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Abstract

This paper discusses the use of a Transfer Matrix (TM) method for predicting

the acoustic behavior of infinite cylinders consisting of a generic arrangement of

homogeneous and heterogeneous periodic layers of various nature (fluid, solid,

poroelastic). A through-radius TM is derived for a layer characterized by cylin-

drical periodicity by manipulating the dynamic stiffness matrix related to a

finite element model of a unit cell. The proposed technique is equally appealing

for homogeneous layers since few elements are needed in this case. In such a

framework, different layers can be combined to form multilayered systems and

the related acoustic radiation or transmission due to an external plane wave or

a diffuse acoustic field can be assessed. The proposed approach is validated in

case of cylinders consisting of homogeneous layers by comparison with alterna-

tive approaches. In order to demonstrate the usefulness of the approach, the

sound transmission through a cylindrical structure with resonators is presented.
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1. Introduction

The sound transmission through infinite cylindrical structures is of impor-

tance in many industrial applications, e.g. pipes, launchers, aircraft fuselages

and submarines. Usually, homogeneous layered media made up of lightweight

poroelastic materials are employed in order to reduce the acoustic transmission

into the interior cabin. The acoustic performance of such sound packages is

poor at low frequencies. Recent use of structured materials, such as embedding

resonant inclusions within a foam, has been proven effective to enhance the per-

formance at low frequencies [1, 2, 3]. Various analytical and numerical tools

are used to guide the design of these heterogeneous sound packages. However,

most of the published work focuses on planar structures and the acoustic perfor-

mance is usually assessed under normal incidence excitation. Due to the actual

applications characteristics, computationally efficient design and optimization

tools are still needed for more complex structures and excitations. This paper

presents such a tool for the special case of an infinite cylindrical structure with

attached heterogeneous sound packages under plane wave or diffuse acoustic

field (DAF) excitations.

In this context, several works have studied the sound transmission through

cylindrical structures using analytical models. For instance, Koval modeled ana-

lytically the sound transmission through a single isotropic as well as orthotropic

cylindrical shell [4, 5] and extended the analysis to laminate composite shells [6]

in the presence of an external mean flow. However, transverse shearing and ro-

tational inertia were neglected in his studies. Later, Blaise and Lesueur [7, 8, 9]

proposed an extension of Koval’s work to handle acoustic transmission through

isotropic and orthotropic multilayered cylindrical structures in order to compute

the DAF transmission. Ghinet and Atalla [10] later proposed a more general

alternative for modeling the transmission loss (TL) through infinite laminated

and sandwich composite shells. In their model, the transverse shearing and ro-

tational inertia as well as the orthotropic ply angle were considered. In a recent

paper, Magniez et al. [11] proposed a 3D-shell analytical model and applied it
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to assess the plane wave transmission through a cylinder composed of two thin

orthotropic skins and a thick isotropic core. Later, they developed a sandwich

shell model which take into account the elasticity effect of a poroelastic core by

means of the Biot model [12]. However, the coupling effect between the poroe-

lastic material and the two skins was not studied in their work. Other recent

works studied the aforementioned coupling effect in the case of an oblique in-

cidence angle [13, 14, 15, 16] as well as a DAF [17]. However, the poroelastic

material was modeled as an equivalent fluid based on the methodology proposed

by Lee et al. [18].

The characterization of wave propagation in complex structures using a wave

and finite element method (WFEM) has also received a lot of attention. The

WFEM combines conventional Finite Element (FE) and the theory of wave

propagation in periodic structures making it possible to overcome the complex

algebra expressions involved in the development of analytical models. Mencik

and Ichchou [19] used a one-dimensional WFEM to find the dispersion curve

and the forced response of an infinite cylinder filled with acoustic fluid. Man-

coni and Mace [20, 21] developed a two-dimensional WFEM to compute the

dispersion curve of curved and cylindrical structures. Later, Renno and Mace

[22] extended the two-dimensional WFEM to calculate a forced response of a

cylinder in vacuo. The cylinder’s axisymmetry was exploited. Chronopoulos

[23] proposed a 2D WFEM to predict the dispersion characteristics of compos-

ite orthotropic curved panels and cylindrical shell structures as well as the TL

within a statistical energy framework. In addition, Errico et al. [24] used a 1D

axisymmetric WFEM, within a Transfer Matrix (TM) framework, to model the

flow-induced vibrations of periodic and axisymmetric structures when random

spatially correlated loads acting on the external surface. Periodic cylinders and

curved panels under turbulent boundary layer and DAF excitations are also

considered in [25]. Droz et al. [26] used small-scale resonators combined with

poroelastic foam to improve the TL around the ring frequency. Recently, Kingan

et al. [27] modeled the sound transmission through cylindrical structures using

a two-dimensional WFEM. In their work, the infinite cylindrical structure is
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excited by a point source. None of the above papers tackle cylinders with at-

tached heterogeneous sound packages. In addition, equally important and to the

authors knowledge, only few recent papers deal with the transmission through

sandwich cylinders with a poroelastic core [28, 29]. The latter are however based

on analytical formulations that limiting them to homogeneous cases.

