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Abstract

This paper addresses the identification of discrete time switched nonlinear systems, which are collections of discrete
time nonlinear continuous systems (modes) indexed by a finite-valued variable defining the current mode. In particu-
lar, we consider the class of Switched Nonlinear AutoRegressive eXogenous (Switched NARX, or SNARX) models,
where the continuous dynamics are represented by NARX models. Given a set of input-output data, the identification
of a SNARX model for the underlying system involves the simultaneous identification of the mode sequence and of the
NARX model associated to each mode, configuring a mixed integer non-convex optimization problem, hardly solvable
in practice due to the large combinatorial complexity. In this paper, we propose a black-box iterative identification
method, where each iteration is characterized by two stages. In the first stage the identification problem is addressed
assuming that mode switchings can occur only at predefined time instants, while in the second one the candidate
mode switching locations are refined. This strategy allows to significantly reduce the combinatorial complexity of the
problem, thus allowing an efficient solution of the optimization problem. The combinatorial optimization is addressed
using a randomized method, whereby the sample-mode map and the SNARX model structure are characterized by a
probability distribution, which is progressively tuned via a sample-and-evaluate strategy, until convergence to a limit
distribution concentrated on the best SNARX model of the system generating the observed data.

Keywords: hybrid systems, switched systems, model identification, randomized algorithms.

1. Introduction

Hybrid systems (HSs) are dynamical systems whose behavior can be described by the interaction of time- and
event-driven dynamics. HSs provide a unified framework for the representation of technological systems where con-
tinuous models such as differential or difference equations describe the physical and mechanical part, and discrete
models such as finite-state machines or Petri nets describe the software and logical behavior. Also many real physical
processes exhibiting both fast and slow changing behaviors can be described by HS models. When first principles
modeling is too complicated, then, the model has to be identified based on experimental data collected from the real
system.

Most research regarding the identification of hybrid systems (HSI) has focused on switched affine (SA) and piece-
wise affine (PWA) models due to their universal approximation properties and their simple interpretation. Indeed,
they provide the simplest extensions of continuous systems that can handle hybrid phenomena. In SA systems, the
discrete state is an exogenous finite-valued input which determines the switching between different continuous affine
dynamics, whereas in PWA systems the switching mechanism is determined by a polyhedral partition of the (con-
tinuous) state-input domain. The input-output counterparts of these system classes are Switched ARX (SARX) and
PieceWise affine ARX (PWARX), respectively. The optimization problem induced by the identification task is of the
mixed-integer type, since it involves the identification of discrete variables (representing the mapping of the samples
to the modes and the model structure associated to each mode), as well as continuous ones (the parameters of the
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models describing the continuous dynamics associated to the various system conditions). Many approaches have been
proposed over the last two decades for the case of affine dynamics (see, e.g., [29], [11], and [16], for a comprehensive
review). These methods can be roughly classified into two categories, depending on how the optimization problem is
tackled. Some methods adopt a solution strategy which addresses the full problem, optimizing simultaneously over
both continuous and discrete variables, [3], [31], [23], [26], [1], [28], [27], [24], while other methods deal separately
with the mode and structure classification and the parameter estimation tasks, [9], [13], [30], [12].

Surprisingly fewer works have tackled the case of nonlinear continuous dynamics associated to the modes, in
spite of its importance in modeling complex applications. Indeed, if no a priori information on the number of modes
is available, one can in principle identify an arbitrarily high number of local linear models (and switchings among
them) in order to achieve a good model accuracy. However, this prevents the identification of the real dynamics of
the hybrid system and hinders its physical interpretation. It also greatly aggravates the combinatorial complexity of
the optimization problem, due to the increasing number of switchings. An attempt to deal with nonlinear HSs is
documented in [14], where a method based on kernel regression and Support Vector Machines (SVMs) is discussed.
In this setting, the number of variables over which the optimization is carried out grows rapidly with the number of
data N and the number of modes Ny, according to 2Ny, (N + 1), and hence this method can deal only with relatively
small problems. A reformulation of the optimization problem in a continuous framework is studied in [17] and [18],
thus allowing the use of efficient solvers and enabling the solution of larger problems. The efficiency of this method
is further improved in [19] by introducing fixed-size kernel submodels. In [15], the authors proposed an extension of
the sum-of-norms approach described in [27] to piecewise systems with nonlinear dynamics, based again on kernel
functional expansions. The method employs a convex cost function containing an accuracy term (quantifying the
quality of fit of each local model on the assigned data samples), a term penalizing the local model complexity, and a
variational term which controls the overall complexity as a function of the number of local models. Note that, in case
of time-ordered and consecutive data, the proposed approach is similar to that in [6] which addresses the segmentation
of ordered data getting from nonlinear dynamical systems. In [2] the identification problem is first formulated as a
sparse optimization problem and then relaxed in a convex form by approximating the £y norm with the £; norm. A
sufficient condition guaranteeing the optimality of the relaxed convex problem solution was provided only under a
noiseless assumption. The notion of robust sparsity is introduced in [20] to extend the applicability of the previous
method to the noisy case. On the down side, the method requires the careful setting of several parameters (e.g., the
factor that defines the trade-off between model complexity and accuracy, or the weights used to improve the sparsity
of the solution), which appears to be far from trivial.

It is worth noticing that most of the aforementioned approaches are nonparametric in that they are based on kernel
functional expansions. Instead, in this paper the identification problem has been addressed from a parametric perspec-
tive using nonlinear models of the NARX/NARMAX class [21, 22], where the nonlinear functions are represented
as finite-dimensional parameterized polynomial expansions. Indeed, this is a very popular approach in black-box
nonlinear model identification [5], provided the identification procedure includes a model structure selection (MSS)
process to tackle the curse of dimensionality issue that is inherent to polynomial expansions. Polynomial nonlinear
models of this type have several attractive features (see e.g. [5] for a more detailed discussion), among which the
ability to represent a wide range of nonlinear systems using a small number of parameters, the easy interpretability,
and the amenability to nonlinear frequency analysis using generalized frequency response functions.

This paper introduces an iterative randomized approach for the segmentation of time-ordered data observed from
Switched Nonlinear ARX (SNARX) models, which extends our previous work in [4] where a randomized identifica-
tion algorithm was proposed based on the assumption that the time instants at which mode switchings may occur is
a priori known (although it remains to ascertain which of these correspond to actual switchings and between which
modes). Here, such a restrictive assumption is removed by adopting an iterative procedure which starting from an
initial guess of the candidate set of mode switching instants progressively refines it, ultimately allowing an accurate
estimation of the actual switchings.

The proposed method consists of a two-stage procedure repeated at each iteration, the first stage addressing the
SNARX identification problem based on the current set of candidate switching times, and the second aiming at the
refinement of such set. The restriction of the candidate switchings is crucial in reducing the combinatorial complexity
of the optimization problem associated to the identification task performed in the first stage, thus allowing its solvabil-
ity. More in detail, it induces a partition of the data into (a small number of) sub-periods, each of which is associated
to a mode, and the NARX model associated to each mode can be identified based on all the data segments labeled

2



with it.

