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Abstract: The advent of Industry 4.0 technologies and in particular the Cyber-Physical Systems, Digital 

Twins and pervasive connected sensors is transforming many industries, among which smart scheduling 

is one of the most relevant. This paper contributes to the research on scheduling by proposing a 

framework to include equipment health predictions into the scheduling activity and embedding a field-

synchronized Equipment Health Indicator module into the DT simulation. The metaheuristic approach to 

scheduling optimization is performed by a genetic algorithm, that is connected with the DT simulator and 

provides various generations of scheduling alternatives that are assessed through the simulator itself. The 

paper also proposes a practical Proof-of-Concept of the innovative framework, by developing an 

architecture to identify how the various framework modules are implemented and by applying the 

framework to a real application case, set in a laboratory assembly line environment. 
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1. INTRODUCTION AND OBJECTIVES 

Scheduling is one of the most important activities that 

manufacturing companies deal with in order to have an 

efficient and effective production. It covers the short-term 

production planning, the process through which the 

production orders are allocated and sequenced to the 

production resources (Pinedo 2009). A series of algorithms, 

frameworks and methods to optimize globally or locally for 

the scheduling problems with different objectives and in 

various contexts have been proposed in literature (Pinedo 

2009). The scheduling process presents an inner complexity 

due to the fact that (i) it deals with large quantities of data of 

different nature and is subject to continuous readjustments 

over time; some data are of stochastic nature; (ii) it is based 

on a simplified model of the production system which does 

not take into account the complexities of real-world systems. 

Previous research aimed to address these two challenges by 

using simulation models of the production system which 

incorporate various interrelationships between different data 

and the equipment behaviour and as a result, better reflecting 

the real system behaviour (Luca Fumagalli et al. 2017, 2018). 

In fact, the simulation can compute various production 

system characteristics including dynamicity, stochasticity, 

complex interrelations, among others (Law and Kelton 1991).  

Recent advancements in Industry 4.0 (Zheng et al. 2018; 

Anna De Carolis et al. 2017; A. De Carolis et al. 2018; Davis 

et al. 2012), has paved the way for building more advanced 

and robust scheduling capabilities, by utilizing the pervasive 

connected sensors, Cyber Physical Systems (CPS) (J. Lee, 

Bagheri, and Kao 2015; Jazdi 2014), and the advanced 

simulations, i.e. Digital Twins (DT) (Macchi et al. 2018). 

Such advanced scheduling systems can be updated in real-

time based on current and predicted future state of the 

manufacturing assets and the production system. (Ji and 

Wang 2017). 

This paper aims to contribute to previous research by 

devising a new meta-heuristic scheduling framework which 

leverages on the field-synchronized simulation, according to 

the DT paradigm, to include equipment health status. The 

framework shapes the roles and interrelations of the various 

modules needed for the scheduling optimization. The paper 

also proposes the development of an architecture to build a 

scheduling tool that applies this framework into real-world 

production systems. In order to validated the proposed 

methodology and as a Proof-of-Concept of the scheduling 

tool, a laboratory experiment is designed and in this study. 

This demonstration integrates the triad of equipment health, 

scheduling optimization and DT simulation. This 

combination can further be developed in order to obtain a 

robust production scheduling and achieve self-aware 

production systems. 

The present paper is structured as follows: section 2 

introduces the background concepts from literature, section 3 

describes the proposed methodology, section 4 discusses the 

practical application, by illustrating the developed 

architecture and the laboratory environment and section 5 

provides a summary and conclusions. 

2. BACKGROUND 

Scheduling problems have been extensively treated in 

research works in the past: optimization approaches may be 

exact, heuristic or meta-heuristic (Jourdan, Basseur, and 
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Talbi 2009; Ruiz and Maroto 2005). Since the production 

systems scheduling problems in production systems are 

generally considered NP-hard, exact algorithms often do not 

offer a viable solution whereas the metaheuristic solutions 

allow us to find a good solution in a reasonable amount of 

time following an iterative approach (Mati and Xiaolan Xie 

2004). Genetic algorithms (GA) have been widely used in 

different forms for complex scheduling problems, especially 

in the context of job shops (Salido et al. 2016), flexible job 

shops (Driss, Mouss, and Laggoun 2015), cellular 

manufacturing (Paydar and Saidi-mehrabad 2017), flow 

shops (Fu et al. 2018), hybrid flow shops (Li et al. 2015). 

