job classes |U|. Overall, the multi-class formu-
lation allows saving on deployments: on average, we have a 0.48% variation of
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Figure 6 Cost variation between shared and dedicated clusters.

the total cluster costs. We can conclude that, thanks to cloud elasticity, the
adoption of shared or dedicated clusters substantially leads to the same costs.
Note, however, that on one side shared clusters can further benefit from a
single HDFS instance (e.g., better disk performance and node load balancing,
one copy of the data sets instead of several replicas). On the other hand, since
a larger number of jobs introduces higher resource contention, according to
the results we achieved in [26], there is an upper bound in terms of number of
job/classes beyond which shared clusters performance degrade and dedicated
clusters should be favored. Unfortunately, these effects cannot be captured by
the simplified cost and performance models we adopt in this paper (we refer
the reader to [26]).

Finally, note that this study confirms the validity of Theorem 3 when
integer variables are considered. In fact, property (2) guarantees that, for
continuous variables, the two considered scenarios are equivalent in terms of
costs; for instance, if we consider two classes, the costs associated with the
shared cluster are

∑
i∈{1,2} δ γi h

∗
i = δ γ1 h

∗
1 + δ γ2 h

∗
2, which is equivalent to

the sum of costs of two dedicated clusters. Enforcing integrality does not seem
to disrupt this property, based on the reported results.

4.3.2 Effect of the Concurrency Level

In this case study the analysis of the effect of the concurrency level on the costs
associated to the execution of one single job is performed. In the experiment,
we assumed there is only one job class in the cluster. The concurrency level hi

has been varied from 10 to 30 and, for each value, 10 instances of problem (P3)
have been randomly generated. For each instance, we disabled the admission
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Figure 7 Effect of concurrency level on single job cost.

control mechanism by imposing H low
i = Hup

i and we solved the optimization
problem. We calculated the cost of one single job for every instance by dividing
the objective function by the concurrency level.

Figure 7 shows how the per-job cost varies with different concurrency levels
for a representative example. Per-job costs are not shown with their absolute
values, but with relative deviations with respect to the overall average per-job
cost. The analysis demonstrates that the cost variation for different concur-
rency levels is negligible, i.e., the different concurrency levels lead to a less than
0.1% variation of the cost of one job. Hence, in a cloud setting, elasticity allows
to obtain constant per-job execution costs independently from the number of
jobs in a class. This result is in line with the property (2) of Theorem 3.

4.3.3 Effect of Tightening the Deadlines

Here we want to examine the relationship between costs and deadlines. In
particular, we analyzed the effect of reducing the deadlines on cluster costs.
The number of classes |U| has been varied between 20 and 1,000 and for
each problem instance size several random instances have been generated, as
described in Section 4.1. For each instance, the deadlines of every class have
iteratively tightened to observe how this is reflected on the costs. At each
step, we decreased the deadlines by 5% of the initial value. The reduction
process continues until the problem becomes unfeasible. After each reduction
we calculated the increased cost ratio, i.e., the ratio between the objective
function for the problem with the new deadlines and the objective function
of the problem with the initial deadlines, thus evaluating both the higher
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Figure 8 Effect of reducing deadlines on cluster cost.

operating costs and the effect of penalties. Figure 8 illustrates the trend of
the increased cost ratio for a representative instance with 20 classes: the effect
on costs of decreasing deadlines is not linear and the cost to pay for reducing
the deadlines by 60% is more than three times higher than the baseline. Note
that the cost ratio curve is approximated, according to Theorem 3, by the
function α/ (β − x) where x is the percentage reduction on deadlines, α = 71
and β = 80 with maximum deviation equal to 2.90%.

4.4 Performance Model Validation

In order to validate the analytical performance model proposed in equation (1),
we performed experiments both with YARN SLS simulator and on clusters
deployed in Amazon EC2.

4.4.1 Validation through Simulation

In this section, we evaluate our approach by computing the percentage devi-
ation between the simulated execution time and the deadline Di imposed on
job execution. Indeed, according to the properties discussed in Section 3.3, we
expect the makespan of each run to approach the deadline imposed as problem
parameter.

Simulations are based on our extension of the YARN SLS tool, the official
Hadoop simulator we reported in [38].
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Figure 9 Prediction accuracy vs. simulations.