A randomized method is adopted to address the identification task of the first stage. Specifically, a probability
distribution is defined over the space of possible SNARX models (that are compatible with the current set of candidate
switching times), representing the likelihood of each model being the actual one. This distribution is progressively
refined through a sample-and-evaluate strategy, until convergence is obtained to a limit distribution, representing a
specific SNARX model. In the second stage, the number and location of the candidate switching times is refined,
based on the evidence gathered in the first stage. The rationale of the refinement stage is to sample more densely the
time horizon in the proximity of the estimated switching times and adopt a sparser sampling elsewhere.

The sequence of the SNARX model identification and refinement stages is repeated until convergence, ideally,
to the SNARX model that best describes the available data (target model). The described iterative two-stage method
requires that the number of modes is a priori known (a commonly adopted assumption in the literature), whereas
the structure of the NARX models associated with the modes is not assumed to be known. Though suboptimal, the
proposed method is experimentally shown to be quite effective, and capable of operating with noisy data and dealing
with relatively large data-sets.

The rest of the paper is organized as follows. Section 2 describes the SNARX model identification problem and
provides a general overview of the proposed two-stage procedure, which is then detailed in Sections 3 and 4. Finally,
some simulation examples are presented in Section 5, followed by some concluding remarks.

2. Identification of SNARX models

2.1. SNARX models: structure and parametrization

A SNARX model is represented by a set of Ny, NARX models indexed by a finite-valued variable defining the
modes, a NARX model [22] being a general input-output representation of a nonlinear model described by the fol-
lowing equation

y(t) = g (x(1);9) + e(n),

where x(t) = [yt - 1),...,y(t — ny),u(t — 1),...,u(t — n,)] is a finite-dimensional vector of the most recent past
observations (n, and n, being the model orders), e(?) is an additive white noise signal, and g(-) is an unknown nonlinear
function parameterized via a vector & = [, ...9,]” of coefficients. The corresponding predictor is given by:

$(0) = g (x(2):;9).

The nonlinear mapping g(-) can be expressed as a linear combination of (nonlinear) basis functions ¢;(x(1)), j =
1,...,n:

g (x(1:9) = ) 060)(x (1)), (M

J=1

so that the predictor can be reduced to the following linear regression:
() = p(x(1)' 9,
where all basis functions are collected in the regression vector @(x(£)) = [@1(x(D)), . .. @, (x(E)]T.

Remark 1 (polynomial NARX models). Among all the possible representations of g(-), one of the most common is
the polynomial functional expansion, whereby the regressors are monomials of elements in x(t) up to a given order
ng, i.e. they are of the form x’l“x];2 ---x;", where | = |x| = n, + ny, with Zle ki < ng and k; > 0. Unfortunately,
the regressor set grows rapidly with n,, n,, and ng, a problem known as the “curse of dimensionality”. However, in
practical applications it is seldom necessary to employ full polynomial expansions and it is typically observed that
few terms suffice to obtain highly accurate and robust models. This justifies the attention that the MSS problem has
deserved in the NARX model identification literature.



The structure of a NARX model can be coded in a vector s € {1,2}", where s; = 1 if the j-th regressor belongs to
the model structure (and s; = 2 otherwise). If s; = 2 the corresponding parameter ; in (1) is set to zero. Accordingly,
the overall SNARX model structure can be encoded in a n X Ny matrix S = [sV,...,s®)] € S = {1,2)>¥" which
is the collection of the structures of the NARX models that are associated with its N,; modes.

Given a data-set of time-ordered and consecutive input-output samples of a SNARX, a finite-valued switching
signal assigns each sample to a specific mode. For the purpose of the SNARX model identification, the SNARX model

structure thus needs to be extended to include the mode switching signal o = [o7y,...,0n] € Z = {1,...,Ny}", such
that o, = i if sample ¢ is attributed to mode i. A SNARX model structure is thus expressed by a pair 4 = (0, §) taking
values in A = £ X §. Given a SNARX model with structure A € A, its parametrization 0(’), i=1,...,Ny, can be

obtained by minimizing the mean square prediction error on the available data. The quality of a SNARX model with
structure A is thus given by the value of the loss function corresponding to its optimal parameterization:

N Ny

L(1) = min —Z Zﬁ(’) £4(0), 2)

ﬂ(l)]NM e

subjecttoﬂ(') 01fs(’) 2,j=1,...,n,i=1,...,Ny,

where g;(¢) = y(t) — 3(t) = y(t) — <p(x(t))70(i) is the prediction error associated to mode i, and ,350 is a binary variable
encoding the sample-mode mapping provided by o:

o =ie=p) = 3)

If we denote as N; = 3| B the number of samples in the data-set that are associated with mode i, then £(2) in
(2) can be explicitly expressed in terms of the contribution of each mode as

L) = Z N; - LO(o, sD),

1N:#0

where £ (o, s) measures the accuracy of the model of the i-th mode, with structure s, when the switching signal
is 0. Index L (o, s?) is well-defined if N; # 0 and is given by:

N
, . 1 .
(i) DY — i (D) 2
LYo, s )—mg)n N, § B, -0 “
subject to 19(’) 0if s(l) 2,j=1,.

Remark 2 (Redundancy of the parametrization). Note that when performing the minimization in (4) the param-
eters associated to redundant regressors are set to 0. Regressor redundancy can be tackled e.g. by introducing a
regularization term in L9, or by applying an a posteriori t-test on the estimated parameter vector to detect terms that
are statistically indistinguishable from 0. The latter approach is the one adopted in our implementation.

In the sequel, instead of £ we will employ the following performance index (conveniently ranged in [0, 1]) to
characterize A:
T = D, )

where K; > 0 is a scaling parameter. Exponential indices can facilitate the discrimination between models with
similar performance by amplifying their difference [32], thus improving the structure selection process.

2.2. Identification of SNARX models: a two-stage approach

A SNARX model identification problem consists in estimating from a data-set of N time-ordered and consecutive
input-output data pairs the model structures s and parameterizations ﬂ(i), i =1,..., Ny, of the mode dynamics, as
well as the switching signal o, t = 1,..., N. Notice that the identification of o, amounts to segmenting the data in
consecutive portions, attributing each subperiod to the appropriate mode. Assuming that the number of modes Ny,
is known, the SNARX identification problem can be reformulated as that of finding the A value that maximizes the
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performance index (1) in (5) and does not have redundant terms. If there exists only one such A, this can be written
as

2% =(0*,8%) = arg max 7 (A). (6)

The parameters of the NARX model associated to mode i are the solutions of the following LS problems:
N
. . 1\2
9% =argmin »" B0 - (y(1) - p(x()"9?) @)
0(!) ‘=

subject to # = 0if s’ =2,j=1,...,n,

whereﬁgi)*, i=1,...,Ny,t=1,...,N, is retrieved from o}, t = 1,..., N, based on (3). The set of parameters 0(i)*,
i=1,..., Ny, defines the target SNARX model.

