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A Hierarchical MPC Scheme for Coordination of
Independent Systems With Shared Resources

and Plug-and-Play Capabilities
Marcello Farina , Xinglong Zhang, and Riccardo Scattolini

Abstract— This paper describes a hierarchical control scheme
for the coordination of independent, asymptotically stable, and
square systems with joint input and output constraints. At the
higher layer of the control structure, a centralized model pre-
dictive control (MPC) problem is solved at a slow rate based on
a reduced order model of the overall system to fulfill the global
output request under shared resources. At the lower layer, fast
MPC controllers are designed for each subsystem to remove the
effects of the model mismatch introduced at the higher layer,
satisfy local constraints and optimize the individual performance.
The proposed algorithm allows to dynamically modify the control
configuration according to plug-and-play operations. Theoretical
results of feasibility and convergence are proven and a simulation
study is reported to witness the potentialities of the method.

Index Terms— Coordination, hierarchical control, model pre-
dictive control (MPC), plug-and-play control.

I. INTRODUCTION

IN many industrial and civil contexts, there is the need
to coordinate a number of independent subsystems with

limited resources to guarantee a given behavior of the overall
system. Examples can be found in buildings, where different
thermal power generators must be controlled to provide the
required cooling or heating and to minimize an economic
cost (see [15]). In [11], the considered problem consists
in coordinating different oxygen generators available in a
distribution network to satisfy a given request under shared
resources. In isolated microgrids, possibly including renewable
energy sources, the available dispatchable diesel generators
must be managed to satisfy the load request and eventually
provide frequency and voltage regulation (see [2], [14]).
Other examples, concerning irrigation systems and chemical
processes, are discussed in [1]. In all of these problems,
it can also be useful to allow for plug-and-play operations to
improve the economic performance and guarantee better flex-
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ibility, adaptation to changing conditions, and fault tolerance
(see [18], [20]).

A simple approach to the solution of these coordination
problems consists in considering a unique model of the entire
system and to design a centralized regulator. However, this
could be computationally expensive when the overall system is
large-scale, as recognized in [1], since the computational com-
plexity would scale with the number of subsystems. For this
reason, hierarchical control schemes have widely been used in
many industrial control problems. The general idea is to design
a centralized high-level regulator for a simplified model with
the scope to consider the long-term behavior of the system,
while local regulators are used at the lower levels for stability
and disturbance rejection. Research in hierarchical control can
be traced back to the early contributions of [3] and [13] and
has received a renewed interest in the design of multilayer
model predictive control (MPC) systems, see the significant
contributions of [6] and [10] in the field of plantwide control,
the cascade MPC design methods reported in [16] and [21],
and the survey [19] on distributed and hierarchical control.
Among the many recent contributions to the design of mul-
tilayer control systems, in [1], a three-level control scheme
was designed: at the higher layer, a simplified centralized
regulator was used, while the concept of aggregators, each
one containing a number of subsystems, was introduced at
the intermediate layer to simplify the size of the problem;
finally, at the lower layer, autonomous regulators were used.
By resorting to the definition of aggregators, a distributed
algorithm was presented in [5] for the power balancing of
smart grids with flexible consumers. Finally, the management
of flexible thermal loads was considered in [4], where at high
level, a centralized regulator was designed for an estimated
low-order ARX model, while local linear controllers were used
at the low level.

In this scenario, this paper presents a novel hierarchical
control algorithm for the coordination of independent asymp-
totically stable (or prestabilized), square systems with possibly
joint input and output constraints. At the higher layer of the
control structure, a centralized MPC problem is solved at a
slow rate and considering an average model of the overall
system having the same size of the individual sybsystems,
which computes the input to the independent subsystems so
as to fulfill the global output request. At the lower layer,
a decentralized scheme is proposed: indeed, for any subsystem,
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a local fast MPC controller is designed to remove the effects of
the model mismatch introduced at the higher layer, to satisfy
local constraints and to optimize the individual performance.
The proposed design method allows to modify the system
configuration, in terms of the contribution provided by any
subsystem to the overall system performance, and to imple-
ment plug-and-play operations. The recursive feasibility of the
MPC problems to be solved at the high and low levels is
guaranteed also during plug-in and plug-out operations, and
overall convergence of the system output to the setpoint is
proven.

The main advantages with respect to a centralized control
scheme are its scalability and flexibility. Concerning scalabil-
ity, in this setup, the number of subsystems to be coordinated
can be arbitrarily large, without affecting the computational
complexity of the high-layer problem, to be solved at a
centralized level; also, at the low level, each subproblem is
solved locally. Concerning flexibility, the proposed scheme is
able to account, automatically and in a flexible and reliable
way, for structural system changes and variations in the control
setup, e.g., plug and play requests.

The adopted control structure is similar to the one con-
sidered in [17], but the solution proposed here represents
a significant improvement for the following reasons: 1) the
problem at the high level is fully scalable with the num-
ber of subsystems, so allowing for plug-and-play operations;
2) the high-level model is easily determined from the impulse
responses of the subsystems; 3) constraints on the shared
resources (inputs) are included; and 4) the possibility to
perform static high-level optimization is explicitly considered
to optimize the subsystems’ usage and provide flexibility to
the control configuration.

This paper is organized as follows. In Section II, the prob-
lem is stated; also, the system model is introduced, together
with a sketch of the overall controller structure. The design
of the high and low-level MPC regulators is presented in
Section III where the main theoretical results of recursive
feasibility and convergence are given. The static optimization
problem to be solved for the definition of the optimal usage
of the subsystems is presented in Section IV together with
the plug-and-play procedure to be followed to guarantee the
properties of the system. A simulation study is discussed in
Section V to illustrate the performance of the method, while
some conclusions are drawn in Section VI. The proof of the
main result is collected in the Appendix.

Notation: For a given set of variables zi ∈ R
qi , i =

1, 2, . . . , M , we define the vector whose vector components
are zi in the following compact form: (z1, z2, . . . , zM) =
[ zT

1 zT
2 . . . zT

M ]T ∈ R
q , where q = �M

i=1 qi . The sym-
bols ⊕/� denote the Minkowski sum/difference (see [12]).
We denote by � · � the Euclidean norm. The expression �x�2

�
stands for x T �x , where x is a column vector. Matrix � is the
positive semidefinite, i.e., � ≥ 0, if, for any x , xT �x ≥ 0.
Given two symmetric positive semidefinite matrices A and B ,
it holds that A ≥ B if, for any x , A − B ≥ 0. A ball with
radius ρ and centered at x̄ in the R

dim space is defined as
Bρ(x̄) := {x ∈ R

dim : ||x − x̄ || ≤ ρ}. Finally, In denoted
the identity matrix of dimension n, 1 is the unit vector and ⊗

denotes the Kronecker matrix product, i.e., A⊗B is the matrix
whose i j th block entry is ai j B , where ai j is the i j th element
of A.

II. STATEMENT OF THE PROBLEM AND MODELS

In this section, we present the model of the overall sys-
tem under study, and the main idea allowing to simplify
the control problem both at high and at low hierarchical
levels.