We considered different test configurations with three job classes with pa-
rameters randomly generated as discussed in previous sections. These scenarios
represent light load conditions that correspond to the worst case for the eval-
uation of our bounds. Indeed, under light load conditions the probability that
any job class is temporarily idle can be significant and the Capacity scheduler
would assign the idle class slots to other classes to boost their performance.
Vice versa, under heavy loads our upper bounds become tighter.

The results are summarized in Figure 9. On average, the absolute gap of
the simulated execution times with respect to the deadline is 14.44%.

4.4.2 Validation on a Real System

Our model has been validated also on a Hadoop 2.6.0 cluster hosted in the
cloud and operating on Amazon AWS. All the VMs were m4.xlarge instances
with 4 vCPUs, 16 GB RAM, 500 GB SSD, and running Ubuntu Server 12.04
as operating system. The VMs ran under the same placement group, thus they
were interconnected via a 1 Gbps network. A master node was dedicated to
run the Ambari server to deploy and manage other Hadoop services on the
nodes of the cluster. Moreover, 30 slave nodes were available as DataNodes
and computational nodes. Three among these slave nodes hosted the server
instances, e.g., YARN ResourceManager, HDFS NameNode, etc.

The dataset used for testing has been generated using the TPC-DS bench-
mark5 data generator, creating at a scale factor of 250 GB several text files

5 http://www.tpc.org/tpcds/

http://www.tpc.org/tpcds/


s e l e c t inv_item_sk , inv_warehouse_sk
from inventory
where inv_quantity_on_hand > 10
group by inv_item_sk , inv_warehouse_sk
having sum( inv_quantity_on_hand ) > 20
l i m i t 100

(a) Q1

s e l e c t avg ( ss_quant i ty ) , avg ( s s_net_pro f i t )
from s t o r e _ s a l e s
where ss_quant i ty > 10 and s s_net_pro f i t > 0
group by ss_store_sk
having avg ( ss_quant i ty ) > 20
l i m i t 100

(b) Q2

s e l e c t cs_item_sk , avg ( cs_quant ity ) as aq
from c a t a l o g _ s a l e s
where cs_quantity > 2
group by cs_item_sk

(c) Q3

s e l e c t inv_warehouse_sk , sum( inv_quantity_on_hand )
from inventory
group by inv_warehouse_sk
having sum( inv_quantity_on_hand ) > 5
l i m i t 100

(d) Q4

Figure 10 Hive MapReduce queries.

directly used as external tables by Hive. We chose the TPC-DS benchmark as
it is the industry standard for benchmarking data warehouses.

Subsequently, we performed experiments on four ad hoc Hive queries, in-
spired by the ones that are part of TPC-DS, but modified so as to yield exactly
one MapReduce job: see Figure 10 for the listings. The profiling phase was con-
ducted on a dedicated cluster, extracting average task durations from 50 runs
of each query. The numbers of Map and Reduce tasks varied, respectively, in
the ranges (65, 524) and (5, 384).

We ran our model according to the experimental configuration proposed
in Section 4.4.1, considering as costs the actual Amazon pricing for m4.xlarge
VMs and allowing up to 30 nodes. The instances considered three classes: the
first was Q1, then a class for Q2 and Q3, since they showed similar behav-
ior, and a third one with Q4. Afterwards, we configured the YARN Capacity



Hup
1 Hup

2 Hup
3 d1 d2 d3 D [s] MAPE [%]

5 0 5 26 0 4 86 28.17
0 10 10 0 17 1 1, 000 33.88
5 20 0 1 25 0 1, 300 20.47

Table 7 Prediction accuracy on real system.

Scheduler according to the results of the optimization process and launched
the mentioned Hive queries concurrently, with a 10 s think time. Each query
was run at least 37 times. Table 7 reports the results of three different ex-
periments: each row lists the concurrency levels per class, the unique deadline
imposed on all of them, the assigned resources, and the mean average percent-
age error (MAPE) of that instance, where we compare the measured response
times to the deadline. In these experiments we disabled the admission control
mechanism by imposing H low

i = Hup
i for any i. The average relative error

observed on the real system is 27.51%, higher than in the case of simulations,
but still acceptable for the prediction of response times and in line with the
accuracy expected with capacity planning activities [34].