The optimization problem (6) is a mixed integer program, which is typically computationally intractable due to
its combinatorial complexity. Indeed, the SNARX structure A involves N X Ny, binary variables for o, plus n X Ny,
for S'. Typically, N is the factor most affecting the combinatorial complexity of the problem, since N > n, Ny;. As
a consequence, the sample-mode mapping is the most critical aspect of the problem, since switchings can occur at
arbitrary times. However, denoting by 7 C {1,..., N} the set of switching time instants in the observed data, it is
typically true that |7 << N.

In view of this, we address the SNARX identification problem (6) using an iterative two-stage approach, where at
each iteration the identification is first carried out by restricting the possible switching occurrences at a limited (small)
number of time instants (thus significantly reducing the combinatorial complexity of the problem), and then, based on
the results of this operation, the set of allowed switching times is refined. In the first stage a randomized algorithm
is employed for the estimation of the SNARX model best fitting the available data, given that the switching locations
are restricted to be in the set 7 = {tk},]j;‘l, with1 <t <t <...<ty, <N and Ny < N. The information resulting
from the first stage is used to refine the switchings positioning defined by 75 before a new execution of the first stage
is carried out. This is done by means of a split-and-merge procedure designed to finitely tune the number and the
location of the candidate switching times. The rationale is to add further possible switching times in the neighborhood
of detected switchings, while at the same time removing candidate switching locations that were not identified as such.
By iterating this two-stage procedure, one can progressively improve the identification of the switching locations as
well as that of the NARX models associated to the modes. The two stages are described in detail in the next two
sections.

3. First stage of the SNARX identification approach: identification for a given 7

The first stage of the method (preliminarily presented in [4]) is an extension to the SNARX model class of the
RaMSS method for NARX model identification described in [7], under the assumption that switchings can occur
only at specific time instants. The RaMSS method is a randomized model structure selection approach based on a
probabilistic representation of the model structure, whereby a probability distribution representing the likelihood of
each model structure to be the true one is iteratively refined by a sample-and-evaluate procedure until convergence to
a limit distribution that can be associated to a specific parameterized NARX model structure. Specifically, a collection
of independent Bernoullian distributions is employed in the RaMSS to account for the presence (or absence) of each
regressor in the model. However, the structure of the combinatorial problem considered here is more complex since
some decision variables (namely the elements of the switching signal) can take more than two values, and thus cannot
be modeled by plain Bernoullian distributions. Accordingly, we first show (Section 3.1) that the RaMSS can be
extended to a more general class of combinatorial optimization problems with non-binary decision variables, and then
revisit such a generalization within our SNARX identification context. Notice that this analysis was not part of [4],
that focused on algorithmic and implementation aspects.

Remark 3. In a parametric framework as the one adopted here, it is important to test the ability of an identification
algorithm to retrieve the exact model structure, in the ideal condition that the system generating the data actually
belongs to the considered class of model structures. Obviously, if this is not the case, there is no such thing as a
“true” or “exact” model structure and one can only search for the optimal one in the considered class.
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3.1. Extension of the RaMSS method to combinatorial optimization problems with non-binary decision variables

Let x = (xq,...,x,) be a collection of n discrete variables with x; € X; = {1,...,m;}, j = 1,...,n. Consider a
combinatorial optimization problem where the goal is to find a value of x that maximizes a given performance index
J X - R*, with X = X| x...x X,,. If such a value is unique, we can define it as:

=(x],...,x) = argma}\zij(x). )

(7'[(1) (m/) 0]

Let us introduce a random variable y; ~ Categorical(x ])1 for each term x;, where ; = ) and us
represents the probability that x; takes the i-th value (Z;’i’l n;‘) = 1). If we assume that the y; variables are 1ndepen—

dent?, then the probability that the collection of random variables y = (yy,...,y,) takes value x = (x,...,x,) € X is
uniquely defined by & = (74, ..., m,). More precisely, we have that

m;

B (x) = ]_[]_[ (=Y ©)

where ,B(f) = 11if x; = i, and O otherwise.
The expected performance of y can then be computed as follows:

Ep, [T = ) TPy (x).
xeX

The value of Ep, [J(»)] is a function of P, and its maximum is obtained if the distribution I, is such that all the
probability mass is concentrated on x*, which can be obtained for an appropriate choice of the parameters in zr. In
view of this, the original optimization problem (8) is equivalent to

* _ *
x* = arg max P} (x), (10)

where
P} =arg max Ep, [T()]

is called the target limit distribution. Now, let

8¢ = Bp, LT )ly; = il - Ep, LT @)ly; # il (11)

fori = 1,...,mj, j = 1,...,n, where the conditional expectations are set equal to O if the conditional event has 0
probability to happen.

Theorem 3.1. Let P, be the probability distribution over X defined according to (9). Then, there exists o € (0,1)
such that if P, (x*) > 0 > maXyex\(x+ it holds that 6(1) >0 zfx =iand 6(1) < 0 otherwise, i = 1,.
j=1,...,n

Proof 3.1.1. See Appendix A.l.

Jx) .
TN mj,

Theorem 3.1 suggests that, when P, associated with x is sufficiently close to IP,(x*), then the sign of 6? provides
a reliable information for tuning the n(j.i) parameters towards those in P, (x*). This information can then be used to

iteratively refine JTS.i) (k) (where £ is the iteration index) according to the following update rule:
njf')(k +1)= nj?)(k) + Xai."), (12)

where y > 0. In order for the Categorical distribution to be well defined, a normalization step is required after the
application of (12), so that 0 < n(’)(k +1)<1and Z it n(’)(k +1)=1.

A categorical random variable can take one of n possible values (or categories), with the probability of each category separately specified.
The outcomes are often numbered for convenience, e.g. from 1 to n. The parameters specifying the probabilities of each possible outcome must be
in the range [0, 1], and must sum to 1. The categorical distribution is the generalization of the Bernoulli distribution for n > 2.

2The introduced probability distribution quantifies our belief regarding the fact that x* takes a specific value. By assuming the independence
of the y; variables, we are not letting our belief regarding one specific variable affect the belief for the remaining ones.
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Theorem 3.2. Let P, be the probability distribution over X defined according to (9), and assume that r is such
that P, (x*) > o, where ¢ is a value for which Theorem 3.1 holds. Then, the local convergence to the target limit
distribution P} is guaranteed by the iterative application of (12) starting from m.

Proof 3.2.1. See Appendix A.2.