This paper alleviates these limitations using an approach based on the

WFEM. An extension of a TM representation defined for periodic planar media

by a FE model of a periodic unit cell (UC) [30] is presented. Main additions to

[30] consist in the modification of the dynamic stiffness matrix (DSM) of the UC

to account for the curvature and in the boundary conditions with external and

internal fluids, including the excitation, which are modeled analytically. More-

over, multilayered cylinders consisting of a generic arrangement of heterogeneous

fluid, solid and poroelastic layers are considered. The layers’ transfer matrices

are then used in a TM context to predict sound transmission through the cylin-

ders in case of a single oblique plane wave excitation or a DAF excitation. The

method is easily applicable to other type of excitation using appropriate k -wave

decompositions; for example for a point source in the exterior domain, the Som-

merfeld decomposition can be used to represent the monopole field in terms of

plane waves and thus use the same methodology of the paper to compute the

TL; an example for a planar structure is given in chapter 7 of reference [31].

This paper is composed of two parts. In the first, the theoretical steps used

to derive the proposed approach are presented. The modeling of the plane wave

excitation and the coupling with external and internal fluid media are recalled,

then the transfer matrix of a layer is derived, finally the global system is as-

sembled and the TL is evaluated. In the second part, the proposed approach

is validated first in case of cylinders consisting of homogeneous layers by com-

parison with alternative approaches. Then, several examples are presented to

illustrate the practical use of the approach. In particular, an application to

the prediction of the TL of a cylindrical structure with attached or embedded

resonators is discussed.
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2. Theory

Let us consider the infinite multilayered cylinderdepicted in Figure 1. The

cylinder longitudinal axis lies along the X-axis and its inner and outer surfaces

are respectively located at r = ri and r = ro. Subscripts i and o indicating

values at the inner and outer surfaces or properties of the internal and external

fluids. The fluid pressures on the inner and outer surfaces are thus denoted pi,o.

The fluids have densities and wave speeds ρi,o and ci,o respectively. Throughout

the analysis we assume time-harmonic motion of the form exp(jωt).

Figure 1: Infinite cylinder excited by an oblique plane wave.

2.1. Acoustic Excitation and Impedances

In this section the analytical modeling of the incident and transmitted fields

is recalled. Details can be found in references [7, 10, 17, 27]. The cylinder is

excited by an external oblique plane wave with an incident angle, θ ∈ [0 π/2],

with respect to the radial direction and a heading angle, Ψ ∈ [0 2π), with respect

to the cylinder axis as depicted in Figure 1.

The incident pressure field (plane wave) can be expressed in cylindrical har-

monics using the Jacobi-Anger expansion as [32]

PI = p0e
j(ωt−kxx−kyy−kzz) = p0e

j(ωt−kxx)
∞∑
n=0

εn(−j)nJn(kor) cos(n(φ+ β)) ,

(1)
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where p0 is the wave amplitude, kx and ko are the wavenumber components
kx =

ω

co
sin θ cos Ψ

ko =

√(
ω

co

)2

− k2x =
ω

co

cos θ

cosβ

, (2)

co is the speed of sound of the external fluid, the auxiliary angle β ∈ [0 π/2) is

defined as [7]

tanβ = tan θ sin Ψ , (3)

n is the circumferential mode number, εn is the Neumann factor (εn = 1 if

n = 0, εn = 2 if n > 0) and Jn is the Bessel function of order n. The pressure

field in the external fluid due to the reflection at the outer surface of the cylinder

is given by

PR = ej(ωt−kxx)
∞∑
n=0

AnH
(2)
n (kor) cos(n(φ+ β)) , (4)

where An is the n-th complex amplitude and H
(2)
n is the Hankel function of

second kind of order n. The total pressure field in the external fluid is equal

to PI + PR. The blocked-wall pressure, PB , (i.e. the real excitation seen by

the cylinder) is obtained by assuming a Neumann boundary at r = ro, thus

obtaining the amplitude factors An and the total (blocked) pressure at the

outer surface produced by the incident plane wave [17]:

PB = p0e
j(ωt−kxx)

∞∑
n=0

εn(−j)n

[
Jn(koro)−

H
(2)
n (koro)J

′
n(koro)

H
(2)
n

′
(koro)

]
cos(n(φ+β)) ,

(5)

where f ′(x) = df/dx.