5 Related Work

Capacity allocation and optimal scheduling of Hadoop jobs have been broadly
analyzed in literature. The work in [29] presents Starfish, a self-tuning system
for analytics on Hadoop. Starfish is able to profile a Hadoop job at runtime
and automatically derive an optimized configuration which can be used for
subsequent jobs. The same tool has been successful employed to solve cluster
sizing problems [28].

The work in [47] addresses resource provisioning optimization, trying to
minimize the cost associated with the execution of an application. The work
presents a cost model that depends on the amount of input data and on the
characteristics of the considered application. The model parameters are es-
timated through a regression-based analysis. A framework to support appli-
cation profiling and estimation of the application duration on heterogeneous
hardware is proposed in [51].

Authors in [17] propose a different approach, based on closed queuing net-
works. The work considers also contention and parallelism on compute nodes
to evaluate the completion time of a MapReduce job, but it only addresses
Map phase execution time. The work in [52] presents a similar solution, but
its evaluation only considers clusters executing a single job. Reduce-intensive
jobs are addressed in [46], modeling the Map phase as an M/G/1 queue and
the Reduce phase as a multi-server queue. [36] models the execution of Map
tasks through a tandem queue with overlapping phases. It also provides a very
efficient run time scheduler, solving the joint optimization of Map and Shuffle
phases, comparable with an off-line optimal solution.



The work in [19] introduces a novel mean field analysis approach to devise
very fast approximate methods able to predict the performance of Big Data
systems. Authors in [42] handle MapReduce jobs with deadlines. The work
overcomes Hadoop schedulers inability to properly execute jobs within dead-
lines by adopting multiprocessor scheduling policies. The evaluation shows
that using two versions of the earliest deadline first heuristic the approach
can outperform the standard Hadoop schedulers. The work in [59] proposes a
similar solution, able to partition a cluster among Hadoop jobs and traditional
Web systems.

Parallax [40] is a progress estimator able to predict the completion time
of parallel queries, executed as MapReduce workloads. The estimator is im-
plemented on Pig and it has been evaluated with PigMix benchmark. Para-
Timer [41], an extension of Parallax, supporting predictions also on queries
expressed as a DAG of MapReduce jobs. The work in [60] analyzes the perfor-
mance of MapReduce jobs on Hadoop cloud-based clusters both homogeneous
and heterogeneous. The work provides a framework for minimizing infrastruc-
tural costs based on simulation, closely related to the approach followed in
this paper. However, such framework does not address admission control and
can optimize a single kind of workload, corresponding to a single class. For
what concerns admission control, several solutions were proposed in the last
decade for optimal management of web servers and multi-tier applications [21,
24,32,33,53,54]. The basic idea is to predict the value of a specific perfor-
mance metric/server queue and if such value grows above a certain threshold,
the admission controller rejects all new sessions favoring the service of re-
quests from already admitted sessions. While a lot of work has been done for
such class of systems in the Big Data research area [63] proposed an overload
protection mechanisms for Database-as-a-Service (DaaS) environments. The
work developed a profit-aware admission control policy which relies on nonlin-
ear regression to predict the probability for a query to meet its performance
requirement, and then decides whether the query should be admitted to the
database system or not. To the best of our knowledge, even if admission con-
trol has been introduced recently in Big Data frameworks [9,57], our work is
one of the few contributions [20,25] that faces the optimal admission control
for MapReduce jobs. The work in [20] proposes a control theoretic approach
to perform scaling and admission control of MapReduce cluster, in order to
reduce utilization costs while preserving guarantees on both performance and
availability. Authors in [25] present a learning based opportunistic algorithm
admitting MapReduce able to meet deadlines in more than 80% of cases. The
incoming jobs labeling is performed using a Naive Bayes Classifier, and then,
from the admissible jobs, a job expected to maximize service provider utility
is picked.

The work in [55] addresses optimization of mixed interactive and batch
workloads running on system on a chip with heterogeneous cores. The ARIA
framework [49] tries to minimize the amount of resources (containers) to be
allocated to Map and Reduce tasks in order to meet a user-defined soft dead-
line, thus reducing the costs due to resource over-provisioning. This work is



the closest to our contribution; it targets clusters with single-job classes on
top of a FIFO scheduler. It determines from a compact MapReduce job profile
a lower bound, an upper bound and an estimation of the execution time. The
performance model, improved in [62], has been extensively validated through
simulation and on a 66-node Hadoop cluster. The work in [61] optimizes a
workload specified as a set of MapReduce DAGs with a global deadline or
budget constraint on heterogeneous clusters, also considering the presence of
faulty nodes.