3.2. Application of the extended RaMSS method to SNARX identification

Let7Ty = {tk}fi‘l with1 <t <# <...<ty, <N, be the candidate switching locations, and let I} = {¢t | 1 <t < #;},
Li={t|ticiy <t <t} k=2,...,Ng,and Iy 1 = {t | ty, <t < N}, be the N + 1 time intervals induced by 7. Define
also the corresponding set of admissible switching signals:

Z’R ={o: oy =o-,~,\7’t’,t”elk,k= 1,...,N;+1}.

One can associate a mode ki to each time interval It, k = 1,..., Ny + 1, and define vector k = [«,...,kn,+1] €
{1,...,Ny}¥*1. Then, with a slight abuse of notation, the SNARX model structure A can be re-parameterized as
A = (k,S). Accordingly, our goal is to find the best SNARX model with switching signal in X

A* = (k*,8%) = ). 13
(K ) arg max J) (13)
where we set A = {1,..., Ny }¥* ! x S.
Note that problem (13) has the same structure of (8) and therefore can be addressed in the explained probabilistic
framework. To this purpose, let y = (£, p), where & is a discrete random variable taking values in {1, ... , Ny Vsl

according to IP¢ that accounts for the mode switchings, and p is a discrete variable taking values in S according to IP,,
that accounts for the structures of the Ny; modes.
If we assume that the mode switching and the local model structures are independent’, we can express P, as:

Py (1) = Pe(k) - Pp(S), (14)
where A = (x,S) € A.

3.2.1. Parametrization of IP¢

The random variable £ is a vector of N, + 1 random variables &, k = 1,..., N, + 1, each one representing the
mode associated to the corresponding time interval /. We can then introduce vector 17, = [175(1), e, nZN )], where 772)
represents the probability of assigning mode i to sub-period I; and is denoted as Mode Extraction Probability (MEP)

in the following. Clearly, Zfi " n;(i) =1.

If we assume independence between the random variables &, k = 1,..., Ny + 1, then, the probability distribution
of € is given by
Ng+1 Ny N
Pe(k) = Pe(lk, . oxvaD = [ [ [ ](0)" (15)
k=1 i=1
where b,(f) = 1if k; = i, and O otherwise. PP¢ is uniquely defined by matrix
m
p=| i |e RN (16)
NN, +1

3 As done previously, we assume that the elements of the model structure A are all independent, in the sense that our belief regarding the value
of one element should not affect the others. The usage of probability in this framework is not meant to describe any correlation structure existing
in the system, but it is only instrumental to the functioning of the proposed method.



3.2.2. Parametrization of P,
Similarly to the RaMSS method, we associate each regressor ¢;(x(¢)) in each mode i to a Categorical distribution*
pPji ~ Categorical(pjl-) where M= (ﬂyl ,,u(z)) The outcome 1 encodes the case that ¢;(x(f)) is present in the

ol
@ _

ith local model structure (s = 1), while the outcome 2 encodes the case that ¢;(x(?)) is absent (s(l) = 2). Clearly,

y(Jll) + #(2) = 1. In the following, the probablhtles /J ) will be denoted as Regression Inclusion Probabilities (RIPs).

The collection of all parameters ,u and /J(jz,), j=1,...,n,i=1,..., Ny defines a matrix

(Y] 2)
I‘l iy

p= D | e RMwm=2, (17)

(1) (2)
Ny My

where uy) = [;1(1{)1., .. ,,uii)i]T eR"i=1,...,Ny, [ =1,2. If the random variables p;;, j = 1,...,n, are independent,
then the probability distribution Py of p@ = [py;,...,ps,]" is given by

n

2
A . o
Ppm(s(l)) = IP’pm([s(f), e, (l) | | (1) | | /.1(2) | | (l) "

Jpies? s J=1 =l

where oy D= 1if s(’) = [, and 0 otherwise.
Under the assumptlon of independence between mode structures, we then have that the probability distribution of the
random vector p associated with the SNARX model structure is given by

n 2
P,(S) = ]—[ P (s?) = ]—[ TTI T Oy (18)

i=1 j=1 I=1
Therefore, P, is uniquely defined by matrix u in (17).

3.2.3. Tuning of P,
The overall probability distribution IP,, in (14) is parameterized by 77(') and u(l) k=1,...,Ng+1,j=1,...,n,

Jii?
i=1,...,Ny,and [ = 1,2. By setting
= (']17"'7”NA.+1’I11,1"'"ﬂn,h'"’Ill,NM""’”n,NM)’
IP, can be succinctly written in the form of (9) as

Ng+1+Ny-n mj

w= [ [ CRE (19)

where
NM, j < NX +1
mj = . 5
2, otherwise

and the ﬁ;’j values are the element of a vector 8 defined as

—[5® (Nur) (1) Nu) A1) (2) (1) «(2) (1) (2) (1) (2)
ﬂ_[bl s DY by s by S G G G Gt G SN S gnNM]

In this view, the results stemming from Theorems 3.1 and 3.2 can be used to develop suitable tuning rules for IP,, as
follows.

“4Notice that a Categorical distribution with only two outcomes is equivalent to a Bernoullian distribution.

8



The randomized procedure involves extracting and evaluating samples A = (k, § ) of the random variable ¥ = (§, p),
according to the distribution IP,,, to gather information for tuning P,. To update the MEP 77;(;) we employ a sampled
version of the index:

8 = Ep, [Tl = i] - e, [Tl # ], e

which compares the average performance of ¥ in case mode i is assigned to time period I; with the average perfor-
mance of y in the opposite case. If 62) > 0 it pays off to apply the mentioned mode assignment. Since, in practice,

index 6,(? > 0 can only be calculated in an approximate sampled version, we use this information in a conservative
way, defining the following tuning rule: ' ' '
n g+ x5, @n
where the step size y > 0 is a design parameter.
Similarly, we update /15.1? based on an aggregate index that weighs the advantages of picking regressor ¢ ;(x(1)) for
mode i

) =B, [TWloji = 1] - Bz, [T0loji # 1. (22)

Index Z(I.lf compares the average performance of y in case ¢;(x(?)) is included in the model structure for mode i with

the average performance of y in the opposite case. As with 6;:), only an approximate sampled version of f(.f? can be
calculated in practice, which motivates the use of an update law which balances the prior knowledge with the new
estimate of the index:

il ) @

The above update rules guarantee (local) convergence to the target limit distribution
P} = arg max Er, [J (7)]

as stated in the theorem below, which follows directly from Theorems 3.1 and 3.2.

Theorem 3.3. Let P, be the probability distribution over A defined according to (19), which depends on n in (16)
and p in (17). Then there exists o € (0, 1), such that if P,,(A*) > o the iterative application of (21) and (23) will make
P, converge to the target limit distribution P}.