A. System Model and Control Objectives

We assume that the overall system S is composed by M
discrete time, linear, independent subsystems described by

Si :
�

xi (h + 1) = Ai xi(h) + Bi ui (h)

yi (h) = Ci xi (h)
(1)

i = 1, 2, . . . , M , where xi ∈ R
ni , ui ∈ R

m , and yi ∈ R
p are

the state, input, and output vectors, respectively, while h is the
discrete-time index.

Subsystems Si , i = 1, . . . , M are similar, in the sense
that the inputs ui (h) [respectively, the outputs yi (h)] are
homogeneous vectors. The following properties are assumed
to hold.

Assumption 1:

1) Ai is Schur stable, i = 1, . . . , M;
2) m = p;
3) det(Ci (Ini − Ai )

−1 Bi ) 	= 0, i = 1, . . . , M .
We will also use, for all i = 1, . . . , M , the equivalent infinite
impulse response forms

yi (h) =
+∞�

j=1

Gi
j ui (h − j) (2)

where Gi
j = Ci A( j−1)

i Bi ∈ R
p×m is the impulse response

matrix of the i th subsystem. The control scheme to be designed
must allow to coordinate the M subsystems in such a way that
the following objectives are attained.

1) Collective Output Tracking and Constraint Satisfaction:
Solve a constrained control problem for the collective
output

y(h) =
M�

i=1

χi yi (h) (3)

where χi can be either zero or one depending whether
the i th subsystem is in use or not. Specifically, we aim
to drive y(h) to a desired reference value yref while
verifying collective output constraint

y(h) ∈ Y (4)

where Y is a specified compact and convex output
constraint set.

2) Local Constraints Satisfaction: Verify local input con-
straints, for each subsystem Si , i = 1, . . . , M , of the
type

ui (h) ∈ Ui . (5)
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3) Resource Sharing: Assuming that a subset of agents σ ⊆
{1, . . . , M} shares the same (limited) input resource,
we may require that

ushared(h) =
�

i∈σ

ui (h) ∈ Ushared. (6)

The sets Ui and Ushared are compact and convex, and they
contain the origin, possibly on their boundary.

B. Input Signal Contributions

To address the overall design problem, we define each input
signal ui (h) as the sum of two contributions

ui (h) = αi ū(h) + vi (h) (7)

where: 1) the common input ū(h) will be computed by a
centralized high-level, low-dimensional, and slow-timescale
controller designed to pursue collective output tracking and
cnstraint satisfaction; 2) the terms vi (h) will be defined by
M local low-level, fast controllers to enforce local input
constraints and optimize local dynamic performances; and 3)
the weights αi ≥ 0 will be chosen offline to guarantee system-
wide optimality. Their values are temporarily assumed to be
fixed; their choice and possible adaptive tuning, also allowing
for plug-and-play operations, will be discussed in Section IV.
In (3), it is assumed that χi = 0 if αi = 0, while χi = 1 if
αi > 0.

The feasibility properties of the two schemes are strictly
correlated. In particular, letting Ū and Vi be compact and
convex sets and in view of (7), in order to satisfy constraints
(5), (6) we can enforce

ū(h) ∈ Ū (8a)

vi (h) ∈ Vi , i = 1, . . . , M (8b)

and select Ū , Vi , and the parameters αi such that

Vi ⊕ αi Ū ⊆Ui , for all i =1, . . . , M (9a)
�

�

i∈σ

αi

�

Ū ⊕
�

�

i∈σ

Vi

�

⊆Ushared. (9b)

C. Output Signal Contributions

To develop the models used for control, we rewrite (2) as
follows:

yi (h) =
TL�

j=1

Gi
j ui (h − j) +

+∞�

j=TL+1

Gi
j ui (h − j) (10)

where the positive integer TL may be selected so that Gi
TL+ j �

0, j > 0. From (7) and (10) and applying the superposition
principle, for each subsystem i = 1, . . . , M , we obtain that

yi (h) =
TL�

j=1

αi Gi
j ū(h − j) + wi (h) (11)

where wi (h) = αi
�+∞

j=TL+1 Gi
j ū(h − j) + y(v)

i (h) and where

y(v)
i (h) is the output of system (1) with input vi (h). As dis-

cussed in Section II-B, the input contribution ū(h) is managed
by the high-level controller that runs at a slower timescale.

Fig. 1. Sketch of the overall control system.

Namely, it is assumed that there exist two positive integer
values TH and NL such that TL = TH NL . Then, ū(h) is kept
constant for NL subsequent time steps and equal to ū[NL ](k),
i.e., ū(h) = ū[NL ](k) for all h ∈ {k NL , . . . , (k +1)NL −1} for
all k ≥ 0. Defining y[NL ]

i (k) = yi (k NL), from (11) we obtain,
for all k ≥ 0, that

y[NL ]
i (k) =

TH�

l=1

αi Gi,[NL ]
l ū[NL ](k − l) + wi (k NL ) (12)

where Gi,[NL ]
l = �lNL

j=(l−1)NL+1 Gi
j . From (12), we realize

that the signal y[NL ]
i (k) has two additive contributions, listed

as follows:
1) A pure finite impulse response (FIR) system�TH

l=1 αi Gi,[NL ]
l ū[NL ](k − l): this component has

ū[NL ](k − l) as input, and therefore it will be managed
by the high-layer (slow) control system (denoted HMPC
in the sequel) at a centralized level.

2) The term wi (k NL): this component will be managed
by the fast, local, low-level control system (denoted
i -LMPC in the sequel) acting on input vi (h), committed
to guaranteeing that, for all k ≥ 0

wi (k NL ) = 0. (13)

A sketch of the overall control scheme is depicted in Fig. 1,
highlighting the role of each control layer in the definition of
the control variables to be applied to each subsystem.

III. REGULATOR DESIGN

In this section, we present the algorithms for the design of
the MPC controllers at the two layers of the control structure
and we prove their feasibility and convergence properties.

A. High-Level Regulator

In order to derive the model used for the design of the
controller at the high level, define y[NL ](k) = y(k NL ). In view
of (3) and (12), and under (13), we can write

y[NL ](k) =
TH�

l=1

G[NL ]
l ū[NL ](k − l) (14)
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where G[NL ]
l = �M

i=1 αi G
i,[NL ]
l . Note that the reformulation

of the individual systems as FIR ones has allowed us to easily
obtain the slow-timescale collective system model (14) to be
controlled in a scalable way (i.e., through the input component
ū[NL ](k)) by the high-level regulator. The following assump-
tion, guaranteeing that the high-level model has an invertible
gain matrix, is required for the well-posedness of the high-
level control problem.

Assumption 2: The matrix
�TH

l=1 G[NL ]
l is invertible.