This paper extends our preliminary work [37,38] by providing additional
theoretical results that enable to obtain the number of VMs needed per class
and per job through closed formulae and to determine a priori if the execution
of a job is profitable.

6 Conclusions and Future Work

In this paper, we presented an optimization model for minimizing the execu-
tion costs of heterogeneous jobs in shared Hadoop cloud clusters. The focus of
our work is on the development of an optimization framework able to exploit
the YARN hierarchical architecture. The problem we faced is to determine the
optimal number of cluster nodes and identify the execution and rejection rates
for the execution of MapReduce workloads with a priori deadline guarantees.
Our method is one of the first contributions for the optimal sizing of Hadoop
2.x systems based on the Capacity Scheduler that determine solutions in a
closed form. Overall, the proposed method enables to establish beforehand
whether a cluster will be saturated or not and, given the current cost of on de-
mand resources, to what extent it is cost-effective to enforce admission control
policies and job rejection. Our proposed solution has been validated by a large
set of experiments. Results have shown that our method is able to determine
the global minimum solutions for systems including up to 10,000 job classes
in less than one second on average. In our research agenda, we plan to extend
the optimization model to consider also the sizing of Spark jobs and to cope
with different cloud pricing models.
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A Makespan Bounds

In the following we report the results we presented in [16] providing an approximated formula
for the estimation of MapReduce jobs. We consider a MapReduce system with up to sM

i and
sR

i containers devoted for the Map and Reduce phase using the Capacity Scheduler.
Following the results in [49], the lower and upper bounds on the duration of the entire

Map stage can be estimated as follows:

TM,low
i =

NM
i Mavg

i

sM
i

hi

TM,up
i =

NM
i Mavg

i − 2Mmax
i

sM
i

hi + 2Mmax
i

where Mavg
i , Mmax

i , Ravg
i , Rmax

i , S1,avg
i , S1,max

i , Savg
i , and Smax

i denote the average and
maximum duration of Map, Reduce, first Shuffle and typical Shuffle phases, respectively,
while NM

i and NR
i are the number of Map and Reduce tasks (see Section 2). According to

the results discussed in [49], we distinguish the non-overlapping portion of the first shuffle
and the task durations in the typical shuffle. In the following bounds for the shuffle stage,
this consideration affects the formula for TS,low

i , where we subtract one wave:



TS,low
i =

(
NR

i

sR
i

hi − 1
)
Savg

i ,

TS,up
i =

NR
i S

avg
i − 2Smax

i

sR
i

hi + 2Smax
i .

S1,avg
i and S1,max

i , the average and maximum execution time of the first shuffle phase,
are estimated directly from the execution profile of class i.

Summing up all parts we get:

T low
i =TM,low

i + S1,avg
i + TS,low

i + TR,up
i ,

Tup
i =TM,up

i + S1,max
i + TS,up

i + TR,low
i .

T low
i and Tup

i represent,respectively, an optimistic and a pessimistic prediction of class i
job completion time. We also define T avg

i =
(
Tup

i + T low
i

)
/2. Hence, the execution time of

a class i job is at least:

T low
i =

ξM,low
i hi

sM
i

+
ξR,low

i hi

sR
i

+ ξ0,low
i , (7a)

where:

ξM,low
i =NM

i Mavg
i , (7b)

ξR,low
i =NR

i

(
Savg

i +Ravg
i

)
, (7c)

ξ0,low
i =S1,avg

i − Savg
i . (7d)

In the same way, the execution time of a job of class i is at most:

Tup
i =

ξM,up
i hi

sM
i

+
ξR,up

i hi

sR
i

+ ξ0,up
i , (8a)

where:

ξM,up
i =NM

i Mavg
i − 2Mmax

i , (8b)

ξR,up
i =NR

i Sh
typi
avg − 2Shtypi

max +NR
i R

avg
i − 2Rmax

i , (8c)

ξ0,up
i =2Smax

i + S1,max
i + 2Mmax

i + 2Rmax
i . (8d)

Depending on the guarantees required, it is possible to adopt either a conservative
approach to meeting deadlines with Tup

i or a less resource-demanding one with T avg
i .