3.3. Guidelines for parameter settings

Choosing the correct step size y in the update of the MEPs and RIPs is crucial for the convergence speed of the
algorithm, as discussed in [8, 7] with reference to the RaMSS algorithm. In the early stages, the algorithm should be
allowed to freely explore the solution space in order to gather as much information as possible. In this exploration
phase, however, the correction terms 6,(;) and t’;ll) may vary erratically, and thus their influence in the update equations
has to be limited. Later on, when the suggested corrections become more stable, the step size should be incremented
to accelerate convergence. In the light of these remarks, we adaptively tune y taking into account the performance
dispersion of the associated SNARX models. Specifically,

1
10(Foew = T) + 0.1

X 24)

where et and J are, respectively, the best value and the mean value for J evaluated on the extracted samples for
7.

The convergence speed of the algorithm is also influenced by the choice of K, in (5). As an alternative to a
classical trial-and-error approach (as suggested in [4]), we here provide a simple tuning procedure for K, designed
to allow a better discrimination between models with similar performance. Let us denote by OM(x) = [log;,(x)] the
order of magnitude of a nonnegative number x. Parameter K, is tuned at the first iteration of the algorithm according
to the minimum OM(L(A1)), computed based on the extracted SNARX models. Specifically,

K/l — 10—(min(0M(.C(/l)))+l). (25)
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Regarding the initialization of the probability distribution, we set the parameters ,uy? to equal small values, to

encourage the extraction of small models at the early stages of the algorithm, see also [8]. As for the ng), in the
absence of any a-priori assumption on the switching signal, we attribute equal probabilities nf) = 1/Ny to all modes
in each sub-period /.

Concerning the choice of 7, we initially place the candidate switching time instants uniformly over {1, N}, di-
viding the time horizon in sub-periods of equal length. In choosing this placement, one can take advantage from the
a priori knowledge on the minimum dwell time of the system in a mode. Indeed, in practical applications, where
the mode switching is caused by activation/deactivation of devices and system reconfiguration, switchings cannot
generally occur at consecutive time steps and a certain time must be allowed to pass between switchings. If such
information is available, the maximum sub-period length should be upper bounded by the minimum dwell time, so
that at most one switching can occur inside a given sub-period, thus reducing the number of mixed sub-periods, as
discussed in Section 4. Notice also that a significant reduction of the combinatorial complexity can be leveraged for
what concerns the switching signal (only switching signals that do not violate the minimum dwell time are acceptable).

3.4. An heuristic implementation

The convergence speed of the algorithm can be improved by updating the probability distribution associated to the
model structures of the modes (see equation (22)) separately for each mode, based on a local performance index of
the following type:

j(i)(K, S(i)) - e—Ki-C(i)(K,S(i))’ (26)

as opposed to the full J(1). In expression (26) K; > 0 is a design parameter that can be tuned similarly to (25):
K; = 107 (min(OM(£L0Gs))+1), 7)

As a result, the update term f(,.lg is modified as follows:

20 =B, [TOw,pMpji = 1€ = k| = Bz, [70, pDlpjs # 1, = k], (28)

which, with reference to mode i, compares the average performance of model structures that include ¢ ;(x(¢)) with that
of the remaining structures. Observe that the performance evaluation depends on the switching signal as well, which
defines the segments of the data-set that are assigned to mode i. The resulting RIP update law is:

4l el @)
where v; > 0 is the step size for mode i defined (similarly to (24)) as:
1
0) —()
10{J e —J | +0.1

(30)

Vi =

with 7, égsl and ?(l) being respectively, the best value and the mean value for J@ evaluated on the extracted samples
for y.

In this case, the local convergence of P, to the target limit distribution P} is not guaranteed, essentially due to pos-
sible sign differences between f;lf and Z’yf (see Appendix B). However, as discussed in Section 3.5, the experimental
evidence indicates that this occurs relatively seldom and scarcely affects the overall identification results (see Table
2 and Figure 2). This justifies the adoption of this heuristic version of the algorithm in view of its more favorable
computational characteristics.

3.5. Example 1: T, C T

Recalling that 77 identifies the set of true switching time instants, it can happen that 7 C 7 or, more frequently,
AN 52 Ts. We discuss here the former condition, while the latter one is the subject of the next subsection.
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Consider the following SNARX system [14], which switches between a linear mode 1:
y() = —0.905y(t — 1) + 0.9u(z — 1) + e(?),

and a nonlinear mode 2:
y(t) = -0.4y(t — D? +0.5u(t — 1) + e(d),

where e(f) is a zero mean Gaussian noise of variance 0.012 and u(¢) is uniformly distributed in the interval [0, 1]. An
observation window of N = 2000 samples has been collected, which contains 4 switchings, at # = 400 (from mode 1 to
mode 2), t = 1500 (from mode 2 to mode 1), t = 1600 (from mode 1 to mode 2), and ¢ = 1700 (from mode 2 to mode
1), so that 7 = {400, 1500, 1600, 1700}. In the absence of any a priori information regarding the candidate switching
times, we uniformly divide the time horizon in 20 sub-periods of length 100, setting #; = 100k, k = 1,..., 19. Notice
that, while this hugely simplifies the combinatorial complexity of the problem, more than 1 million different possible
switching signals are nevertheless compatible with the defined 7. In this case study, the set of pre-defined candidate
switchings includes the true ones. The design parameters have been set to n, = n, = ny = 2 (for a total of 15 possible
regressors for each NARX model, i.e., {1, y(t—1), y(t =2), u(t—1), u(t-2), y( - D2, y(t = Dy(t=2), y(t = Du(t -
1), y(t = Du(t — 2), y(t —2)%, y(t = 2u(t — 1), y(t — 2)u(t — 2), u(t — 1), u(t — Du(t - 2), u(t — 2)*}). Furthermore,
the initial MEPs are all set to 0.5, and the initial RIPs to 0.0667.

One of the nice features of the presented approach is that it is capable of extracting useful information on the model
from partially correct extracted models. To emphasize this property, consider Figure 1 which shows the probability
distribution state, in terms of the scalar parameters 17,((') and ,u(j]l) k=1,....,Ng+1,j=1,...,n,i=1,...,Ny, [ =1,2,
obtained by interrupting the algorithm well before convergence, at the iteration when the correct model structure is
first extracted. All the information gathered up to this point to tune the probability distribution is based on extracted
SNARX models none of which has the correct structure. All the same, this information appears to be sufficient to
drive the algorithm toward the true model structure A*. Indeed, some of the sub-periods have been already mapped on
the correct mode with high confidence and the algorithm is looking for the model structure S on a restricted area of
the solution space S which actually contains S *. This confirms the effectiveness of the chosen parametrization of P,
and of the proposed tuning rules. It proves also that the result in Theorem 3.3 is somewhat conservative, since in this
example the algorithm is converging toward the target limit distribution even if it has been initialized with IP,(A*) = 0

Table 1 reports some aggregate results obtained from 100 runs of the algorithm on the same data realization. The
proposed algorithm performs well in both the sample-mode assignment and the local NARX model identification,
and it does so by exploring a small fraction of the total number of possible switching signals and models. As for the
nonlinear mode, the algorithm sporadically (2 times out of 100) fails to select the nonlinear term y(¢t — 1)? in favor
of y(t — 1), for a slight performance loss. Indeed, £ takes the value 0.0119 for the wrong local model and the
value 0.0118 for the correct one, causing the algorithm to be trapped in the found local minimum due to the almost
negligible difference between them. It is worth noticing that despite the occasional failures in identifying mode 2,
the algorithm has always been able to capture from the data the existence of two different modes, and to assign them
correctly to the sub-periods.