The spectral pressure acting on the outer surface of the cylinder due to

the outer (inward-pointing) radial spectral velocity, vo,n, is given by po,n =

−Zo,nvo,n where

Zo,n = − jωρo
ko

H
(2)
n (koro)

H
(2)
n

′
(koro)

(6)

is the acoustic impedance at the outer surface [27]. In case of a non-resonant

cavity (with only inward propagating waves), the spectral pressure acting on
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the inner surface due to the inner (inward-pointing) radial spectral velocity,

vi,n, can be expressed as pi,n = Zi,nvi,n where

Zi,n =
jωρi
ki

H
(1)
n (kiri)

H
(1)
n

′
(kiri)

(7)

is the acoustic impedance at the inner surface [27], H
(1)
n is the Hankel function

of first kind of order n and ki =
√

(ω/ci)2 − k2x is the radial component of the

wavenumber in the internal fluid. Even though only non-resonant cavities are

considered in this work, the acoustic impedance at the inner surface in case of

a resonant cavity [27] is here reported for sake of completeness:

Zi,n =
jωρi
ki

Jn(kiri)

J ′n(kiri)
. (8)

2.2. Transfer Matrix of a Periodic Layer

In order to simplify the following presentation, only layers defined by a single

physics (solid, fluid or porous) at the inter-layer boundaries are considered.

Details on the mixed formulation can be found in [30]. Moreover, models of

porous media are not discussed, they can can be found in [31]. The presented

approach is general: different physics are allowed for within a layer and different

materials with the same physics are allowed for at the inter-layer boundaries.

Figure 2: Unit cell (in local coordinates x−y−z) partitioned into internal region (I), surfaces

S1−4 and edges E1−4. The reduced problem involves only I, S1, S2, E1.

The periodic UC of a layer is represented by a straight cuboid as depicted

in Figure 2. The reference coordinates system (x − y − z) of the selected UC
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is parallel to the reference coordinates system (X − Y − Z) of the cylinder as

depicted in Figure 1. As a consequence, the local z-axis of the UC corresponds

to the inward-pointing radial direction. The periodic UC of a layer is modeled

using FEs and the related dynamic problem can be written as

D̄(ω)q = f + e , (9)

where D̄(ω) is the DSM of the UC, q is the vector of generalized displacements

or pressures, f is the vector of generalized internal forces, i.e. due to adjacent

UCs, and e is the vector of generalized external forces, i.e. due to bounding

media. In case of a solid or porous layer, the local coordinates of the FE model

must be rotated in order to account for the desired curvature. The modified

DSM is defined as

D = RT D̄R , (10)

where R is a block diagonal matrix. In case of a solid layer the i-th block of

matrix R is defined as

Ri =

[
1 0 0
0 cosαi sinαi
0 − sinαi cosαi

]
, (11)

where αi = yi/R, yi is the y-axis coordinate of the i-th node of the solid phase

and R = (ri+ro)/2 is the mean radius. In the context of a mixed displacement-

pressure formulation for porous materials [33], the i-th block of matrix R is

defined as

Ri =

1 0 0 0
0 cosαi sinαi 0
0 − sinαi cosαi 0
0 0 0 1

 . (12)

In order to apply periodic boundary conditions, the UC is partitioned in

internal region (I), four surfaces (S1−4) and four edges (E1−4) as depicted in

Figure 2. Bloch’s theorem must be applied to the generalized displacements

vector as

q =
(
Λ0 + Λxe

jkxLx + Λye
jkyLy + Λxye

j(kxLx+kyLy)
)

q′ = Aq′ , (13)

where ΛX are linear interpolation matrices linking nodal displacements and

pressures at the slave boundaries (S3−4, E2−4) to the nodal values at the master
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boundaries (S1−2, E1), the longitudinal wavenumber, kx, is defined in Eq. (2),

ky = n/R is the tangential wavenumber and (Lx, Ly) are the UC dimensions.

Interpolation matrices allow to handle UCs with different meshes at opposite

boundaries, making the procedure less restrictive in terms of mesh requirements.

Thus, the equation of motion, Eq. (9), can be reduced as

AHD(ω)Aq′ = D′(ω, kx, ky)q′ = AH(f + e) . (14)

Under the assumption of real wavenumbers, the forces due to neighboring cells

disappear from the dynamic problem [30] and the equation of motion becomes

D′(ω, kx, ky)q′ = e′ . (15)

In order to evaluate the TM of the layer, the problem must be partitioned

in terms of top (T ), bottom (B) and internal (I) sets. Since no internal forces

are applied, the set of internal degrees of freedom (dofs), q′I , can be removed

and the problem can be arranged as[
D′BB −D′BID

′−1
II D′IB D′BT −D′BID

′−1
II D′IT

D′TB −D′TID
′−1
II D′IB D′TT −D′TID

′−1
II D′IT

]{
q′B
q′T

}
= C′

{
q′B
q′T

}
=

{
e′B
e′T

}
.