In both cases (upper bounds or approximation), the formulae above reduce to con-
straints (P1b) and (P2b), by defining ζ0,D

i , ξ0
i −Di < 0:

Ti =
ξM

i hi

sM
i

+
ξR

i hi

sR
i

+ ξ0
i ≤ Di ⇒ Ti =

ξM
i hi

sM
i

+
ξR

i hi

sR
i

+ ζ0,D
i ≤ 0.

B Proofs

Proof of Theorem 1. Since all the constraints of problem (P2) are convex and the Slater
constraints qualification holds, the KKT conditions are necessary for optimality. The La-
grangian function of problem (P2) is given by:



L =δd+ ρr −
∑
i∈U

pi

Ψi
+
∑
i∈U

φi

(
ξM

i

sM
i Ψi

+
ξR

i

sR
i Ψi

+ ζ0,D
i

)

+ µr(r − r̄) + ν

[∑
i∈U

(
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i

cM
i
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i

cR
i

)
− r − d

]
+
∑
i∈U

[
µi(Ψi − Ψup

i ) + λi(−Ψi + Ψ low
i )
]

− λrr − λdd−
∑
i∈U

(
ωi s

M
i + χis

R
i

)
.

Therefore, the KKT conditions are the following:

δ − ν − λd = 0, (9)
ρ− ν + µr − λr = 0, (10)

ν

cM
i

− φi
ξM

i

(sM
i )2Ψi

− ωi = 0, ∀i ∈ U , (11)

ν

cR
i

− φi
ξR

i

(sR
i )2Ψi

− χi = 0, ∀i ∈ U , (12)

pi
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i

−
φi
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i

(
ξM

i

sM
i

+
ξR

i

sR
i

) + µi − λi = 0, ∀i ∈ U , (13)

φi

(
ξM

i

sM
i Ψi

+
ξR

i

sR
i Ψi

+ ζ0,D
i

)
= 0, φi ≥ 0, ∀i ∈ U , (14)

µr(r − r̄) = 0, µr ≥ 0, (15)

ν

[∑
i∈U

(
sM

i

cM
i

+
sR

i

cR
i

)
− r − d

]
= 0, ν ≥ 0, (16)

µi(Ψi − Ψup
i ) = 0, µi ≥ 0, ∀i ∈ U , (17)

λi(−Ψi + Ψ low
i ) = 0, λi ≥ 0, ∀i ∈ U , (18)
λr r = 0, λr ≥ 0, (19)
λd d = 0, λd ≥ 0, (20)

ωi s
M
i = 0, ωi ≥ 0, ∀i ∈ U , (21)

χi s
R
i = 0, χi ≥ 0, ∀i ∈ U . (22)

Constraints (P2b) imply that sM
i and sR

i are positive, hence multipliers ωi and χi are
equal to zero. As the adoption of reserved instances is favored, being cheaper than the on
demand ones, we obtain r > 0 and λr = 0. Furthermore, we have ν = ρ + µr ≥ ρ > 0.
Therefore, equations (11) guarantee that φi > 0 for all i ∈ U , hence constraints (P2b) hold
as equalities.

Finally, we can use equations (P2b), (11) and (12) to compute sM
i and sR

i as a function
of Ψi. First, we calculate the relation between sM

i and sR
i by using conditions (11) and (12)

as follows:
ξM

i

(sM
i )2Ψi
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i =
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.



Then, we can replace sM
i by sR

i

√
ξM

i cM
i

ξR
i cR

i

into (P2b) to derive an explicit formulation for

sR
i , as follows:

sR
i = − 1
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i Ψi

(√
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+ ξR
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,

and along the same lines we can express sM
i in closed-form as follows:

sM
i = − 1

ζ0,D
i Ψi

(√
ξM

i ξR
i cM

i

cR
i

+ ξM
i

)
.

Proof of Theorem 2. Theorem 1 implies that the variables sM
i and sR

i can be written
as in equations (3)-(4). Hence, constraint (P3b) is obtained by replacing sM

i and sR
i in

constraint (P2d). Moreover, constraints (P2b) can be dropped since they have been used to
derive the value of sM

i and sR
i . Hence problem (P3) is equivalent to problem (P2).

