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Abstract—Electric vehicles range is limited by the available
storage systems and it is influenced by many external factors such
as ambient temperature, vehicle auxiliary systems and driving
patterns. An accurate and reliable estimation of the remaining
energy and, as a consequence, of the available travelling distance
is one of the key factors that allows drivers to consciously take
advantage of their electric vehicle (EV).

The present paper describes the application of a previously-
defined model for EVs batteries to estimate on line the available
range. The effectiveness of the proposed methodology, which has
been designed in order to use a reduced set of measurements,
has been validated on a real Lithium-ion cell simulating three
different EVs under two different temperatures and with two
standard test driving cycles.

Index Terms—battery model, electric vehicles, lithium-ion
battery, range estimation.

I. INTRODUCTION

Electric vehicles (EVs) are gaining importance in the mobil-

ity framework as a potentially effective means for sustainable

transportation [1]. Nevertheless, their adoption is hindered by

the many problems customers suffer when using (or planning

to buy) one. These barriers are related (but not limited to) to:

i) the lack of a widespread presence of recharge facilities [2],

ii) the critical issue of the recharge time, and iii) EVs range.

In order to mitigate these barriers, one of the factors that

could make EVs more acceptable is the reliability of the

estimation of the residual range while driving. With respect

to the previous issues this is, obviously, a problem set on

a different scale, but nonetheless important and far to be

straightforward.

In fact, the ability to give to drivers an accurate, timely and

reliable estimation of the available range is an open problem,

studied by many researchers with a variety of techniques

and different hypotheses. Some of them developed algorithms

using driving habits analyses, GPS data, both real-time and

historical traffic information [3], [4] and even predictive anal-

yses based on the destination [5].

The aim of the present work is to describe and test the

application of a model for Lithium-ion batteries for EVs range

estimation with a reduced set of data. The principle of the pro-

posed methodology is to store the profiles of the electric power

and velocity of the vehicle for a pre-defined time window and

feed these data to the battery model in order to simulate the

number of times the stored path could be replicated. This will

give the range of the EV in the current conditions. Obviously

the obtained estimation depends on the length of the time

window and, most importantly, on the probability that the

path stored and used for the estimation is coherent with the

one encountered in the future. While the latter dependency

cannot be easily eliminated without resorting to a considerable

amount of real-life data from different drivers, the former can

be appreciated by progressively varying the number of samples

stored. Besides this investigation, one of the major contribution

of this paper is that the proposed methodology is tested on a

real Lithium-ion cell emulating three different EVs at 0 ◦C and

30 ◦C during a concatenation of two standard driving cycles.

The paper is organized as follows. In Section II the model

of the battery is described. Section III is dedicated to the

description of the proposed methodology. In Section IV the

test cycles and the mechanical models of the EVs are de-

scribed, along with the set-up used for the validation of the

methodology. Section V is devoted to the description of the

results. In Section VI conclusions are drawn.

II. BATTERY MODEL DESCRIPTION

In literature it is possible to find a wide range of electrical

battery models spanning from the simplest ones (which usu-

ally imply low accuracy) to the most complex ones (which

are usually associated to higher accuracy levels) [6]–[12].

According to the physical processes to be modeled and the

accuracy needed for the specific application the most suitable

model can be chosen. The more general battery model is made

up of a voltage source connected in series with a resistor and

some RC parallel branches [13] (see Fig. 1). Although the

Fig. 1. General battery model.
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voltage source depends on different factors, the most important

one is the state of discharge (SOD), defined as:

SOD (t)= 1− SOC (t)

= 1−

[

SOC (0)−
1

Crate

∫

t

0

i (x) dx

]

= SOD (0) +
1

Crate

∫

t

0

i (x) dx

(1)

where SOC is the state of charge of the battery, i (x) is the

current, and Crate is the rated capacitance of the battery.