(16)

Note that all the inversions in Eq. (16) can be handled with a single LU factor-

ization. This factorization represents the main computational bottleneck of the

method. However, homogeneous layers can be modeled by means of UCs with

no internal nodes, thus avoiding the above mentioned factorization and the re-

lated cost. Such a possibility ensures to the proposed procedure a computational

efficiency akin to analytical formulations.

To build the corresponding one dimensional TM model, we first define the

matrices

LB = Im ⊗ exp(jkxxB + jkyyB) , LT = Im ⊗ exp(jkxxT + jkyyT ) , (17)

where x|yB|T are row vectors collecting nodal coordinates, Im is the identity

matrix of size m, m is the number of dofs for each node (1 for fluid and equiv-

alent fluid layers, 3 for solid layers, 4 for poroelastic layers [33]) and ⊗ denotes
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the Kronecker product. Thus, the through-thickness one dimensional dynamic

problem can be derived:[
LBC′BBLHB LBC′BTLHT
LTC′TBLHB LTC′TTLHT

]{
q̂B
q̂T

}
= C

{
q̂B
q̂T

}
=

{
êB
êT

}
. (18)

Finally, the problem can be rearranged in terms of a transfer matrix:[
−C−1TBCTT C−1TB

CBT −CBBC−1TBCTT CBBC−1TB

]{
q̂T
êT

}
= T′(ω, kx, ky)

{
q̂T
êT

}
=

{
q̂B
êB

}
.

(19)

It should be noted that matrix CTB is very small (m×m), so the cost related

to its inversion is negligible within the procedure.

The transfer matrix T′ is now modified in order to simplify the inter-layer

boundary conditions. Using transformation matrices ΛT and ΛB (defined be-

low), new state vectors, VT and VB , are related to the original state vectors,

V′T = [q̂T êT ]T and V′B = [q̂B êB ]T as

V′T = ΛTVT , VB = ΛBV′B , (20)

thus obtaining the final form of the transfer matrix as

T = ΛBT′ΛT . (21)

The original and the chosen state vectors for a fluid layer are respectively

V′f =
[
p −jωAvfn

]T
, Vf =

[
p vfz

]T
(22)

where vfn is the (outward-pointing) normal velocity and A = LxLy is the area

of the UC. As a consequence, the related transformation matrices are

ΛB = diag
[
1 1/jωA

]
, ΛT = diag

[
1 −jωA

]
. (23)

The state vectors for a solid layer are

V′s =
[
ux uy uz Fx Fy Fz

]T
, Vs =

[
vsx vsy vsz σzx σzy σzz

]T
(24)
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and the related transformation matrices are

ΛB = diag
[
jω jω jω −1/A −1/A −1/A

]
,

ΛT = diag
[
1/jω 1/jω 1/jω A A A

]
.

(25)

The state vector related to the used poroelastic formulation [33] is

V′p =
[
usx usy usz p F sx F sy F sz −jωA(vfn + vsnγ̃/Φ

2)
]T

(26)

where Φ is the layer porosity and γ̃ is a coupling coefficient between the solid

and fluid phase of the porous media. On the other hand, the chosen state vector

is

Vp =
[
vsx vsy vsz p σszx σszy σtzz w

]T
(27)

where w = Φ(vfz − vsz) is the flux per unit area at the interface, σtzz = σszz + σfzz

is the total normal stress and σfzz = −pΦ is the equivalent normal stress due to

the fluid. The related transformation matrices are

ΛT =



1/jω 0 0 0 0 0 0 0
0 1/jω 0 0 0 0 0 0
0 0 1/jω 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 A 0 0 0
0 0 0 0 0 A 0 0
0 0 0 ΦA 0 0 A 0
0 0 −gA 0 0 0 0 −jωA/Φ


(28)

and

ΛB =



jω 0 0 0 0 0 0 0
0 jω 0 0 0 0 0 0
0 0 jω 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1/A 0 0 0
0 0 0 0 0 −1/A 0 0
0 0 0 −Φ 0 0 −1/A 0
0 0 −gΦ 0 0 0 0 Φ/jωA


(29)

where g = jω(1 + γ̃/Φ2).

2.3. Assembling and Solution

This section is devoted to the continuity conditions between adjacent layers.