Proof of Theorem 3. First, we notice that the KKT conditions of problem (P3) are
necessary and sufficient for optimality since the problem is linear. The KKT conditions can
be written as follows:

ρ− ν + µr − λr = 0, (23)
δ − ν − λd = 0, (24)

−pi + γi ν + µi − λi = 0, ∀ i ∈ U , (25)
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ν, λr, µr, λd ≥ 0, (32)
λi, µi ≥ 0, ∀ i ∈ U . (33)

1. Let us assume, by contradiction, that r∗ = 0. Hence d∗ ≥
∑

i∈U i h
∗
i ≥
∑

i∈U i H
low
i >

0, thus λd = 0 and ν = δ. On the other hand, (28) implies that µr = 0 and λr = ρ−ν =
ρ− δ < 0, which is impossible.

2. Since r∗ > 0, we have λr = 0, hence (23) implies ν = ρ + µr ≥ ρ > 0, thus con-
straint (P3b) is active at (r∗, d∗, h∗).

3. It follows from (24) that ν = δ−λd ≤ δ, hence we have µi = λi +pi−γi ν ≥ pi−γi ν ≥
pi − γi δ > 0. Therefore h∗i = Hup

i .
4. Since ν ≥ ρ, we get λi = µi + γi ν − pi ≥ γi ν − pi ≥ γi ρ− pi > 0, hence h∗i = Hlow

i .
5. We have r∗ =

∑
i∈U i h

∗
i − d

∗ ≤
∑

i∈U γi H
up
i < r̄, thus µr = 0 and ν = ρ. Therefore,

λd = δ − ρ > 0 implies d∗ = 0.
6. We have d∗ =

∑
i∈U γi h

∗
i − r

∗ ≥
∑

i∈U γi H
low
i − r̄ > 0, hence λd = 0 and ν = δ.

Therefore, µr = δ − ρ > 0 implies r∗ = r̄.



Proof of the closed-form optimal solution for the two-class case (Table 5). First,
we note that ν ∈ [ρ, δ], according to the properties (2) and (3) of Theorem 3. The following
implications follow directly from the system (23)–(33):

ν < δ =⇒ d∗ = 0,
ν > ρ =⇒ r∗ = r̄,

d∗ > 0 =⇒ r∗ = r̄.

The proof is divided into six cases:

1. Let p1/γ1 < p2/γ2 < ρ. Theorem 3 implies h∗1 = Hlow
1 and h∗2 = Hlow

2 . If r̄ < γ1 Hlow
1 +

γ2 Hlow
2 , then Theorem 3 guarantees that r∗ = r̄ and d∗ = γ1 Hlow

1 + γ2 Hlow
2 − r̄. If

r̄ > γ1 Hlow
1 + γ2 Hlow

2 , then

r∗ = γ1 H
low
1 + γ2 H

low
2 − d∗ ≤ γ1 H

low
1 + γ2 H

low
2 < r̄,

thus d∗ = 0 and r∗ = γ1 Hlow
1 + γ2 Hlow

2 .
2. Let p1/γ1 < ρ < p2/γ2 < δ. Theorem 3 implies h∗1 = Hlow

1 . We distinguish three cases.
a) If ν ∈ [ρ, p2/γ2), then µ2 ≥ p2 − γ2 ν > 0 hence d∗ = 0, h∗2 = Hup

2 and r∗ =
γ1 Hlow

1 + γ2 H
up
2 ≤ r̄.

b) If ν = p2/γ2, then d∗ = 0, r∗ = r̄ and h∗2 =
(
r̄ − γ1 Hlow

1
)
/γ2. In particular, we

have γ1 Hlow
1 + γ2 Hlow

2 ≤ r̄ ≤ γ1 Hlow
1 + γ2 H

up
2 .

c) If ν ∈ (p2/γ2, δ], then λ2 ≥ γ2 ν − p2 > 0 thus r∗ = r̄, h∗2 = Hlow
2 and d∗ =

γ1 Hlow
1 + γ2 Hlow

2 − r̄. In particular, we have r̄ ≤ γ1 Hlow
1 + γ2 Hlow

2 .
3. Let p1/γ1 < ρ < δ < p2/γ2. It is similar to case 1. We have h∗1 = Hlow

1 and h∗2 = Hup
2 .