The series resistor R1 represents the instantaneous voltage

drop on the internal total resistance of the battery as the effect

of a current step. The ideal voltage source together with R1

reproduce the steady-state behavior of the battery. On the

other hand, the RC parallel branches reproduce the dynamic

behavior of the battery. The higher the number of the RC
parallel branches, the better is the modelling of the dynamic

behavior. However, as a consequence, the complexity of the

whole battery model increases. A trade-off between model

accuracy and computational burden must be chosen depending

on the specific framework.

In the application described in the present paper it is

sufficient to use only one RC parallel branch. In fact, being

the target of this study the real-time estimation of EVs range,

it is important to take into account the relaxation time of the

ions in the electrolyte. Being the time constant of this process

approximately ten minutes, the high frequency behavior of the

battery can be neglected.

In automotive applications it is of interest to estimate the

vehicle range of EVs for both high and low temperatures. For

this reason, all the passive parameters (resistors and capacitors)

and the voltage source of the battery model have to be

considered in the view of their dependence on temperature.

Furthermore, the instantaneous current is another important

factor that influences the battery response. In particular, differ-

ent charge/discharge currents apparently affect the charge that

can be exchanged with the battery [14]. Therefore, the voltage

source, in addition to SOD and temperature should also display

a dependence on current. To this end, the Lithium-ion battery

model proposed in [14] can be ragarded as a suitable model

(see Fig. 2).

Fig. 2. Lithium-ion battery model.

It can be noticed that all the passive parameters are

temperature-dependent. The voltage source is split up into two

different voltage sources. The first source, ∆E, depends only

and directly on the cell’s temperature. The second source, Voc,

depends on temperature, SOD, and current. The dependence

on those parameters is expressed through the apparent SOD

(ASOD) defined as:

ASOD (I, T ) = SOD + α(I) + β(T ). (2)

Through the ASOD it is possible to take into account

that at different charge/discharge currents and/or temperatures

the total open-circuit voltage of the battery is different. For

instance, for high currents and/or low temperatures the battery

apparently charges or discharges faster. After that, if the

current is reduced and/or the temperature is increased to the

nominal values, the battery comes back to be able to exchange

its nominal charge. In order to characterize all the parameters

of the battery model of Fig. 2 for a 10Ah Lithium-ion battery

type 8773160K, manufactured by General Electronics Battery

co. ltd., the procedure reported in [14] was experimentally

applied. The characteristic data of the cell are reported in

Table I.

TABLE I
MAIN DATA OF THE CELL UNDER EXPERIMENTAL TESTS [14].

ITEM SPECIFICATIONS

rated capacity C5 =10Ah1

rated voltage 3.7V

charge cut-off voltage 4.2V

discharge current cont.: 10C5; max.: 15C5 (0÷ 60 ◦C)2

discharge cut-off voltage 2.75V

1 discharging at 0.2C5(= 2A), 25 ◦C.
2 cont.: continuous discharge current; max.: maximum discharge current.

All the parameters were interpolated using the exponential

function:

y(x) = a exp (−bx) + c. (3)

The parameters of (3) obtained for the battery in use are

reported in Table II.

TABLE II
PARAMETERS OF THE EXPONENTIAL FUNCTION.

y (x) a b c

α(I) −0.1272 0.1322 0.02807
β(T ) 0.1025 0.08989 −0.01953
∆E(T ) 0.02552 0.4304 8.708 × 10−5

R1(T ) 0.008472 0.03645 0.001586
R1(T ) +R2(T ) 0.01860 0.04639 0.004498

In particular, the capacitance C2 (T ) is given by the ratio

between the time constant τ of the R2C2 parallel branch and

the value of R2, derived by subtracting R1 to the value R1+R2

obtained experimentally (Table II):

C2 (T ) =
τ

R2 (T )
(4)



where τ was experimentally found to be 100 s.
The voltage profile Voc as a function of the ASOD can

be stored in a look-up table or represented by means of

a polynomial function. In the present study a 9-th order

polynomial function has been used

Voc(ASOD) =
9

∑

k=0

pkASOD (I, T )k , (5)

where the coefficients pk are listed in Table III.