In case of a solid-fluid interface the following conditions must be imposed

IsfVs + JsfVf =

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Vs +

0 −1
0 0
0 0
1 0

Vf = 0 . (30)

11



Matrices Isf and Jsf must be interchanged for a fluid-solid interface. The

state vector Vp defined by Eq. (27) considerably simplify the porous-porous

and the porous-fluid interfaces, making interface conditions independent from

the porosity, Φ. In fact, all the components of Vp are equal at each side of

the boundary between two porous layers with frames bonded together. On the

other hand, the following boundary conditions must be set for a porous-fluid

interface

IpfVp+JpfVf =


0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

Vp+


0 −1
−1 0
0 0
0 0
1 0

Vf = 0 . (31)

Matrices Ipf and Jpf must be interchanged for a fluid-porous interface. In case

of a porous-solid interface the following boundary conditions must be set

IpsVp + JpsVs =

[
[I3 0]

[0 I4]

]
Vp +

[
−I6

0

]
Vs = 0 , (32)

where In is the identity matrix of size n. Matrices Ips and Jps must be inter-

changed for a solid-porous interface.

If two or more adjacent layers have the same nature (including porous layers)

the global transfer matrix is simply equal to the product of the transfer matrices

of the layers. Alternatively, if two adjacent layers, i and j, are defined by the

same state vector Vi|j of size n, the interface matrices Iij = In and Jij = −In

can be used to fulfill continuity conditions, thus retaining the state variables at

the i-j interface.

Stacking all the continuity conditions we obtain

BV =



If1 Jf1T1 0 · · · 0 0

0 I12 J12T2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Ilf Jlf

0 0 0 · · · 0 −1 Zi





po

vfo
...

pi

vfi


= 0 , (33)

where matrix B has dimensions N×(N+1), matrices Iij and Jij depend on the

nature of the i-th and j-th layers, l is the number of layers, the suffix f denotes
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the fluid at the excitation and termination side and impedance condition is

imposed at the termination side by means of the inner impedance, Zi. The

global state vector, V, collects the variables at all interfaces only if interface

matrices are employed even for adjacent layers of the same nature. Impedance

condition and spectral blocked pressure must also be applied at the excitation

(outer) side

B2:N+1V2:N+1 = −B1po = −B1

(
pB − Zovfo

)
, (34)

where Bi is the i-th column of matrix B and Bi:j is the matrix ranging from

the i-th to the j-th column of B. The problem can be rearranged by obtaining

a square linear system with N unknowns:[
B2 − ZoB1 B3:N+1

]
V2:N+1 = −B1pB , (35)

where vfo and vfi are the first and the last element of vector V2:N+1 respectively.

Once fluid velocities at boundaries are determined, the power transmission

coefficient can be evaluated. The incident acoustic power per unit length on the

outer surface of the cylinder (r = ro) is given by

WI(ω, θ,Ψ) =
p20ro cos θ

ρoco cosβ
. (36)

On the other hand, the transmitted sound power per unit length of the inner

surface (r = ri) is [17]

WT (ω, θ,Ψ) =

∞∑
n=0

ri
2
<
[
pi,n(vfi,n)H

] ∫ 2π

0

cos2(n(φ+ β))dφ

=

∞∑
n=0

πri
εn
<(Zi,n)|vfi,n|

2 .

(37)

Thus, the power transmission coefficient is defined as

τ(ω, θ,Ψ) =
WT (ω, θ,Ψ)

WI(ω, θ,Ψ)
=
πρocori cosβ

p20ro cos θ

∞∑
n=0

<(Zi,n)|vfi,n|2

εn
. (38)

In the case of a DAF excitation, the transmission coefficient is expressed as

τd(ω) =

∫ 2π

0

∫ θmax

θmin
τ(ω, θ,Ψ) cos θ sin θ dθ dΨ∫ 2π

0

∫ θmax

θmin
cos θ sin θ dθ dΨ

, (39)
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where θmin and θmax are the minimum and maximum angles of incidence, re-

spectively [34]. Finally, the TL is defined as

TL = −10 log10(τd) . (40)

In case of a planar structure and identical inner and outer fluids we obtain:

pB = 2p0, Zi = ρici/ cos θ, Zo = ρoco/ cos θ and

τ(ω, θ,Ψ) =
ZiZo
p20
|vfi |

2 . (41)

3. Results

In this section several examples are used to illustrate the validity and ap-

plications of the proposed approach. Cylinders with both homogeneous and

heterogeneous layers are considered. In case of a homogeneous layer a cubic

periodic unit consisting of one hexa8 element (solids) or five tetra4 elements

(fluids or porous) is used to define the TM of the layer. The height of the

cube is selected as a fraction of the layer (hcube = hlayer/Nz) and the TM of

the layer is recovered as power of the elementary one (Tlayer = TNz

cube). Such

a selection ensures high efficiency for homogeneous layers. The fluids proper-

ties are ci = co = 340 ms−1 and ρi = ρo = 1.284 kgm−3 for all the cases. To

ensure convergence, at each frequency and incident plane wave, the number of

harmonics is incremented till |τj − τj−1|/τj > 10−5, where τj =
∑j
n=0 τn.