If r̄ < γ1 Hlow
1 + γ2 H

up
2 , then d∗ = γ1 Hlow

1 + γ2 H
up
2 − r∗ > 0, thus r∗ = r̄ and

d∗ = γ1 Hlow
1 +γ2 H

up
2 −r̄. If r̄ > γ1 Hlow

1 +γ2 H
up
2 , then r∗ = γ1 Hlow

1 +γ2 H
up
2 −d

∗ < r̄,
thus d∗ = 0 and r∗ = γ1 Hlow

1 + γ2 H
up
2 .

4. Let ρ < p1/γ1 < p2/γ2 < δ. We distinguish five cases.
a) If ν ∈ [ρ, p1/γ1), then d∗ = 0. Furthermore, µ1 ≥ p1−γ1 ν > 0 and µ2 ≥ p2−γ2 ν >

0, hence h∗1 = Hup
1 and h∗2 = Hup

2 . Thus, r∗ = γ1 H
up
1 + γ2 H

up
2 ≤ r̄.

b) If ν = p1/γ1, then d∗ = 0 and r∗ = r̄. Since µ2 ≥ p2 − γ2 ν > 0, we get h∗2 = Hup
2

and h∗1 = [r̄− γ2 H
up
2 ]/γ1. In particular, we have γ1 Hlow

1 + γ2 H
up
2 ≤ r̄ ≤ γ1 H

up
1 +

γ2 H
up
2 .

c) If ν ∈ (p1/γ1, p2/γ2), then d∗ = 0 and r∗ = r̄. Since λ1 > 0 and µ2 > 0, we have
h∗1 = Hlow

1 and h∗2 = Hup
2 . Thus, r̄ = γ1 Hlow

1 + γ2 H
up
2 .

d) If ν = p2/γ2, then d∗ = 0 and r∗ = r̄. Since λ1 > 0, we get h∗1 = Hlow
1 and h∗2 =(

r̄ − γ1 Hlow
1
)
/γ2. In particular, we have γ1 Hlow

1 +γ2 Hlow
2 ≤ r̄ ≤ γ1 Hlow

1 +γ2 H
up
2 .

e) If ν ∈ (p2/γ2, δ], then r∗ = r̄. Furthermore, λ1 > 0 and λ2 > 0 thus h∗1 = Hlow
1 , h∗2 =

Hlow
2 and d∗ = γ1 Hlow

1 +γ2 Hlow
2 − r̄. In particular, we have r̄ ≤ γ1 Hlow

1 +γ2 Hlow
2 .

5. Let ρ < p1/γ1 < δ < p2/γ2. It is similar to case 2. We have h∗2 = Hup
2 and distinguish

three cases:
a) If ν ∈ [ρ, p1/γ1), then d∗ = 0, h∗1 = Hup

1 and r∗ = γ1 H
up
1 + γ2 H

up
2 ≤ r̄.

b) If ν = p1/γ1, then d∗ = 0, r∗ = r̄ and h∗1 =
(
r̄ − γ2 H

up
2
)
/γ1. In particular, we

have γ1 Hlow
1 + γ2 H

up
2 ≤ r̄ ≤ γ1 H

up
1 + γ2 H

up
2 .

c) If ν ∈ (p1/γ1, δ], then r∗ = r̄, h∗1 = Hlow
1 and d∗ = γ1 Hlow

1 + γ2 H
up
2 − r̄. In

particular, we have r̄ ≤ γ1 Hlow
1 + γ2 H

up
2 .

6. Let δ < p1/γ1 < p2/γ2. It is similar to case 1. We have h∗1 = Hup
1 and h∗2 = Hup

2 .
If r̄ < γ1 H

up
1 + γ2 H

up
2 , then d∗ = γ1 H

up
1 + γ2 H

up
2 − r∗ > 0, thus r∗ = r̄ and

d∗ = γ1 H
up
1 +γ2 H

up
2 − r̄. If r̄ > γ1 H

up
1 +γ2 H

up
2 , then r∗ = γ1 H

up
1 +γ2 H

up
2 −d

∗ < r̄,
thus d∗ = 0 and r∗ = γ1 H

up
1 + γ2 H

up
2 .
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