TABLE III
9-TH ORDER POLYNOMIAL FUNCTION COEFFICIENTS USED IN THE

PRESENT STUDY TO INTERPOLATE THE PORTION OF THE OPEN-CIRCUIT

VOLTAGE DEPENDENT ON ASOD.

p0 4.206 p5 −4261
p1 −2.605 p6 7623
p2 30.81 p7 −8056
p3 −280.7 p8 4634
p4 1430 p9 −1119

III. RANGE ESTIMATION METHODOLOGY

The proposed range estimation methodology is based on

the real-time implementation of the Lithium-ion battery model

described in Section II. In a field application of the proposed

method the algorithm will be executed on board of the EV. In

order to obtain the desired goal, the range estimation system

proposed in the present study (Fig. 3) collects both the real

electric power profile pe exchanged with the battery pack and

the related speed profile v of the driver. These data are stored

in two different buffers with a given time length Tw and

sample time Te. The length of these buffers Tw is of paramount

importance in order to perform an effective estimation of the

remaining EV range maintaining a low error. Some design

criteria on how to optimize this length are discussed later.

The buffering process is a continuous operation. When the

buffers are full, the older samples are eliminated and the new

ones shift all the stored samples. In each estimation time Te

the system measures the voltage V , the current I and the

temperature T of the battery pack. Measured data are used in

the battery model to determine the correct initial ASOD. Once

initialized, the battery model is simulated using the array of

electric power profile, p̄e(Tw), previously stored in the buffer.

The power array is repeatedly fed to the model until the battery

model reaches the full depletion, i.e., it reaches the lowest

admissible voltage. At the same time, the array of the related

speed profile, v̄(Tw), stored in the other buffer is integrated

determining the remaining range that the EV can perform if

the driving style remains unaltered.

IV. TEST CYCLES AND MECHANICAL MODELS

In order to perform reproducible experimental tests on the

batteries, two standard speed profiles—New European Drive

Cycle (NEDC) [15] and Supplemental Federal Test Procedure

SC03 (SFTP-SC03) [16]—were used to generate the power

EV

range

estimation
buffer

x buffer
battery model

Fig. 3. Range estimation system.
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Fig. 4. NEDC (top) and SFTP-SC03 (bottom) driving cycles speed profiles.

profiles. The speed patterns of the cycles considered are

reported in Fig. 4. Three different vehicles were considered: e-

Up! (EV1), e-Golf (EV2), and Tesla Model S 60D (EV3). The

main vehicles parameters are reported in Table IV. Vehicles’

technical specifications were taken from [17].

TABLE IV
VEHICLES MAIN PARAMETERS: ηcha AND ηdis ARE RESPECTIVELY THE

TOTAL CHARGING AND DISCHARGING EFFICIENCIES. FOR OTHER

PARAMETERS, REFER TO (6).

Unit
e-Up! e-Golf Model S

EV1 EV2 EV3

curb weight kg 1139 1510 2108

max weight kg 1500 1960 2590

CD — 0.308 0.27 0.24

S m2 2.09 2.19 2.34

Cv — 0.007 0.007 0.01

ρ kg/m3 1.184

ηcha — 0.431

ηdis — 0.804

battery capacity kWh 18.7 24.2 60

Considering the vehicles parameters, a mechanical equation



that can approximate the system is:

Pm = v

(

Mea+
1

2
CDSρv

2 + · · ·

+ CvMg cosα+Mg sinα

)

,

(6)

where Me is the total inertial mass which includes all the

rotating elements of the vehicle, a is the vehicle acceleration,

CD is the aerodynamic coefficient, S is the vehicle frontal

surface, ρ is the air density at standard conditions, v is the

speed, Cv is the rolling friction coefficient, M is the vehicle

mass, g is the gravitational acceleration, and α is the road

slope. M , was calculated adding to the curb weight four 70 kg
persons. Me was obtained increasing M by a 10% factor.