A similar MC analysis has been carried out by considering this time the heuristic implementation introduced
in Section 3.4. As one can note from Table 2, which reports the aggregated results of this analysis, the heuristic
implementation provides comparable results in terms of accuracy, albeit at a lower computational cost. Figure 2
compares the two versions of the proposed algorithm, by enumerating the occurrences of a sign difference between
the two update factors f([) and f([) over the MC runs. The frequency of these events decreases with iterations, so that no
significant differences are expected in the algorithm outcomes at convergence. Based on this evidence, the heuristic
implementation has been employed in the rest of the paper for computational convenience.

3.6. Example 1 (contd.): T, € T

Suppose now that the switchings occur at + = 350 (from mode 1 to mode 2), r = 1450 (from mode 2 to mode 1),
t = 1600 (from mode 1 to mode 2), and ¢ = 1750 (from mode 2 to mode 1). Notice that using the previously defined
uniform placement of the switching times, only one of the true switchings is encompassed, while the others occur
exactly in the middle of the 4th, 15th, and 18th sub-periods.

Table 3 reports the results of a single run of the identification method. Apparently, the presence of sub-periods
assigned to mode 1 but containing also samples associated to mode 2 prevents the algorithm from correctly identifying
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Figure 1: Example 1: MEP and RIP values at the iteration when the correct model structure is first extracted. Top: MEPs of modes 1 (blue) and 2
(yellow). Bottom, from left to right: RIPs of mode 1, RIPs of mode 2.

Table 1: Example 1: 7 C 7. Monte Carlo simulation results.

Average elapsed time [s] 41.25
Percentage of correct selection of 100%
Average # of explored switching sequences 12520
Total # of allowed switching sequences 1048576
Percentage of correct selection of s 100%
Average # of explored model structures for mode 1 790.62
Total # of possible model structures for mode 1 32768
Percentage of correct selection of s? 98%
Average # of explored model structures for mode 2 1005.9
Total # of possible model structures for mode 2 32768

the local model assigned to the first mode (a redundant regressor is added to the model, although with a very small
coeflicient, indicating its relatively smaller importance). Despite this failure in estimating the linear local model, the
method performs well in assigning the samples to the modes. Indeed, the obtained «* is correct in 17 out of 20 periods
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Table 2: Example 1: 7 C 7. Monte Carlo simulation results - heuristic implementation.

Average elapsed time [s]

Percentage of correct selection of

Average # of explored switching sequences

Total # of allowed switching sequences
Percentage of correct selection of s

Average # of explored model structures for mode 1
Total # of possible model structures for mode 1
Percentage of correct selection of s

Average # of explored model structures for mode 2
Total # of possible model structures for mode 2

30.16
100%
11156
1048576
100%
646.27
32768
95%
752.42
32768

® avg. # of occurrences
® avg. # of iterations

100 150

200

iteration

Figure 2: Example 1: average number of occurrences of a sign difference between 65.11). and f;]?. in the MC runs at each iteration. The red marker
indicates the average number of iterations required to solve the identification problem.

and yields a 50% correct classification of the samples in the remaining three sub-periods. This error (which involves
150 out of 2000 samples, i.e. 7.5% of the data) is unavoidable given the placement of the true switchings exactly in

the middle of the allowed sub-periods.

Table 3: Example 1: 75 ¢ 7. Single run results.

L

.C(l)( )

_[:(2) %)

Detected switching times
sub-periods assigned to mode 1
sub-periods assigned to mode 2
Sample classification error
Regressors mode 1

Parameters mode 1

Regressors mode 2

Parameters mode 2

0.0154

0.0198 (N, = 900)
0.0119 (N, = 1100)

400, 1400, 1600, 1700
I, k=1,...,4,15,16,18,...
I, k=5,...,14,17

7.5%

v —1), u(t—1), u(t—2)
—-0.9041, 0.8363, 0.0566
u(t = 1), y =1y

0.5093, -0.4137

,20
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3.7. Discussion

The presented first stage identification method is effective in both mode assignment and model estimation, pro-
vided that 77 € 7, while an unavoidable approximation error is experienced otherwise. In general, no a priori
information on the switching times is available and, in principle, a switching could occur at any time instant in
{1,2,..., N}. In order to encompass this case one could arbitrarily enlarge 7 towards {1, ..., N}. However, the com-
plexity of the resulting combinatorial problem rapidly increases with the cardinality of 77 that is employed, making
it computationally intractable to sample the set {1,2, ..., N} too densely. This poses a practical limit on the modeling
accuracy that can be achieved with the method described in this section, since with a sparse 7 a poor resolution on
the switching times is typically obtained, which in turn influences the quality of the identified models (that are tuned
on data not fully belonging to the appropriate modes), and motivates the introduction of the second stage.

4. Second stage of the SNARX identification approach: refinement of 7

Rather than extending 7 to improve the accuracy of the model, we here suggest to refine it based on the outcome
of the identification procedure and then iterate the process. The refinement stage is aimed at improving the resolution
of 7 where required, at the same time keeping its size under control. This is achieved by adopting a denser sampling
of the time horizon in the vicinity of the detected switchings and a sparser sampling elsewhere. Notice that, besides
improving the resolution of the estimated switching instants, it is also expected that the improvement in the sample-
mode assignment will also positively impact the accuracy of the identified local models.

The rationale behind the refinement of 7 follows from the observations listed below:

e Let two adjacent sub-periods be assigned to different modes, say «, = 1 and «;;; = 2. This suggests that the
majority of the samples of the first period can be ascribed to mode 1 and similarly that most of the samples in the
second period indeed belong to mode 2. This indicates that there is at least one switching between modes 1 and
2 in the time interval spanned by the set I} U I;,1, but not necessarily at the common boundary (#;). Therefore,
adding new candidate switching times in the vicinity of # may improve the resolution of the algorithm.

o Let two adjacent sub-periods be assigned to the same mode, say k; = kx+1 = 1. Then, in the same assumptions
as before, no switching from mode 1 to another one can occur in the vicinity of the intermediate point . It is
therefore possible to disregard ¢ altogether as a candidate switching time.

e Occasionally, the identification procedure may fail to converge to a limit distribution regarding a specific sub-
period, so that multiple MEPs have non-zero values. This typically occurs when the sub-period contains data of
different modes. In these situations, splitting further the sub-period into smaller sub-periods may facilitate the
algorithm in taking its decisions.