With the advent of Industry 4.0, advanced technologies may 

strengthen the power of scheduling approaches, in particular: 

1- CPS are smart embedded systems that combine 

computing and communication capabilities with actuation 

on the field (E. A. Lee 2008); as such, they open the 

possibility to self-aware and context-aware manufacturing 

(Garetti, Fumagalli, and Negri 2015). 

2- CPS systems require seamless integration between 

computational models and physical components. To 

attach importance to the virtual space and implement this 

seamless convergence, a concept based on DT of the 

equipment and its data was initially defined to depict the 

behaviour of the real entity. It was firstly proposed in the 

aerospace field (Shafto et al. 2012), but afterwards it 

became the subject of a rich research stream also in the 

industrial engineering sectors (Rosen et al. 2015). The DT 

is a simulation that runs in parallel to the real system it 

simulates, with a continuous synchronization with the 

field through physical parameters update (Negri, 

Fumagalli, and Macchi 2017). 

When combining CPS with DT, it is possible to think of 

predictive manufacturing (J. Lee et al. 2013). In fact, one of 

the main uses of DT in the aerospace field was to replicate 

the crack paths and to predict the failures due to cracks and 

fatigue (Tuegel 2012). When it moved to the industrial 

engineering, it took a role of overall lifecycle monitoring of 

products (Abramovici, Göbel, and Neges 2015) or production 

systems (Rosen et al. 2015), of which the prediction of 

failures and in general the equipment health monitoring are a 

part of (Liu et al. 2015).  

Inspired by this background, the computation of equipment 

health can be incorporated in the scheduling process. Indeed, 

it is possible to predict possible failures when allocating the 

jobs to the machines in the production system, and to choose 

scheduling alternatives that slows down the machine 

degradation process and as a result prolongs the lifespan of 

the production machines. Previous attempts at incorporating 

machine health into scheduling consist of linear programming 

models (Obeid, Dauzère-Pérès, and Yugma 2012; Kao et al. 

2018). The new challenge is now to exploit the CPS and DT 

capabilities to create a real-world synchronized simulation 

model aimed to represent the machine health and to support 

scheduling. Here lies the novelty of this paper: to embed the 

DT paradigm (field-synchronized simulation, in particular for 

the health monitoring) into a GA-based scheduling, in order 

to surpass the linear programming approaches proposed in 

the past. 

3. PROPOSED FRAMEWORK 

The innovative framework is in alignment with previous 

works which proposed to simulate GA-generated scheduling 

alternatives in order to compute relevant performances that 

require to model the dynamicity, stochasticity and complex 

interrelations within a production system (Luca Fumagalli et 

al. 2018). The novelty of this framework resides in the fact 

that the simulation is synchronized with the field through the 

Equipment Health Index (EHI), according to the structure 

shown in Fig. 1. The process includes the following steps: 

1- The GA module generates alternative schedules through 

genetic operators that consider the fitness functions, i.e. 

the performances of the alternatives in the previous 

generation, in this way reaching a meta-heuristic 

optimization (Çaliş and Bulkan 2015). 

2- The simulation model of the production system to be 

scheduled takes all the scheduling alternatives generated 

by the GA and runs the individual simulations. Relevant 

parameters needed to compute the fitness function are 

calculated according to the simulation run and are made 

available for the following generation of alternatives. 

3- The EHI module is an additional module embedded in 

the simulation model. It takes specific signals from 

sensors on the equipment to be monitored and predicts 

the behaviour of the equipment health using 

continuously updated data. In this sense, it is the module 

that synchronizes the simulation model to the physical 

system, creating a DT. It is therefore clear that 

unexpected events on the physical system are 

immediately considered in the next data update. 

 
 

 

The logic flow of the proposed scheduling framework is 

therefore the following: 

1. The following input data is fed into the model: list of jobs 

to be scheduled (for the creation of alternatives 

populations), production objectives (for the fitness 

function), and production resources (for building the 

simulation model and the GA).  

2. The GA generates a new population made of several 

individuals, that are scheduling alternatives. Each 

alternative consists of a sequence of jobs to be processed, 

and the resources on which they are allocated in case 

Fig. 1 - Framework for EHI inclusion in scheduling 
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there are different alternative resources or paths in the 

production system. 