The vehicles dynamics were simulated using

MATLAB/Simulink applying a closed loop controller

representing the driving style of a generic user. The

mechanical power obtained through the simulation was

then converted in electrical power including the vehicles

power-train efficiency for the charging and the discharging

processes. The speed and electric profiles were then extracted

for the three vehicles and the two cycles considered.

In order to validate the proposed range estimation method,

the power profiles have been applied experimentally to a

battery kept in a climatic chamber. From the characteristic of

the cell (Table I), it is possible to estimate that its total energy

is about 37Wh. Therefore, the power profiles have to be scaled

according to the total energy of the battery pack of each EV. In

this case, the power profiles exchanged with the Lithium-ion

cell must be scaled by 1/506-th, 1/654-th, and 1/1622-th for

EV1, EV2, and EV3 respectively. The results obtained varying

the cell temperature give an insight on the robustness of the

method in critical working conditions. In practical real-time

operation temperature data could be provided to the model

by the sensors already placed in the battery pack for safety

reasons. In order to obtain more reliable results the estimation

method could feed the battery model with temperature data

resulting from an interpolation of the temperature samples.

This procedure would estimate the temperature that the storage

would reach if the power profile is repeated. The experimental

set-up is shown in Fig. 5 and in Fig. 6. It consists of a 100A
booster (VMP3B-100) which is connected to a potentiostat

(SP-150) both from Biologic Science Instruments (power

pattern generator in Fig. 5), controlled by a PC with EC-LAB

software, and a climatic chamber.

The six power cycles were applied to the battery, keeping

its temperature at 30 ◦C and at 0 ◦C. Although the validation

process neglects the additional power exchanges related to

possible on-board auxiliary systems and height changes, there

is no loss of generality since the neglected factors affects the

power profile on which the estimation is done thus, in a real

application, external factors would be naturally included in the

power profile array which is measured by the vehicle.

Once the battery is depleted using the power profiles,

the equivalent road travelled by the EVs is experimentally

obtained exploiting the mapping “power profile-speed profile”

climatic 
chamber

power pattern
generator

Fig. 5. General experimental set-up.

battery

voltage 
sensor

temperature
sensor

Fig. 6. Experimental set-up: climatic chamber.

obtained in simulation. From the data-log extracted from the

experiments the proposed range estimation method is tested.

A window Tw with length between 1min and 30min is

chosen. Every Te = 30 s the power profile of the previous Tw

seconds is applied to the model of the battery and it is repeated

until the battery is completely discharged. From the number

of times that the power cycle was repeated, the equivalent

range is obtained. The range estimated is then filtered with a

low-pass filter to keep track of the previous estimated range

shown on the dashboard. The estimated range is finally com-

pared with the actual range obtained experimentally. For each

tested window the estimated ranges and the actual remaining

kilometers are compared for each evaluation time in terms of

mean square error (MSE) and mean absolute error (MAE). A

window T ∗

w that minimizes the errors is then chosen for each

vehicle.