To validate the presented approach, we consider two configurations involving

homogeneous layers. The first case concerns the diffuse field TL through an

infinite cylinder (R = 2 m) consisting of a 3 mm thick steel layer (Nz = 20).

The steel has properties: E = 210 GPa, ν = 0.3, µ = 0.1 %, ρ = 7800 kgm−3.

Figure 3 presents the comparison of the TL predicted by the proposed approach

(TMM) with the result produced by an analytical model [10]. An excellent

agreement is observed between the methods over the whole frequency range.

The second case concerns an infinite sandwich cylinder consisting of 2 mm

thick orthotropic skins (Nz = 20) and 50 mm thick foam core (Nz = 80). The

skins have properties: Ex = 137.9 GPa, Ey = Ez = 8.96 GPa, Gyz = 6.2 GPa,

14
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Figure 3: TL for DAF excitation through a 3 mm thick steel cylinder (R = 2 m).

Gxy = Gxz = 7.1 GPa, νxy = νxz = 0.3, µ = 0 %, ρ = 1600 kgm−3. The

foam has properties: Φ = 0.994, σ = 9045 Nsm−4, α∞ = 1.02, Λ = 103 µm,

Λ′ = 197 µm, E = 194.9 kPa, ν = 0.42, µ = 5 %, ρ = 8.43 kgm−3. The cylinder

has external radius ro = 2.164 m and internal radius ri = 2.11 m. Figure

4 compares the TL at oblique incidence (θ = 45◦, Ψ = 0◦) predicted by the

proposed approach (TMM) with the result produced by an alternative approach

based on a WFEM applied to a periodic UC of the multilayered cylinder (PUC)

and also with the result produced by an analytical model [28]. An excellent

agreement is observed between all methods over the whole frequency range.

To illustrate the ease of handling various interface conditions in the presented

approach, the case in which the foam fills the gap between the two skins (BB)

is now compared to two configurations in which air gaps are interposed between

the foam and the skins. Air gaps of δ = 10 mm and δ/2 are used in the BU

and UU configurations, respectively, as depicted in Figure 5. Figure 6 presents

the TLs of the three configurations in case of a DAF excitation. BU and UU

configurations provide higher TL with respect to the BB configuration in the

frequency range which spans form the ring frequency to the critical frequency

15
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Figure 4: TL at oblique incidence (θ = 45◦,Ψ = 0◦) through an orthotropic sandwich cylinder

(R = 2.156 m).

Figure 5: Configurations of a sandwich cylinder.

because of the shear decoupling between the skins and the core ensured by the

air gaps.

The next case illustrates the validity of using the Insertion Loss (IL) evalu-

ated for a flat structure to assess the TL of a cylinder with the same stacking

properties. The reference flat structure consists of a 5 mm thick aluminum layer

(Nz = 20) and a 20 mm thick foam layer (Nz = 50). The aluminum alloy has

properties: E = 69 GPa, ν = 0.3, µ = 0.1 %, ρ = 2768 kgm−3. The foam layer is

modeled as an equivalent fluid according the Johnson–Champoux–Allard rigid

16
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Figure 6: TL for DAF excitation through orthotropic sandwich cylinders (R = 2.156 m).

model [31, 35, 36] with properties: φ = 0.95, α∞ = 1.42, σ = 8900 Nsm−4,

Λ = 180 µm, Λ′ = 360 µm. The IL is evaluated for the flat structure as the

difference between the total TL and the TL of the aluminum layer (TLBare).

A DAF excitation is considered. Figure 7 compares the total TL of two cylin-

ders (R = 1 m , R = 8 m) with the TL obtained as a sum of the analytical

(planar layers) TMM calculated IL and the TL of a cylinder consisting of the

sole aluminum layer (TLBare). The analytical TMM IL provides a satisfactory

prediction of the total TL of the cylinders in the whole frequency range except

around the critical frequency of the bare structure (∼2 kHz) and in the low

frequency range for the lowest radius of curvature.

The fourth case concerns a cylinder (R = 0.1 m) made up from a non

homogeneous periodic cell. The UC is depicted in Figure 8. It consists in a 1

mm thick aluminum shell (E = 69 GPa, ν = 0.3, µ = 0.1 %, ρ = 2768 kgm−3)

of external dimensions 7×7×8 mm3 and a soft isotropic elastic material (foam)

with a solid inclusion made up from a heavy cube (ρ = 18000 kgm−3) with 2

17
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Figure 7: TL for DAF excitation through two cylinders consisting of an aluminum layer and

a foam layer.

mm edge. The UC is modeled with hexa27 elements. Figure 9 shows the TL

at oblique incidence (θ = 45◦, Ψ = 0◦) through the cylinder for different values

of the foam shear modulus, Gfoam, along with a case with no inclusion (in this

case the foam density is increased to achieve the same mass of the other cases).