Let 7" be the set of allowed switching time instants at the rth iteration of the overall procedure. Then, after
the execution of the identification phase in the first stage, the refinement phase of the mode switching times consists
in defining 7D based on the results of the rth identification. 7" is calculated according to the following steps,
starting from an empty set:

1. Detection of switchings. A switching is detected at #; if kx # ki1 (i.e. two consecutive sub-periods have been
assigned to different modes). Accordingly, let V = {#, € ’i's(r)llq< # Ki+1} be the set of detected switchings.

2. Detection of unresolved sub-periods. Sub-period I is marked as unresolved if the identification algorithm was
unable to converge to a limit distribution for &, within the allotted iterations (although the MEP of one mode
could still be significantly larger than the others to allow for a meaningful mode assignment). The auxiliary set
U < 7 includes the starting times of such unresolved sub-periods.

3. Split phase: part a. For each t € V, three candidate switching locations are added to ‘7'5(”'). More precisely,
T gD G (1 1t), with 1 = 1 — wand £ = 1 + w, where w is a design parameter.

4. Split phase: part b. For eacht € U, let ¥’ = min{tke¢§r>|tk>,] t. Now, ifd = ¥ —t > 2, then 7';’”) —

7D G, ¢), where 1 = 1 + [47. Otherwise, AR n VR Y
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5. Merge phase. The elements of ‘7](’) not in V or U are not carried over to 7, f””, and are therefore discarded. By
doing so, we are implicitly merging consecutive sub-periods, which are assumed not to include mode switch-
ings, according to the current model.

Regarding the split procedure, a possible choice is to use the same w value for each detected switching, setting
w(r + 1) = aming [1.”|, where I”, k = 1,..., N, + 1 are the sub-periods induced by 7.” and 0 < @ < 1 (e.g., @ = 0.5
to get new sub-periods half as large as the smallest sub-periods of the previous iteration).

The rationale behind the processing of the unresolved sub-periods is as follows. Since the absence of convergence
is typically due to the simultaneous presence in a sub-period of an initial portion associated to a mode followed by
samples from a different one, the time interval is split into two equal parts to increase the mode unbalance in both
time intervals and thus facilitate the mode assignment. However, if the original unresolved sub-period is too short,
the time interval is not further divided, trusting that the progressive improvements in the identification of the local
models (thanks to the refined positioning of the switchings) will allow the full convergence to a limit distribution in
the subsequent iterations.

4.1. Guidelines for parameter settings

The results of the previous identification phase can also be used to set the initial MEPs and RIPs more appropriately
before repeating the identification procedure. Indeed, if a sub-period was previously assigned to a specific mode with
high confidence (i.e., the corresponding MEP was close to 1 at the previous iteration), then this information should
be preserved in the new execution, by setting the corresponding MEP to a large value. All the same, we apply a
discounting factor to allow the identification algorithm some flexibility to consider also alternative mode assignments.
On the other hand, the MEPs associated to unresolved sub-periods or to newly generated sub-periods (from ¢~ to 7 and
from ¢ to ¢) are set to be equal for all modes. The following rules formalize these considerations: '

e Detected switchings. For eacht € V, nf’,) = nﬁ’) =1/Ny,i=1...Ny, while ni? = pfori = o and nﬁ{) = Nl,\;fl’

for all other modes, where p is a design parameter (e.g., p = 0.7) representing the desired confidence level.

e Unresolved switchings. For each t € U, nﬁi) =1/Ny,i=1...Ny, while ng,i) =pfori=0,andn
all other modes. Furthermore, if * exists, nf? =1/Ny,i=1...Ny.

@ _ 1-p

v T Ny-1° for

Regarding the RIPs, they are all set to 1/n at each iteration, where n is the number of regressors.

4.2. Example 1 (contd.): Refinement stage

A typical execution of the refinement stage is illustrated in Figure 3, as a continuation of the last example discussed
in Section 3.6. In the identification stage, as already discussed, mode switchings were identified at times 400, 1400,
1600, and 1700, three of which being approximations of the true ones, given the coarse division of the time horizon in
7. The refinement stage halves the 4th, 5th, 14th, 15th, 16th, 17th, and 18th intervals (w = 50), and removes the re-
dundant time points separating equal mode assignments, yielding sz) = {350,400, 450, 1350, 1400, 1450, 1550, 1600,
1650, 1700, 1750}. Notice that the total number of switching times has decreased from 19 to 11, thanks to the merging
phase. The smallest time sub-periods generated by the refinement are initialized with MEPs assigning the same a
priori probability to all modes, while the MEPs of the other ones (where a clear decision was made in the first run) are
only partially discounted to allow some further flexibility to the algorithm. Notice that based on 7, 5(2) a much sharper
detection of the true switching times is indeed possible.

5. Simulation results

In this section several simulation examples are discussed to show the effectiveness of the proposed iterative
method. First, the presented procedure is applied to the example introduced in Section 3.6 to illustrate the effect
of repeatedly iterating stages 1 and 2 (Section 5.1). Some robustness and computational load analyses have also
been carried out on the same example. Then, a linear parameter-varying (LPV) system identification problem is dis-
cussed in Section 5.3, which is not trivial due to the presence of local models with the same structure but different
parameterizations. A third, more complex case study is also considered.

All tests have been performed in a MATLAB 2017a environment [25], exploiting the Parallel Computing Toolbox,
on an HP ProBook 650 G1 CORE i7-4702MQ CPU @2.20 GHz with 8GB of RAM.
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Figure 3: Example 1, refinement stage: real switching signal (top), identified switching instants (middle) and updated set of allowed switchings
(bottom). Blue bars indicate actual switchings, black bars the detected switching instants, and red bars the candidate switchings. The mode
corresponding to each sub-period is reported on the top of each plot: modes indicated in brackets are those whose MEP will be set to a larger value
in that sub-period for the next identification stage.

5.1. Example 1 (contd.): Two-stage procedure

Let us apply the iterative two-stage procedure to the illustrative example discussed in Section 3.6. The design
parameters of the identification phase, as well as the initial MEPs, RIPs, and candidate switching locations are set as
done previously (20 sub-periods of 100 samples are initially defined). The design parameters for the refinement stage
have been setto @ = 0.5 and p = 0.7.