V. RESULTS

In order to identify T ∗

w
, the procedure described in Sec-

tion III and Section IV is applied considering multiple window

lengths from 1min to 30min with 1min steps. MSE and MAE

obtained for different window lengths, for each EV, cycle,

and temperature are shown in Fig. 7 (next page). Since the

aim of the optimization is to identify a proper window length
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(b) EV2 NEDC MSE
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(c) EV3 NEDC MSE
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(d) EV1 NEDC MAE
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(e) EV2 NEDC MAE
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(f) EV3 NEDC MAE
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(g) EV1 SFTP-SC03 MSE
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(h) EV2 SFTP-SC03 MSE
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(i) EV3 SFTP-SC03 MSE
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(j) EV1 SFTP-SC03 MAE
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(k) EV1 SFTP-SC03 MAE
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Fig. 7. Comparison of the errors obtained by the experimental validation using different window lengths. Each column refers to a different EV: (a), (d), (g),
and (j) to EV1; (b), (e), (h), and (k) to EV2; and (c), (f), (i), and (l) to EV3. First and third rows, (a)–(c) and (g)–(i), show MSE; second and forth rows,
(d)–(f) and (j)–(l), show MAE. In each graph the dashed blue line refers to 0 ◦C tests, while the solid red line refers to 30 ◦C tests.



depending on the EV, the low-pass filter on the estimation is

not applied in this optimization stage.

Analyzing Fig. 7, it is possible to infer that longer windows

tend to reduce the estimation error. Although it is important to

have an accurate range estimation, which is ensured choosing

large Tw, the flexibility of the estimation when the driving

style changes is of great importance as well. This last point

implies that Tw should not be chosen too wide since it would

affect negatively the estimation when the speed pattern is not

periodic.

From the analysis, Tw = 20min has been chosen. The

range estimation has then been low-pass filtered with a cut-off

period of 30min. This last manipulation reduces the effects

of local accelerations or long regenerative braking, increasing

the coherence of the successive range values provided by the

estimation. Numerically this results in lower mean square error

even with respect to even longer Tw. A representation of the

filtered results is reported in Fig. 8. The red line represents

the range estimation in km reported to the user at time t. The

blue line represents the range left measured experimentally.

From the charts it is possible to note that at the beginning of

the driving cycle the first estimation of the range is done after

the selected window time. In the graphs it is possible to see

the initial transient given by the low-pass filter. To overcome

this inaccuracy, the low-pass filter could be initialized to the

last estimated range or the on-board computer could keep in

memory the last driving session data. In the ending part of

Fig. 8a, Fig. 8b, and Fig. 8c (i.e., the plots referring to 0 ◦C
tests) the ranges are overestimated when the battery is almost

depleted. This suggests that a more accurate characterization of

the storage system should be performed in critical conditions.

Moreover, in low temperature environments it is important to

consider that the storage system warms up during the system

operation. Thus, it is likely that in that part of the driving

cycle the battery might be higher, converging to the results

shown in the plots referring to 30 ◦C (i.e., Fig. 8d, Fig. 8e,

and Fig. 8f) . To remove any risk of overestimating the range

when the available energy is low, a suitable negative offset

could be introduced in the estimation when the battery model

is used at low temperature.

VI. CONCLUSION

In this paper a real-time range estimation for EVs based on

the battery model was proposed and tested experimentally. The

proposed range estimation strategy uses a limited set of data,

i.e., the vehicle speed profile and the power exchanges with

the battery pack. The range estimation algorithm relies on a

9-th order polynomial function derived from the experimental

characterization of the lithium battery pack representing the

EVs storage system. The range estimation method stores

the instantaneous power and speed patterns in two buffers.

Every predefined time instants, the vehicle on-board computer

applies the logged power pattern to the mathematical model

of the battery, determining how many repetitions of the power

pattern are required to deplete the storage system. The speed

pattern is then repeated the same amount of times obtaining

the range estimation. This range estimation method is sensitive

to the changes in the driving style of the user. To maintain

coherent results between subsequent estimations, the range

estimations are low pass filtered before being displayed on
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(e) EV2 @ 30 ◦C
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Fig. 8. Comparison between estimated and real available ranges in SFTP-SC03 cycle. Top row show 0 ◦C results; bottom row show 30 ◦C results. Each
column refers to a different EV: (a) and (d) to EV1; (b) and (e) to EV2; and (c) and (f) to EV3. Dashed blue lines refer to the real available range, solid red
lines refer to estimated available range.



the dashboard. Future works could be focused on the analysis

of the proper low-pass filter constant which minimizes the

overall range estimation error.
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