Before presenting the optimization problem solved at each
time instant, recall that yref is the reference that should be
ideally tracked by the collective output, and note that it could
not be reached within the considered prediction horizon due
to the presence of the input constraints. For this reason,
we define by r a feasible output reference, which must be
regarded as a further optimization variable and defined by the
control algorithm to be as near as possible to yref . Therefore,
the optimization problem to be solved at the high layer at a
generic time instant t aims to minimize the cost function

JH L

=
t+NH −1�

k=t

��y[NL ](k)−r(t)�2
Q y

+�ū[NL ](k)−ū[NL ](k−1)�2
R

	

+ γ �r(t) − yref�2. (15)

In (15), NH > TH is the prediction/control horizon, Qy and R
are positive definite symmetric matrices, while γ is a positive
constant, defined such that

γ Ip ≥ P (16a)

where

P =
�

TH�

l=1

G[NL ]
l

�−T

×
⎛

⎝
TH −1�

k=0

�
TH�

l=k+1

G[NL ]
l

�T

Qy

�
TH�

l=k+1

G[NL ]
l

�

+ R

⎞

⎠

×
� TH�

l=1

G[NL ]
l

�−1

. (16b)

The optimization problem is formulated including the terminal
constraints

y[NL ](t + NH ) = r(t) (17a)

and for all k = t + NH − TH , . . . , t + NH − 1

ū[NL ](k) =
�

TH�

l=1

G[NL ]
l

�−1

r(t) (17b)

that allow to guarantee that a solution exists leading to the
actually computed reference r(t) at t + NH at a steady-state
condition.

Under the specifications mentioned above, the overall High-
level MPC optimization problem (therefore denoted HMPC)
is

min
r(t),ū[NL ](t :t+NH −1)

JH L (18)

subject to the dynamical model (14). The constraints are

ū[NL ](k) ∈ Ū (19)

y[NL ](k) ∈ Y (20)

for all k = t, . . . , t + NH − 1, while the terminal constraint
(17) can be reformulated as

⎡

⎢
⎢
⎣

Ip
� TH�

l=1

G[NL ]
l

�−1

⎤

⎥
⎥
⎦ r(t) ∈ Yu(ε) (21)

where Yu(	) is a closed and convex set satisfying Yu(	) ⊕
B	(0) ⊆ Y × Ū .

Remark 1: For enforcing a feedback term in the controller,
it could be beneficial to introduce an equivalent autoregressive
formulation. This requires a slight reformulation of model (14)
into the following equivalent one:

y[NL ](k) = y[NL ](k − 1) +
TH�

l=1

G[NL ]
l 
ū[NL ](k − l) (22)

where 
ū[NL ](l) = ū[NL ](l) − ū[NL ](l − 1). Note that the
equivalence of (14) and (22) holds in case the weights α1, . . .,
αM are time-invariant. In case they are time-varying (as it is
considered in Section IV), this reformulation leads to slightly
more involved computations. For this reason, it has not been
explicitly used in the following.

B. Low-Level Regulators

The behavior of the low-level controller will be different in
the two cases αi > 0 (i.e., χi = 1 in (3)) and αi = 0 (i.e.,
χi = 0), which are considered separately in this section.

Connected Subsystem, with αi > 0: The role of the low-
level regulators is twofold. First, they are needed to remove
the mismatch of the high-level simplified system from its
model (14) by enforcing (13). Second, they optimize the
performances of the subsystems in transient conditions.

The state-space model describing the evolution of the vari-
able wi (h) is required for control purposes. In particular, wi (h)
can be regarded as the output of the following model:
�

x (w)
i (h + 1) = Ai x

(w)
i (h) + ATL

i Biαi ū(h − TL) + Bivi (h)

wi (h) = Ci x (w)
i (h).

(23)

For well-posedness, the following rather technical assumption
is required to guarantee the convergence of the state of the
system at fast sampling time (see Appendix and [17]).

Assumption 3: For all i = 1, . . . , M , the transfer matrix
Ci (z Ini − ANL

i )−1 has no zeros on the unitary circle. �
At the low level, we adopt a shrinking horizon approach and,

for each i = 1, . . . , M , at any time h ∈ {k NL , (k + 1)NL −
1} we solve the following low-level MPC problem (therefore
denoted i-LMPC)

min
vi (h:(k+1)NL −1)

J i
L L (24a)
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where

J i
L L

=
(k+1)NL−1�

s=h

��wi (s)�2
Qi

+�vi (s) + αi g[TL ]
i ū[NL ](k − TH )�2

Ri

	

(24b)

subject to the model (23) and the constraints

vi (s) ∈ Vi , s = h, . . . , (k + 1)NL − 1 (24c)

wi ((k + 1)NL ) = 0 (24d)

x (w)
i ((k + 1)NL ) ∈ X

F
i . (24e)

In (24b), weights Qi and Ri are symmetric and positive
definite arbitrary matrices. Also, we have defined

g[TL ]
i = (Ci (Ini − Ai )

−1 Bi )
−1Ci (Ini − Ai )

−1 ATL
i Bi

in such a way that if, at steady state, vi (h)+αi g
[TL ]
i ū[NL ](k −

TH ) = 0, then wi (h) = 0. Note that g[TL ]
i is well defined in

view of Assumption 1.
The set X

F
i used in (24e) is a suitable terminal set for x (w)

i
that guarantees the feasibility of the low-level problem at the
subsequent long sampling time, i.e., for the problem at h =
(k + 1)NL . Its definition is deferred to Section III-C.

Also, note that, since wi (h) = yi (h) − αi
�TL

j=1 Gi
j ū(h −

j) is given, the estimate of x (w)
i (h) can be computed at all

sampling times. This is possible thanks to the detectability of
the pair (Ai , Ci ), guaranteed by Assumption 1. A more robust
and possibly fast estimation of variable x (w)

i can be obtained
provided that the pair (Ai , Ci ) is observable.

Disconnected Subsystem, with αi = 0: In case αi = 0,
the input of subsystem Si is set to zero, i.e., vi (h) = 0
for all h. In view of the fact that Ai is Schur stable (see
Assumption 1), then x (w)

i (h) → 0 as h → 0. Importantly,
since (see in Section III-C) set X

F
i contains the origin in its

interior, for all possible initial conditions there exists h̄ ≥ 0
such that x (w)

i (h) ∈ X
F
i for all h ≥ h̄.

C. Design Requirements and Main Results

We now introduce the main conditions required to make
the two-layer control scheme consistent and well posed and
we derive the main feasibility and convergence results of the
proposed design method.

Up to this point, the values of the parameters αi ≥ 0,
i = 1, . . . , M , have been assumed to be fixed. However,
in the final part of this paper, they will be considered as
additional tuning knobs to be possibly retuned online and/or
to be modified to allow for plug-and-play operations. For
this reason, the conditions discussed in the following will be
formulated to be consistent with all the values that αi can take.
The range of values that αi can take when Si is in operation
(i.e., αi > 0) is defined by the lower and upper bounds αi and
ᾱi , respectively, while, as discussed in Section III-B, αi = 0
when Si is essentially disconnected. Overall, the set where αi

can take values is defined as follows:

αi ∈ {0} ∪ [αi , ᾱi ]. (25)

Remark 2: The minimum value αi means that, if subsystem
Si is in use, it is required to provide a minimum contribution
to the overall control action. This represents the fact that,
in many applications, for economic reasons, it is not worth
using an actuator below a given threshold of its operating
conditions. �
We should design αi , ᾱi such that

0 ≤ αi < ᾱi ≤ 1,

M�

i=1

ᾱi ≥ 1. (26a)

The further requirements that Ū , Vi , αi , ᾱi , X
F
i , i = 1, . . . , M

must fulfill are now listed.