3. Each individual of the population is simulated in the EHI-

enforced simulation model. For each schedule it is 

possible to compute the production performances, input 

into the fitness function designed to contain the 

production objectives. The simulation also predicts any 

failure or alert due to equipment health problems. The 

EHI module analyzes the sensor information coming from 

the field and provides as output to the main simulation 

model. Fig. 2 provides an illustration of how the EHI 

synchronizes the simulation with the field sensor: the EHI 

keeps the simulation model synchronized, by updating its 

failure rate function in time at any time instant. When the 

simulator is used for computing the production 

performances, the simulator is detached from the field 

synchronization and starts with several iterations of the 

GA by taking into account the latest failure rate function 

in time following a Monte-Carlo approach. This is 

represented in Fig. 2, as the failure rate is lastly updated 

when the GA is launched and used for the various 

simulation runs. 

4. The GA has a finishing criterion which is activated when 

the fitness function does not improve anymore (after a 

defined number of subsequent generations). In this case, it 

means that the local optimum has been reached and the 

best individuals can be identified (i.e. the scheduling 

alternatives that provided the best scores of the 

production performances), and the production schedule 

can be considered concluded.  

5. In case the previous point did not find a local optimum, 

the GA applies genetic operators to the best alternatives 

of the previous generation and goes back to point 2. 

 
 

 

 

4. PRACTICAL APPLICATION 

4.1 Architectural development 

The framework is supported by an architecture that lies at the 

basis of a scheduling tool. Fig. 3 represents its architecture 

that is composed of the following parts:  

1) REAL MACHINE (or machine sub-system) feeds the 

database with signals about the interesting variables of the 

real behaviour of the analyzed system. is being acquired 

from field devices from multiple sources such as add-on 

sensors, actuators, PLC (Programmable Logic 

Controllers), CNC (Computer Numerical Control 

machines) etc. Signals could be data on different levels, 

as described in the ISO 13374 (ISO 13374-1 2005; 

Guillén et al. 2016): 1- Acquired data; 2- Manipulated 

data; 3- Detected state; 4- Assessed health; 5- Assessed 

prognosis. 

 
 

2) SIMULATION MODEL of the analyzed system feeds the 

database with the simulated signals replicating those 

generated by the real machine. As mentioned in Section 4, 

the simulation model is a DT, as an EHI module is 

embedded and connected to the field devices that 

continuously update it according to the equipment health, 

through Prognostics Health Monitoring models, in order 

to carry out the reliability of the system, considering time 

and conditions variables. 

3) The DATABASE collects data from both the real 

machine and the simulated model, decoupling the two 

levels of the DT (physical and cyber). By storing 

historical series of data from both the sources, it is 

possible to compare them and detect the deviations 

between the behavior of the real system and its simulation 

model.  

4) The DATA-DRIVEN MODEL takes the behavior 

deviations between the real and simulated system as 

input, which is detected in the historical series of data. 

The output of the data-driven model is an adjustment of 

the simulation model parameters. This adjustment 

provides incremental updates to the simulation model to 

synchronize it with the real system. 

This adjustment loop ensures synchronous linage and high 

fidelity within the simulation model, the database, and the 

data-driven model to have increasingly precise estimations of 

the system reliability.  

This system is developed in MATLAB and Simulink, 

selected according to the methodology proposed by (Luca 

Fumagalli et al. 2019). It provided an straight-forward way to  

integrate various parts of the system into the simulation 

model of Simulink. 

4.2 Application case 

As a Proof-of-Concept, the framework and architecture were 

applied to a real assembly system belonging to the Industry 

4.0 Lab (I4.0Lab) of the School of Management of the 

Politecnico di Milano (L Fumagalli et al. 2016). The I4.0Lab 

line consists of several stations which is designed to 

Fig. 3 - Architecture of the scheduling tool 

Fig. 2 – EHI module role description 
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assembles a simplified phone. Fig. 4 illustrates the schema of 

the seven stations of the I4.0Lab including one manual 

loading/unloading station, one station to place the front cover 

on an empty carrier, a drilling station that drills holes in the 

front cover, a robot to assemble the printed circuit boards and 

the fuses, one quality check with a visual inspection camera, 

one station to assemble the back cover and finally one station 

to press the simplified phone components together. Each 

station is equipped with Programmable Logic Controllers 

(PLC), Sensors, and Human Machine Interface (HMI). There 

are no buffers and the automated conveyor is the only 

handling system within the system. The entire assembly line 

is connected to two computers: one is equipped with the MES 

(Manufacturing Execution System), from which the 

production orders are launched and the production is 

controlled; the other monitors the energy consumption. Both 

computers store values on MS Access databases and it is 

possible to configure the databases to store more sensor 

values. All the stations and the computers are connected to 

the laboratory network and have their own IP address. The 

information exchanged between the plant devices and the 

servers are transmitted via OPC-UA protocol. All the line 

signals to model the DT are mapped and the FMECA 

analysis (IEC 60812 2018) of the line is available and used to 

model the EHI module. 