With the inclusion and for Gfoam = 2.5 kPa the dip related to a resonance of

the UC (140 Hz) turns to a peak because of the first resonance of the inclusion

and the rest of the TL curve is smooth.

The last case concerns the diffuse field TL through an infinite cylinder (R =

1.2 m) consisting of a 3 mm thick steel layer (Nz = 20, E = 210 GPa, ν = 0.3,

µ = 0.1 %, ρ = 7800 kgm−3) and an external layer made up from Helmholtz

resonators. The geometry of the resonator is selected to tune its frequency to

the ring frequency of the bare cylinder (∼700 Hz). Each resonator consists of

a 25 mm long cylindrical neck with internal diameter of 30 mm located inside

a 50 mm thick cylindrical cavity with internal diameter of 60 mm. The neck

18



Figure 8: Mesh of a periodic unit cell made of: aluminum shell (black), inner heavy cube

(blue), soft foam (gray).
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Figure 9: TL at oblique incidence (θ = 45◦,Ψ = 0◦) through a cylinder made up from a non

homogeneous unit cell (R = 0.1 m).
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Figure 10: A quarter of the coarse mesh of a Helmholtz resonator.

and the cavity are delimited by 2 mm thick rigid walls. Additional 10 mm

thick air layers are located on the top and on the bottom of the resonators.

The resonators are 70 mm spaced along both the x-axis and the y-axis and are

filled and surrounded by air. A 0.1% of damping is applied to the air inside

the resonators. A quarter of a Tetra4 mesh of the layer’s UC is depicted in

Figure 10. Figure 11 presents the TL at normal incidence of the planar doubly

periodic resonator for different meshes. It should be noted that even the coarse

mesh makes it possible to capture the physics of the resonator till 5 kHz. As a

consequence, the coarse mesh (Figure 10) is used to model the cylinder. Figure

12 shows the TL through the cylinder under a DAF along with the case with

no resonators. As expected (the problem is well studied for planar structures)

the resonators layer suppresses the dip at the ring frequency (∼700 Hz) and

alleviates the dip corresponding to the critical frequency of the bare cylinder (∼4

kHz) thus providing an overall improvement of the transmission performance of

the cylinder in the whole frequency range explored.
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Figure 11: TL at normal incidence of a Helmholtz resonator.
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Figure 12: TL for DAF excitation through a 3 mm thick steel cylinder (R = 1.2 m) wrapped

by Helmholtz Resonators (HR).
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4. Conclusions

A general procedure for obtaining the acoustic transfer matrix of a cylindrical

layer (fluid, elastic, poroelastic) is described. The procedure involves manipu-

lating the dynamic stiffness matrix of the FE model related to the layer’s unit

cell. The matrix thus obtained is used in a TMM framework to predict sound

transmission through a multilayered cylinder. The proposed procedure allows

to exploit the versatility of the TMM and makes it easy to deal with anisotropic,

poroelastic and heterogeneous cylinders, avoiding the need for analytical formu-

lations or homogeneous equivalent models.

The accuracy of the model in predicting TLs has been verified by showing

agreement with alternative approaches in case of cylinders consisting of homoge-

neous layers. The practical application of the approach has also been illustrated

by: (i) assessing the effect of interface condition on the TL of a sandwich cylin-

der with a poroelastic core; (ii) testing the validity of a planar structure based

insertion loss for the correction of the TL of multilayered cylinders; (iii) design-

ing the unit cell of periodic cylinders in order to suppress a resonance dip or the

TL dip at the ring frequency.

The presented TMM ensures a lower computational cost compared to other

periodic approaches since each layer can be modeled per se and homogeneous

layers may be modeled efficiently with a few finite elements by exploiting the

ability to model only a portion of the thickness and by recovering the overall

transfer matrix as power of the elementary one. Instead, classical periodic

approaches must model the structure with a global unit cell which includes

all the layers. Ultimately, the proposed approach could represent an effective

acoustic tool for infinite cylinders in a FE analysis environment, due to its

versatility and efficiency.
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the broadband vibroacoustic response of composite shells, Composites Part

25

http://dx.doi.org/10.1007/s11029-014-9394-2
http://dx.doi.org/10.1016/j.compstruct.2015.09.025
http://dx.doi.org/10.1016/j.compstruct.2015.09.025
http://dx.doi.org/10.1121/1.1410967
http://dx.doi.org/10.1121/1.1410967
http://dx.doi.org/10.1016/j.ijsolstr.2006.06.048
http://dx.doi.org/10.1121/1.3021418
http://dx.doi.org/10.1016/j.jsv.2008.04.039
http://dx.doi.org/10.1016/j.jsv.2014.04.042
http://dx.doi.org/10.1016/j.jsv.2014.04.042


B: Engineering 43 (4) (2012) 1837 – 1846. doi:10.1016/j.compositesb.