1) In order to guarantee the fulfillment of both the local (5)
and the shared (6) input constraints, conditions (9a) and
(9b) must be verified for all the values of αi ∈ [αi , ᾱi ].

2) The set X
F
i in (24e) must guarantee that there exists a

scalar λi ∈ [0, 1) such that

ANL
i X

F
i ⊆ λi X

F
i . (26b)

This is always possible in view of Assumption 1.
3) When Si is in operation mode (i.e., when αi > 0,

χi = 1), it must be imposed, at the low level, that
wi (k NL ) = 0 in a recursive fashion. This implies that
the set of states that can be reached in NL steps by
using vi (h) in system (23) must allow to cancel the
effect of the input ū and of possible nonnull initial
conditions of x (w)

i . More specifically, we must guarantee
that, for all x (w)

i (k NL ) ∈ X
F
i and for all admissible

inputs ū(h − TL) = ū[NL ](k − TH ) ∈ Ū constant
for all h = k NL , . . . , (k + 1)NL − 1, there exists a
feasible sequence vi (k NL ), . . . , vi ((k + 1)NL − 1) such
that x (w)

i ((k + 1)NL ) ∈ X
F
i and that wi ((k + 1)NL) =

Ci x
(w)
i ((k + 1)NL ) = 0. The following condition is

therefore required for all αi ∈ [αi , ᾱi ] :
�

Ci

Ini

�
�
λi X

F
i ⊕αi R̄i Ū

�⊆
�

0
Ini

�

X
F
i ⊕

�
Ci

Ini

�
�− R(v)

i (Vi )
NL

�

(26c)

where

R̄i = ATL
i

NL −1�

j=0

A j
i Bi , R(v)

i =
�

ANL−1
i Bi , . . . , Bi

�

and (Vi )
NL = Vi ×· · ·×Vi , i.e., the NL -times Cartesian

product of sets Vi . Note that

R(v)
i (Vi )

NL =
NL −1�

j=0

A j
i BiVi .

4) Finally, to make such compensation possible also at
steady-state conditions, the following must hold for all
αi ∈ [αi , ᾱi ] :

−αi g[TL ]
i Ū ⊆ Vi (26d)

αi gx
i Ū ⊆ X

F
i (26e)

where gx
i = (Ini − Ai )

−1(ATL
i Bi − Bi g

[TL ]
i ).
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Remark 3: Note that, if set Ū contains the origin, to verify
conditions (26) it is enough to check their validity when αi =
ᾱi . Also, in this case, the value αi = 0 is possible, while in
the general case when Ū does not contain the origin for some
values of i , it may be critical to set αi = 0. �

The following main result can now be stated (the proof is
in the Appendix).

Theorem 1: Under Assumptions 1–3, if the feasibility of the
high-layer problem (17)–(21) and of the low-layer ones (24),
for all i = 1, . . . , M , is verified at time t = 0, then feasibility
is guaranteed:

1) for (17)–(21) at all time instants h = k NL , k ≥ 0;
2) for (24), for all i = 1, . . . , M , at all time instants h,

h ≥ 0.

Also, (5) and (6) hold for all h ≥ 0 and (4) holds for all
h = k NL , where k ≥ 0. Finally, as h → ∞, the output
y(h) → yfeas.ref , where

yfeas.ref = arg min
⎡

⎢
⎣

Ip��TH
l=1 G[NL ]

l

�−1

⎤

⎥
⎦z∈Yu(	)

�z − yref�2. (27)

Remark 4: Theorem 1 guarantees that y(k NL) ∈ Y for all
k ≥ 0, i.e., the collective output constraint (4) is enforced
in the slow time scale, which is acceptable in many applica-
tion scenarios. However, it could be unacceptable that even
small-amplitude violations may occur in the fast timescale,
i.e., that y(h) 	∈ Y for h 	= k NL . In these cases, a possible
solution for guaranteeing (4) for all h ≥ 0 consists of
slightly modifying the proposed control scheme at the price
of a more conservative problem statement. In fact, in view
of (11), we can define the set W = �M

i=1 χiWi , where
Wi = αi (

�+∞
j=TL+1 Gi

j Ū )⊕ (
�+∞

j=1 Gi
jVi ). Constraint (4) can

be enforced by adding the following constraint to the high-
layer optimization problem (17)–(21):

TL�

j=1

�
M�

i=1

αi Gi
j

�

ū(h − j) ∈ Y � W = Ȳ

for all h = t NL , . . . (t + NH )NL − 1. Recursive feasibility
is simply guaranteed by redefining, in (21), set Yu(ε) as the
closed and convex set satisfying Yu(ε) ⊕ Bε(0) ⊆ Ȳ × Ū .

IV. STATIC AND DYNAMIC OPTIMIZATION OF THE

WEIGHTS αi AND PLUG-AND-PLAY OPERATIONS

In the control law (7), the term ū(t) may be regarded as the
total input request to the set of subsystems, and the parameters
αi represent the share of input assigned to each subsystem Si .
Their values can be chosen according to global optimality
criteria by solving a static higher layer optimization problem,
periodically, or based on an event-driven rationale. The opti-
mization problem proposed here has the role of minimizing the
steady-state values of the control signals, in order to minimize
the overall cost for controlling the plant, but other alternative
cost functions can be proposed and used, and other constraints
can be included.

At steady state, from (14), the input ū must take the value
ūss such that

�
M�

i=1

αi

TH�

l=1

Gi,[NL ]
l

�

ūss = yref . (28)

Note that the matrix
�M

i=1 αi
�TH

l=1 Gi,[NL ]
l has full rank in

view of Assumption 2. Also, to make wi = 0, from (23),
vi = −αi g[TL ]

i ūss , Therefore, at steady state, the input ui must
take the value

uss
i = αi

�
Ip − g[TL ]

i

�
ūss. (29)

The proposed minimization problem reads

min
ūss ,{uss

i ,αi }i=1,...,M

M�

i=1

qα
i

�
�uss

i

�
�2

(30)

where qα
i is a suitable cost associated with the use of subsys-

tem Si , under constraints (25) and

M�

i=1

αi = 1. (31)

Note that (31) enforces the uniqueness of the solution to (30).

A. Time Varying Weights αi

We consider now the case where a change in the weights αi

is required during the system operation, and how this impacts
on the control scheme at the two dynamic control layers.
This will pave the way for the application of the method in
plug-and-play scenarios, as described in Section IV-B. At this
point, we will only make the assumption that the optimization
problem (30) is run during the system operation, and that the
changes are applied only at the beginning of long sampling
times, i.e., at h = k NL . In general, we denote by αi (k) the
values taken by αi at time h = k NL , for all i = 1, . . . , M ,
which are kept constant during the high-layer sampling time.