The DT is based on a DES (Discrete Event Simulation) 

model which describes all the stations in the line and their 

behaviour. As an example, Fig. 5 shows the blocks that are 

used to represent the drilling station and to replicate the 

behaviour of the pallet carrying the product on the line. 

After creating the simulation model, it is necessary to build 

the GA, setting various parameters, such as the number of 

individuals in a generation (here it was 10), the number of 

jobs in a list (here it was 50), the mutation rate (here it was 

2%) and the finishing criteria (here they were: established 

minimum and maximum numbers of generations and 

established number of generations in which the variation of 

the fitness function value with respect to the previous one is 

less than a fixed threshold, i.e. reached convergence and local 

optimum found). 

The fitness function was set as the minimization of the 

makespan. The simulator also provides the standard 

deviations of the obtained makespans, since it must be 

evaluated also in its variability due to the stochastic nature of 

the followed Monte-Carlo approach (30 repetitions for each 

individual). 

As an initial Proof-of-Concept, field-synchronized EHI 

predictions were included in the scheduling activity. The 

spindle in the drilling spindle, which is the most critical 

equipment within the production line, was considered for the 

initial development of the EHI module. Two accelerometers 

installed on the spindle collect vibration data. The data-driven 

EHI model, which is trained based on the historical data 

collected from the drilling station,  performs health 

assessment and determines the current health index of the 

drilling spindle and its probability of failure within a certain 

time span (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 shows an example of a list of jobs given as input into 

the scheduling tool. Each job has a unique ID and for each 

station, the numbers indicate the operations the station needs 

to perform, according to an established numbering 

convention. In this way, each product ID has its own specific 

production tasks defined.  

 

 

Fig. 6 - List of jobs as input into the scheduling tool 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - Schema of the I4.0Lab stations 

Fig. 5 - Simulation model for the drilling station 

Fig. 7 - Application case results (without EHI module) 
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Fig. 7 and 8 show the results of the Proof-of-Concept of the 

proposed framework and architecture on the same list of 50 

jobs to be scheduled. In particular, the graphs report the 

generations on the x-axis and the makespan on the y-axis. For 

each generation the makespan of the best performing 

schedule (“Min”), the makespan of the worst performing 

(“Max”) and the average of the makespans (“Mean”) are 

identified. Fig. 7 shows the results of the framework without 

EHI module, while Fig. 8 reports the results with the addition 

of the EHI module (for each generation, mean, max and min 

schedules are shown as average ± standard deviation). As it is 

possible to notice, the algorithm goes to convergence in both 

cases. As expected, the introduction of the EHI module 

brings to slightly worse makespan values (since here there is 

the addition of expected failures that negatively impacts 

schedules but reflects a more realistic behaviour of the 

system). This allows the system to have an estimate of the 

variability due to the calculated failure rate. 

 

Fig. 8 - Application case results (with EHI module) 

5. CONCLUSIONS 

With the advent of Industry 4.0 technologies, there exists new 

possibilities for improving scheduling performances, by 

exploiting CPS and DT capabilities to offer predictive 

analyses for reactive and adaptive control. This paper 

contributes to the research in this topic by providing an 

innovative production system scheduling framework based 

on GA and field-synchronized simulation and its Proof-of-

Concept. The framework leverages on previous works joining 

GA and simulation models, but it is innovative as it 

incorporates synchronization with the field, according to the 

DT paradigm. In this way, the cyber part (simulation, EHI 

and GA) and the physical part (field devices) of the CPS are 

building a DT that is able to provide the health prediction of 

the equipment and couple it with the scheduling tool, in the 

form of failure rate predictions in time. Therefore, scheduling 

results are more effective as they take into account the 

degradation path of the production equipment and they can be 

updated according to the change in the field equipment 

health. 

This paper reported an initial Proof-of-Concept to 

demonstrate the proposed framework. Future works include 

EHI modules for all the equipment pieces within the system 

to have a wider prediction base. Moreover, the DT simulation 

will be improved by synchronizing other data from the field 

including machine state, energy consumption etc. This will 

enlarge the potential development of scheduling systems 

based on DT simulation and its embedded EHI predictions. In 

the future, will also also incorporate other sources of 

stochastic data, such as risk factors and operator behaviours. 

The framework will also be tested in a fully industrial 

environment after the completion and validation of the 

laboratory Proof-of-Concept.  
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