2012.01.059.

[24] F. Errico, M. Ichchou, S. De Rosa, O. Bareille, F. Franco, The modelling of

the flow-induced vibrations of periodic flat and axial-symmetric structures

with a wave-based method, Journal of Sound and Vibration 424 (2018)

32–47. doi:10.1016/j.jsv.2018.03.012.

[25] F. Errico, M. Ichchou, F. Franco, S. D. Rosa, O. Bareille, C. Droz, Schemes

for the sound transmission of flat, curved and axisymmetric structures ex-

cited by aerodynamic and acoustic sources, Journal of Sound and Vibration

456 (2019) 221 – 238. doi:https://doi.org/10.1016/j.jsv.2019.05.

041.

[26] C. Droz, O. Robin, M. Ichchou, N. Atalla, Improving sound transmission

loss at ring frequency of a curved panel using tunable 3d-printed small-

scale resonators, The Journal of the Acoustical Society of America 145 (1)

(2019) EL72–EL78. doi:10.1121/1.5088036.

[27] M. J. Kingan, Y. Yang, B. R. Mace, Sound transmission through cylindrical

structures using a wave and finite element method, Wave Motiondoi:10.

1016/j.wavemoti.2018.07.009.

[28] J. Magniez, M. A. Hamdi, J.-D. Chazot, B. Troclet, A mixed biot–shell

analytical model for the prediction of sound transmission through a sand-

wich cylinder with a poroelastic core, Journal of Sound and Vibration 360

(2016) 203 – 223. doi:10.1016/j.jsv.2015.09.012.

[29] M. Golzari, A. A. Jafari, Sound transmission loss through triple-walled

cylindrical shells with porous layers, The Journal of the Acoustical Society

of America 143 (6) (2018) 3529–3544. doi:10.1121/1.5041270.

[30] A. Parrinello, G. Ghiringhelli, Transfer matrix representation for periodic

planar media, Journal of Sound and Vibration 371 (2016) 196–209. doi:

10.1016/j.jsv.2016.02.005.

26

http://dx.doi.org/10.1016/j.compositesb.2012.01.059
http://dx.doi.org/10.1016/j.compositesb.2012.01.059
http://dx.doi.org/10.1016/j.jsv.2018.03.012
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2019.05.041
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2019.05.041
http://dx.doi.org/10.1121/1.5088036
http://dx.doi.org/10.1016/j.wavemoti.2018.07.009
http://dx.doi.org/10.1016/j.wavemoti.2018.07.009
http://dx.doi.org/10.1016/j.jsv.2015.09.012
http://dx.doi.org/10.1121/1.5041270
http://dx.doi.org/10.1016/j.jsv.2016.02.005
http://dx.doi.org/10.1016/j.jsv.2016.02.005


[31] J. Allard, N. Atalla, Propagation of sound in porous media: modelling

sound absorbing materials 2nd edition, John Wiley & Sons, 2009.

[32] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables, Chap. 9, Dover Publications,

1965.

[33] N. Atalla, R. Panneton, P. Debergue, A mixed displacement-pressure for-

mulation for poroelastic materials, The Journal of the Acoustical Society

of America 104 (3) (1998) 1444–1452. doi:10.1121/1.424355.

[34] C. Lesueur, Rayonnement acoustique des structures: vibroacoustique, in-

teractions fluide-structure, Eyrolles, 1988.

[35] D. L. Johnson, J. Koplik, R. Dashen, Theory of dynamic permeability and

tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics 176

(1987) 379–402. doi:10.1017/S0022112087000727.

[36] Y. Champoux, J. Allard, Dynamic tortuosity and bulk modulus in air-

saturated porous media, Journal of Applied Physics 70 (4) (1991) 1975–

1979. doi:10.1063/1.349482.

27

http://dx.doi.org/10.1121/1.424355
http://dx.doi.org/10.1017/S0022112087000727
http://dx.doi.org/10.1063/1.349482

	FronteRivista
	PARRA_OA_01-19senzafront
	Introduction
	Theory
	Acoustic Excitation and Impedances
	Transfer Matrix of a Periodic Layer
	Assembling and Solution

	Results
	Conclusions