1) High-Level Control During Weight Changes: At time
h = k NL , the model (14) must be rewritten as

y[NL ](k) =
TH�

l=1

G[NL ]
l,k ū[NL ](k − l) (32)

where G[NL ]
l,k = �M

i=1 αi (k − l)Gi,[NL ]
l . A variation of the

weights αi , i = 1, . . . , M during the system operation may
compromise the feasibility properties of the high-layer control
scheme. For this reason, a three-step procedure is proposed.

a) Based on periodic or event-based call, a weight change
is proposed by the optimizer running (30). The candidate
new weights, denoted α∗

i , i = 1, . . . , M , are transmitted
at time t̄ to the high-level dynamic controller but are not
directly applied.

b) The feasibility of the optimization problem (18) is
checked at a time instant t = t̄ where the output variable
is computed based on (32), with αi (k) = α−

i for all
k < t , α−

i is the value taken by the weight before the
variation request, while αi (k) = α∗

i for all k ≥ t . If the
feasibility of the problem is verified, then we can set
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αi (t) = α∗
i for all i = 1, . . . , M , for all t ≥ t̄ . Otherwise,

go to step 3.
c) For any time instant t ≥ t̄ , replace problem (18) with

the following one:

min
r(t),ū[NL ](t :t+NH −1),α1(t),...,αM (t)

JH L +γα

M�

i=1

�
�αi (t)−α∗

i

�
�2

(33)

subject to the dynamical system (32). In the optimization
problem solved at time t (in a receding horizon fashion),
it is assumed that αi (k) = αi (t) is kept constant for all
k ≥ t . The constraints are (17) and (19)–(21), where the
term G[NL ]

l is replaced by G[NL ]
l,k , and (25), (31).

Note that the feasibility of the problem (33) is guaran-
teed by the fact that one can always keep αi (t) constant
at the last feasible value.

2) Low-Level Control During Weight Changes: The recur-
sive feasibility of the low-level optimization problem (24) is
less critical than the high-level one during weight changes.
Indeed, as already remarked, it is assumed that the weight αi

remains constant over the long sampling time, i.e., during the
low-level shrinking-horizon optimization problem for all h ∈
[k NL , . . . , (k + 1)NL − 1]. Therefore, the results obtained on
recursive feasibility still hold thanks to the terminal constraint
(24e) and to the definition of X

F
i , which is given for all

admissible values of αi ∈ [αi , ᾱi ].
The only peculiar cases are the switch from αi > 0 to

αi = 0 (i.e., the disconnection of subsystem Si ) and viceversa
(i.e., the connection of subsystem Si ). Although the first
switch does not entail any problem as far as the low-level
optimization is concerned, the connection may imply minor
feasibility issues for (24). Indeed, if the feasibility of (24)
is not verified at time h = k NL , however, this problem is
just temporary. In fact, feasibility is guaranteed if x (w)

i ∈ X
F
i ,

which is proven to occur after a finite number of steps. These
cases are more thoroughly discussed in Section III-B.

B. Plug-and-Play Operations

The cases in which one or more subsystems join or leave
the network may be naturally included in the scenario in which
the weights αi are time varying. We can distinguish two main
cases, the plug-in and the unplug cases.

1) Plug-In Requests: Assume that, at time instants t ≤ t̄ ,
the system is controlled using the scheme proposed in this
paper and is composed of M subsystems. At time t̄ , a plug-in
request is received, i.e., we want to include subsystem M+1 in
the network. Note that the case in which SM+1 is not plugged-
in is equivalent to the case in which SM+1 is plugged-in, but
with weight αM+1 = 0. Thanks to this simple remark, we can
define a plug-in procedure, consisting of the following steps.

a) Structural Plug-In Design: Define a tuple
(αM+1, ᾱM+1,VM+1, X

F
M+1) satisfying the conditions

(26).
b) Feasibility Plug-In Test: Set αM+1 = 0 and wait until

x (w)
M+1(k NL) ∈ X

F
i .

If these steps have been successfully carried out, then the
subsystem SM+1 is formally plugged in. At this point, we may
run the procedure sketched in Section IV-A to properly take
advantage of the newly plugged device.

2) Unplug Requests: Assume that, at time instants t ≤ t̄ ,
the system is controlled using the scheme proposed in this
paper and is composed of M subsystems. At time t̄ , an unplug
request is received, i.e., we want to exclude subsystem M from
the network. Note that the situation where SM gets unplugged
can be achieved by setting αM = 0. The unplug operation is
done by taking the following steps.

a) Structural Unplug Condition: Solve the optimization
problem (30) with the further constraint αM = 0.
The candidate new weights α∗

1 , α∗
2 , . . ., α∗

M = 0 are
transmitted to the high-level dynamic controller but are
not directly applied.

b) According to the procedure sketched in Section IV-A,
we must further check the feasibility of the high-level
optimization problem (18) (see step 2 in Section IV-A)
with the candidate weights α∗

1 , α∗
2 , . . . , α∗

M . If the fea-
sibility of the problem is verified, then we can set
αi (t) = α∗

i for all i = 1, . . . , M . Otherwise, we need
to solve (33) at each time instant. Unfortunately, using
this procedure, the condition required for unplugging
subsystem SM (i.e., that αM (t) = 0) may not be attained
after a finite number of steps. To try to enforce the
attainment of the unplug condition after a finite number
of steps, we suggest to (periodically, in case) check
if (33) admits a solution with the further constraint
αM (t) = 0, which allows to unplug SM , while the
weights αi related to the other subsystems converge to
their steady-state values.

If the steps mentioned above are successfully carried out, then
we can remove the subsystem SM from the overall plant.
Otherwise, the system cannot support an unplug event and the
request is denied.

V. SIMULATION EXAMPLE

The hierarchical control algorithm described in the this
paper has been used for coordination of a number of syn-
chronous machines.

A. Description of the Models

Consider six diesel generators connected to a network with
terminal voltage 240 V and frequency 60 Hz, which must
track a total electrical power (yref = 98.32 kW). The values of
their rated powers are {16.1, 25.0, 26.5, 30.7, 40.8, 47.6} kW,
respectively. The linear continuous models of the generators
are obtained from [22], and are of orders, n1 = n6 = 9,
n2 = n3 = 8, n4 = 4, and n5 = 5. The input ui and
output yi , for all i = 1, . . . , 6, are the fuel flow rate and the
produced power, respectively, with m = 1 and p = 1. The six
generators’ linear continuous-time models have been sampled
with 
t = 1 s to obtain their discrete-time counterpart of
the fast time scale. Then, these discrete-time subsystems have
been used as the models in (1) for the implementation of the
hierarchical control structure. The control variables, as well
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as the controlled variables, are limited by 0 ≤ (u1, . . . , u6) ≤
(0.89, 1.39, 1.48, 1.71, 2.27, 2.64) g/s and 0 ≤ (y1, . . . , y6) ≤
(16.1, 25.0, 26.5, 30.7, 40.8, 47.6) kW. The considered con-
straint on resource sharing is 0 ≤ �5

i=3 ui ≤ 4.4 g/s.

B. Design of the Sets

The following design choices have been taken. First,
we set TL = 60, TH = 6, and NL = 10. Also, to ver-
ify (9) for all admissible values of αi , the parameters
αi , ᾱi , and the sets Ū , Vi , i = 1, · · · , 6, have been
selected as (α1, . . . , α6) = (0.1, 0.1, 0.13, 0.13, 0.15, 0.15),
(ᾱ1, · · · , ᾱ6) = (0.17, 0.25, 0.23, 0.23, 0.25, 0.25), Ū =
[2, 4], and V1 = [−0.2, 0.21], V2 = [−0.2, 0.39], V3 =
[−0.26, 0.50], V4 = [−0.26, 0.41], V5 = [−0.3, 0.57], and
V6 = [−0.3, 1.64]. Finally, the sets X

F
i , i = 1, · · · , 6, have

been chosen as X
F
i = {x (w)

i |(x (w)
i )� Pi x

(w)
i ≤ μi } where Pi

is the solution to the Riccati equation related to the infinite
horizon control problem with state weight Qx,i = Ini and
input weight Ri = 0.1Im , while μi = 0.1.

C. Simulation Results Without Plug-and-Play Operations

The hierarchical control structure has been applied to the
system with only five generators, i.e., M = 5, assum-
ing that the sixth generator is disconnected from the net-
work. The optimization problem (30) has been solved with
(qα

1 , . . . , qα
5 ) = (0.78, 0.81, 0.82, 0.83, 0.84). The values of

the parameters ūss , uss
i , and αi , i = 1, . . . , 5, are: ūss =

3.14, (uss
1 , . . . , uss

5 ) = (0.447, 0.59, 0.583, 0.576, 0.565),
(α1, . . . , α5) = (0.1496, 0.2107, 0.2191, 0.2028, 0.2178). The
high-layer MPC has been designed with prediction horizon
NH = 10, penalties Qy = Ip and R = 0.1Im , while
γ = 24.99. The low-layer shrinking horizon optimization
algorithms have been solved with state and input penalties
Qi = 10Ip , Ri = 0.1Im , i = 1, . . . , 5. It is worth mentioning
that a penalty on the deviation of the input of the form
�vi (h) − vi (h − 1)�2 has also been added for each instant
within the prediction interval during the transient phase to
enforce smooth dynamic behavior and has been removed once
the regulator was close to its steady state. For comparison,
a centralized state-feedback MPC has been designed at any
fast time h with cost function Jc = �h+N−1

k=h ��5
i=1 Ci xi (k)−

yref�2
Qc

+ �5
i=1 qα

i �ui (k)�2 where the penalty Qc = 500 and
prediction horizon N = NH · NL = 100. The (centralized)
terminal set has been chosen as XF = {x | �5

i=1 Ci xi (t +
N) = yref}. All the simulation tests have been implemented
using MATLAB, YALMIP, and MPT toolbox, see [7] and
[9], in a PC with Intel Core i5-4200U 2.30 GHz and with
Windows 10 operating system. The MATLAB QUADPROG
solver has been used for the implementation of the centralized
MPC and the HMPC problem of the proposed optimization
algorithms, while SDPT3 solver has been used for the local
i-LMPC regulators. The detailed online computational time
required for each controller is reported in Table I, showing
the computational advantages of the proposed hierarchical
scheme. Note that the low-level controller calculations can be
run in parallel thanks to the decentralized implementation.

TABLE I

ONLINE COMPUTATION TIME COMPARISON

Fig. 2. Control variables of the controlled generators: overall control actions
computed by the two-layer scheme (black solid lines) and control variables
computed by the centralized scheme (red dashed lines).

The evolution of the control and output variables of
the controlled subsystems are reported in Figs. 2 and 3,
which show that, after an initial transient, inputs and out-
puts return to their nominal values, and both the separa-
tions of total electrical power and the control performance
in terms of the proposed two-layer approach are close to
those of centralized MPC. For a numerical comparison,
we have computed the mean-square tracking error Jy =
(1/Nsim )

�Nsim −1
k=0 ��5

i=1 Ci xi (k) − yref�2 and the input-
related cost Ju = (1/Nsim )

�Nsim −1
k=0 (

�5
i=1 qα

i �ui (k)�2) with
Nsim simulation steps in case of our hierarchical scheme
and in case of centralized MPC. For the proposed scheme,
Jy = 0.65 · 103 and Ju = 2.8 · 103, while for centralized
MPC, Jy = 0.43 · 103 and Ju = 3.1 · 103. This shows
that, with respect to the tested centralized scheme, in transient
conditions, the proposed scheme displays slightly worse per-
formances in terms of tracking capabilities, but at the price
of a more limited control effort. In steady-state, however,
the performances are equivalent, both in term of steady-state
tracking error and in terms of use of inputs.

D. Simulation Results With Plug-and-Play Operations

The two-layer control structure has also been applied with
plug-and-play operations. Starting from the simulation condi-
tions of scenario 1, at time t = 180 s, the sixth generator has
been added to the network; then, at time t = 360 s, the third
generator has been disconnected by setting α3 = 0. The
evolution of the output and control variables of the controlled
system are reported in Figs. 4 and 5. These figures show that,
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TABLE II

ONLINE COMPUTATION TIME COMPARISON

Fig. 3. Outputs of the controlled generators: outputs obtained with the two-
layer scheme (black solid lines) and outputs obtained with the centralized
scheme (red dashed lines).

Fig. 4. Control variables of the controlled generators: overall control actions
(u1, . . . , u6) (magenta, blue, yellow, green, cyan, and red solid lines). Vertical
dashed lines: plug-in/unplug instants.

after an initial transient due to the plug-in procedure, inputs
and outputs return to their current nominal values until the next
plug-out operation occurs, when the two-layer control system
properly reacts to bring the controlled variables to their new
reference values.

E. Scalability of the Algorithm

The scalability of the proposed two-layer approach with
respect to centralized MPC has been analyzed as follows.
First, the simulation was run with a group of four subsystems
(generators) of the same size (i.e., ni = 9 for i = 1, 2, 3, 4),
all with initial conditions equal to the ones in the previous
simulations and with null past input values. Then, the simu-
lation tests were repeated with 8, 12, 16, 20, 24 subsystems of

Fig. 5. Outputs of the controlled generators: outputs (y1, . . . , y6,
�6

i=1 yi )
(magenta, blue, yellow, green, cyan, red, and black solid lines) and reference
power (black dashed-dotted lines). Vertical dashed lines: plug-in/unplug
instants.

Fig. 6. Cost comparison. Red (black) + markers are the values of the
input-related cost, i.e., Ju , computed with the proposed two-layer approach
(centralized MPC) (top). Red (black) + markers are the values of the mean-
square tracking error cost, i.e., Jy , computed with the proposed two-layer
approach (centralized MPC) (bottom).

the same size with the control objective to steer the collective
output

�M
i=1 yi to the reference value yre f = 100.2. The

computational times in different cases are listed in Table II.
In particular, in Table II, we show the average (on all subsys-
tems and on time) computational time required by the i -LMPC
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problems, the one required by the HMPC, and compare them
to the average computational time required by a corresponding
centralized MPC algorithm. This table shows that the time
required to solve the control problems defined by our two-layer
approach undergoes very small variations as a function of the
subsystems number thanks to its distributed nature, while the
time requires to solve centralized MPC scales with the number
of subsystems.

The mean-square tracking error and input-related costs in
different cases are reported in Fig. 6, it is apparent that the
suboptimality of the solution, i.e., |Jy − J c

y |, increases with
the number of subsystems, but at price of a fully scalable
computational load and a long-lasting more limited control
effort.

VI. CONCLUSION

In this paper, a hierarchical control scheme has been
proposed for the coordination of independent systems. This
scheme is fully scalable: the size of the control problem to
be solved at the high layer does not grow with the number
of subsystems, and so does the complexity of the low-level
control scheme, which is fully decentralized. Also, a procedure
is given to determine the optimal usage of the subsystems
and to account for structural changes, e.g., plug-and-play
operations, so as to provide flexibility and practical fault
tolerance to the scheme.

Among its main characteristics, we recall the possibility
to consider shared input constraints as well as joint output
constraints and the simplicity of the procedure required to
obtain the simplified model at the high layer of the hierarchical
structure. In addition, the algorithm allows to consider long-
term objectives at the high layer, for instance, based on eco-
nomic criteria, and short-term goals at the low layer, typically
fast compensation of disturbances and model mismatch.

The recursive feasibility and convergence properties of the
closed-loop system have been established and a simulation
example has been reported to illustrate the algorithm’s behav-
ior. Future work will consider the use of multirate low-level
algorithms and the application of the approach to industrial
control problems.

APPENDIX

PROOF OF THEOREM 1

Without lack of generality, the proof is conducted under the
assumption that αi > 0 (i.e., χi = 1) for all i = 1, . . . , M .
In fact the case where, for some i , αi = χi = 0 is trivial:
the input-output pairs (ui , yi ) are not involved in the HMPC
problem (i.e., ui = 0 and yi does not concur to the output y)
and, at low level, feasibility is not an issue, as described in
Section III-B.

A. Recursive Feasibility of the i-LMPC Problems (24)

Assume that the problem (24) is feasible for subsystem Si

at time h ∈ {k NL , . . . , (k+1)NL −1}, i.e., an optimal sequence
vi (h|h), . . ., vi ((k + 1)NL − 1|h) is available, allowing to
satisfy the constraints (24d), (24e) in face of input ū(s−TL) =
ū[NL ](k − TH ), constant for all s = k NL , . . . , (k + 1)NL − 1.

At time h, the input value vi (h|h) is applied, and the remaining
sequence vi (h + 1|h), . . ., vi ((k + 1)NL − 1|h) is feasible at
time h, since the problem is a shrinking-horizon one.

Note that, at time h = (k + 1)NL (i.e., at the beginning of
the subsequent high-level sampling time), the state x (w)

i ((k +
1)NL) enjoys (24e). To guarantee the recursive feasibility, for
any input ū(l − TL) = ū[NL ](k + 1 − TH ) (constant for all
l = (k + 1)NL , . . . , (k + 2)NL − 1) there must exist an input
sequence −→v i (k + 1) = vi ((k + 1)NL), . . ., vi ((k + 2)NL − 1)

such that wi ((k + 2)NL ) = 0 and x (w)
i ((k + 2)NL ) ∈ X

F
i .

Therefore, we require the existence of −→v i (k + 1) such that,
at the same time

Ci (ANL
i x (w)

i ((k + 1)NL ) + αi R̄i ū
[NL ](k + 1 − TH )

+ R(v)
i

−→v i (k + 1)) = 0

ANL
i x (w)

i ((k + 1)NL ) + αi R̄i ū
[NL ](k + 1 − TH )

+ R(v)
i

−→v i (k + 1) ∈ X
F
i .

Note that if x (w)
i ((k + 1)NL ) ∈ X

F
i , in view of (26b), then

ANL x (w)
i ((k + 1)NL ) ∈ λiX

F
i . Thanks to (26c), there exists a

sequence −→v i (k + 1) ∈ (Vi )
NL such that both (24d) and (24e)

can be verified for all inputs ū[NL ](k + 1 − TH ) ∈ Ū .

B. Recursive Feasibility and Convergence of the HMPC
Problem (17)-(21)

Thanks to the recursive feasibility properties of the low-level
problems (24), it is possible to guarantee that wi (k NL ) = 0
for all i = 1, . . . , M and for all k ≥ 0. Thanks to this, it is
possible to describe the evolution of variable y[NL ](k) using
the FIR model (14).

To show the recursive feasibility of the HMPC problem,
we assume that a solution to (17)–(21) is available at time t ,
i.e., ū[NL ](t|t), . . ., ū[NL ](t + NH − 1|t), r(t), satisfying (17),
(19)–(21). Here, y[NL ](k), k = t, . . . , t + NH , is obtained
through (14) with inputs ū[NL ](k|t). It is easy to see that,
at time t + 1, the sequence ū[NL ](t + 1|t + 1) = ū[NL ](t +
1|t), . . ., ū[NL ](t + NH − 1|t + 1) = ū[NL ](t + NH − 1|t),
ū[NL ](t + NH |t + 1) = ū[NL ](t + NH − 1|t), r(t + 1) = r(t)
is admissible (but possibly not optimal).

Therefore, the optimal value taken by the cost function JH L

at time t + 1 (denoted J ∗
H L(t + 1)) satisfies J ∗

H L(t + 1) ≤
�NH −1

k=0 {�y[NL ](t + 1 + k) − r(t + 1)�2
Q y

+ �ū[NL ](t + 1 +
k|t + 1) − ū[NL ](t + k|t + 1)�2

R} + γ �r(t + 1) − yref�2 =
�NH −1

k=1 {�y[NL ](t + k)− r(t)�2
Q y

+�ū[NL ](t + k|t)− ū[NL ](t +
k − 1|t)�2

R} + γ �r(t) − yref�2 since ū[NL ](t + NH |t + 1) =
ū[NL ](t + NH − 1|t + 1) = ū[NL ](t + NH − 1|t) and since,
in view of (17), y[NL ](t + NH ) = r(t + 1) = r(t). In view
of this, it follows that J ∗

H L(t + 1) ≤ J ∗
H L(t) − {�y[NL ](t) −

r(t)�2
Q y

+�ū[NL ](t)− ū[NL ](t −1)�2
R}. Therefore, as t → +∞,

a steady-state condition (where ū[NL ](t) = ū[NL ](t − 1)) is
asymptotically achieved, characterized by y[NL ](t) = r(t).

At this point, similar to [8], we show that the only closed-
loop stable equilibrium point compatible with (18) is the one
corresponding to y[NL ] = r = yfeas.ref . To do so, we consider
a feasible steady-state condition with r(t) = r̂ 	= yfeas.ref ,
y[NL ](k) = r̂ , and ū[NL ](k) = (

�TH
l=1 G[NL ]

l )−1r̂ for all



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FARINA et al.: HIERARCHICAL MPC SCHEME FOR COORDINATION OF INDEPENDENT SYSTEMS 11

k = t, . . . , t + NH − 1 (assuming that this is also valid for
k = t − TH , . . . , t − 1), whose corresponding cost is ĴH L =
γ �r̂ − yref�2 = γ �r̂ − yfeas.ref�2 + γ �yfeas.ref − yref�2 +
2γ (yfeas.ref − yref)

T (r̂ − yfeas.ref).
At the same time, instead of keeping the system at

steady state, at time t , we can consider the following
alternative solution to the high-level optimization problem:
r(t) = r̃ = λr̂ + (1 − λ)yfeas.ref (with λ ∈ [0, 1)), and
ū[NL ](k) = (

�TH
l=1 G[NL ]

l )−1r̃ for k = t, . . . , t + NH − 1.
Correspondingly, y[NL ](t) = r̂ , while for k = 1, . . . , TH ,
y[NL ](t + k) = r̂ + (

�k
l=1 G[NL ]

l )(
�TH

l=1 G[NL ]
l )−1(r̃ −

r̂) and, for k > TH , y[NL ](t + k) = r̃ . Note that,
for a value of λ sufficiently close to 1, this alterna-
tive solution is always feasible. The corresponding cost
is J̃H L = �TH −1

k=0 {�(�TH
l=k+1 G[NL ]

l )(
�TH

l=1 G[NL ]
l )−1(r̃ −

r̂)�2
Q y

} + �(�TH
l=1 G[NL ]

l )−1(r̃ − r̂)�2
R + γ �r̃ − yref�2 = �r̃ −

r̂�2
P + γ �r̃ − yfeas.ref�2 + γ �yfeas.ref − yref�2 + 2γ (yfeas.ref −

yref)
T (r̃ − yfeas.ref), where P is defined in (16b). In view of

the fact that P ≤ γ Ip , then ĴH L − J̃H L ≥ γ {�r̂ − yfeas.ref�2 −
�r̃ −r̂�2 −�r̃ − yfeas.ref�2 +2(yfeas.ref − yref)

T (r̂ −r̃)}. Note that
r̃ − yfeas.ref = λ(r̂ − yfeas.ref) and r̂ − r̃ = (1 −λ)(r̂ − yfeas.ref).
In view of the latter and of the optimality of yfeas.ref with
respect to the function �r −yref�2 in the convex feasible region

2(yfeas.ref − yref)
T (r̂ − r̃)

= (1 − λ)2(yfeas.ref − yref)
T (r̂ − yfeas.ref) > 0.

From this ĴH L − J̃H L ≥ γ �r̂ − yfeas.ref�2(1−λ2 − (1−λ)2) =
2γ λ(1 − λ)�r̂ − yfeas.ref�2. This means that any steady-state
different from the one corresponding to r(t) = yfeas.ref is not
compatible with the optimality of the problem (18). Since a
steady state is eventually attained, this implies that r(t) →
yfeas.ref as t → +∞. This, in turn, implies that y[NL ](t) →
yfeas.ref and ū[NL ](t) → ūfeas.ref = (

�TH
l=1 G[NL ]

l )−1 yfeas.ref as
t → +∞.

Since constraints (19) and (20) are respected at all k ≥ 0,
then y[NL ](k) = y(k NL ) ∈ Y and ū[NL ](k) ∈ Ū for all k ≥ 0.
Furthermore, since the constraint (24c) is verified at low level,
then, from (9a), (9b), and (25)–(31), for all i = 1, . . . , M
and for all h ≥ 0, ui (h) = αi ū[NL ](�(h/NL )�) + vi (h) ∈ Ui

and
�

i∈σ ui (h) = �
i∈σ αi ū[NL ](�(h/NL )�) + �

i∈σ vi (h) ∈
Ushared, as required for satisfying (5) and (6), respectively, for
all h ≥ 0.

C. Convergence of the LMPC Problem (24)

The evolution of variable x (w)
i (h) on a NL -steps sampling

time is

x (w)
i ((k + 1)NL) = ANL

i x (w)
i (k NL) + R(v)

i
−→v i (k)

+ αi R̄i ū
[NL ](k − TH )

wi (k NL) = Ci x (w)
i (k NL). (34)

Now, define 	x
i (k) = x (w)

i (k NL ) − αi gx
i ū[NL ](k − TH ), where

gx
i = (Ini − Ai )

−1(ATL
i Bi − Bi g

[TL ]
i ). Also, define 	u

i (k) =−→v i (k) + 1 ⊗ (αi g[TL ]
i ū[NL ](k − TH )). Under this change of

coordinates, we can rewrite (34) as

	x
i (k + 1) = ANL

i 	x
i (k) + R(v)

i 	u
i (k) + zi (k)

w̄i (k) = wi (k NL ) = Ci	
x
i (k) (35)

where zi (k) = αi gx
i (ū[NL ](k − TH ) − ū[NL ](k + 1 − TH ))

can be accounted for as a (vanishing) disturbance. In view
of constraint (24d), w̄i (k) = 0 for all k ≥ 0. We can
write w̄i (k) = wF RE E

i (k) + wF O RC E D
i (k) = 0, where

wF RE E
i (k) and wF O RC E D

i (k) are the free and forced, respec-
tively, motions of variable w̄i (k). Therefore wF O RC E D

i (k) =
−wF RE E

i (k) = −Ci Ak(NL )
i 	x

i (0) → 0 as k → +∞ in
view of Assumption 1. Similar to Proposition 3 in [17],
if Ci (z Ini − ANL

i )−1 has no zeros on the unitary circle (i.e.,
thanks to Assumption 3), then

lim
k→+∞

�
R(v)

i 	u
i (k) + zi (k)

� = 0.

Consequently, limk→+∞ 	x
i (k) = 0 (i.e.,

limk→+∞ x (w)
i (k NL) = αi gx

i ūfeas.ref ) follows from the
asymptotic stability of (35) and from the fact that
limk→+∞ ū[NL ](k) = ūfeas.ref . This also implies that
limh→+∞ vi (h) + αi g[TL ]

i ūfeas.ref = 0, in view of the
fact that, when x (w)

i (k NL ) = αi gx
i ūfeas.ref , in stationary

conditions vi (h) = −αi g
[TL ]
i ūfeas.ref (which is feasible thanks

to (26d) and (26e)) minimizes the cost function (24b).
This, in turns, implies that limh→+∞ wi (h) = 0 and that
limh→+∞ y(h) = ȳfeas.ref .
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