Table 4 presents the aggregated results of 100 Monte Carlo (MC) runs. Notice, first of all, that both local model
structures have been estimated correctly 100% of the times. Furthermore, the low accuracy in the selection of the
switching sequence selection (see Table 4) is only apparent, the errors in the estimation of the switching time instants
being in fact rather small. This can be a appreciated by inspection of Figure 4 (top), which shows the distribution
of the detected switchings over the MC runs, indicating that the number and position of the switchings are in fact
quite accurately estimated, thanks to the refinement procedure. Figure 4 shows also the aggregated results in terms of
classification error rate on the training set (percentage of misclassified samples), and the normalized accuracy criterion

FIT =100 (1 = [y = yll2/lly = y1I2) , €29}

where y is the vector containing the target outputs, y being the mean value, and j is the vector of the outputs predicted
using the estimated mode switching signal o.

With reference to the same example we also ran a comparative analysis with the non-parametric approach of [20],
which extends the method presented in [14] from which the SNARX system used in this example has been taken. In
particular, among the four methods proposed in [20] to fix the submodel size and limit the number of optimization
variables, we chose the Feature Vector Selection (FVS) method. To describe the two modes we considered a linear
kernel and a RBF kernel, respectively, exploiting (as done in [14]) the prior knowledge that one submodel is linear
and the other is nonlinear. To produce the results presented in the paper we tested various combinations of the design
parameters o (the STD of the RBF kernels) and C (which governs the trade-off between model complexity and model
accuracy), obtaining the best results for o = 0.1 and C = 100. An MC analysis was carried out and the aggregate
results are reported in Figure 5. The values of the FIT criterion are roughly in the same range as with the proposed
algorithm, albeit with a much larger variance. However, the more striking difference is in the sample classification
accuracy, which is significantly larger than with the proposed algorithm. This is a remarkable aspect, considering also
that with the non-parametric approach we have taken advantage of the a priori knowledge about the linearity of one of
the submodels. One reason for this performance difference lies in the fact that the non-parametric method operates on
a sample-by-sample basis, resulting in a very fragmented mode mapping of the time history (unless some sort of post-
processing is applied). This does not happen with our method, since it exploits the time-ordering of the collected data
to solve the sample-mode mapping process, by applying a segmentation in a relatively small number of subperiods. In
the light of the large classification error, the occasional high FIT models obtained with the non-parametric approach
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might be interpreted as a manifestation of overfitting behavior. Finally, the considered non-parametric approach on
average required 123.9 seconds to solve the identification task.

Table 4: Example 1 (contd.): 7y ¢ 7. MC analysis.

Average elapsed time [s] 284.26
Percentage of correct selection of 61.62%
Average # of explored sequences 11791
Total # of allowed switching sequences 1048576
Percentage of correct selection of s 100%
Average # of explored models for mode 1 654
Total # of possible model structures for mode 1 32768
Percentage of correct selection of s 100%
Average # of explored model structures for mode 2 758
Total # of possible model structures for mode 2 32768
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Figure 4: Example 1 (contd.): 75 ¢ 7, proposed method. Top: distribution of the detected switching time instants for the proposed method (red
markers represent the true switching instants). Bottom: boxplots showing the distributions of the classification error rate and the FIT criterion on
the training set.
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Figure 5: Example 1 (contd.): 7y ¢ 7, non-parametric approach described in [20]. Top: Sample-mode mapping (single run). Bottom: boxplots
showing the distributions of the classification error rate and the FIT criterion on the training set.

5.2. Example 1 (contd.): Robustness and computational load analysis

To show the robustness of the proposed method with respect to the initial choice of the switching instants, a MC
simulation was carried out on Example 13, initializing 7'50) randomly. Specifically, at each run the candidate switching
instants are set to #; = 100k + v, k = 1,..., 19, where vy is a zero mean white gaussian noise with standard deviation
10. As can be noticed from Figure 6, the classification error rate is generally below 1% and in any case lower than 5%,
and the obtained distribution of the detected switching instants shows that the algorithm performs reasonably well in
the data segmentation task, leading to accurate models. Indeed, the overall accuracy as described by the FIT index is
not distant from what found previously.

We also analyzed the robustness of the proposed approach as the noise level increases (using a fixed 79, with
t = 100k, k = 1,...,19, as done originally). For each data realization (i.e. different SNR level), 10 runs were carried
out, the aggregated results being summarized in Table 5. As expected, the performance of the method in terms of FIT
decreases significantly as the noise variance increases. Interestingly enough, the classification error rate increases
very slowly and remains well below 1% in all the examined range.

Finally, a computational load analysis for an increasing number of switchings was carried out, by analyzing data-
sets of different length obtained from the system of Example 1. Assuming that the system switches between the two
modes every 100 instants (starting from ] = 1), the number of switching instants # in 7 grows proportionally to

N. As done previously, we initialized 7, 0 randomly. An MC simulation was carried out by running the algorithm

SWhere the values of the design parameters are not reported explicitly, those used in Section 5.1 are considered.
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30 times for each data realization with different random initializations of 7, and repeating for different N values.
Figure 7 shows how the elapsed time varies with the number of switching time instants. As expected, this is the most
critical factor which affects the computational burden.
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Figure 6: Example 1 (contd.): robustness w.r.t. the initial choice of the switching instants. Distribution of the detected switching time instants (red
markers represent the true switching instants), and boxplots demonstrating the classification error rate on the training set and the FIT criterion.

Table 5: Example 1 (contd.): robustness w.r.t. the noise level. MC analysis, mean values and variances.

Noise o | 0.01 0.0422 0.0744 0.1067 0.1389 0.1711 0.2033 0.2356
Train Cl. Err. [%] | 0(0) 0(0) 0(0) 0.044 (0.018) 0.23 (0.043) 0.34 (0.042) 0.34 (0.043) 0.42 (0.016)
FIT[%] 96.44 (1.36) 89.85(0) 8298 (0)  76.85(2.97E-5) 71.59 (6.57E-5)  67.19 (2.84E-4)  63.54 (3.29E-4)  60.55 (2.57E-5)

5.3. Example 2: an LPV system

The aim of this example is to assess how the method fares in the identification of the overall process model when
the local models have the same structure, as happens e.g. for LPV systems. Consider thus the system presented in
[12]:

y(0) = 99yt = 1) = 0.7y(t = 2) + u(t — 1) — 0.5u(t — 2) + e(t), (32)
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Figure 7: Example 1 (contd.): elapsed time as a function of the number of switchings.

which consists of Ny, = 4 local models, that are almost identical apart from one parameter that takes the val-
ues 9V = —1.5, 9@ = -1, ¥¥ = —0.5, and 9¥ = 0.5, respectively. The input signal u(¢) is a +1 Pseudo-
Random Binary Sequence (PRBS), while the noise is an i.i.d. Gaussian process, e(t) ~ N(0,0?), with o = 0.5.
A data-set of 2500 input-output samples is available during which 6 mode switchings occur, according to 7, =
{400, 810, 1270, 1500, 1830, 2150} and following the mode sequence k° = [1, 2, 3, 2, 3, 4, 1].

We compare our method with the SON-EM method described in [12], which turned out to fare well w.r.t. some of
the latest developments in identification for linear switched systems (for details see [12]). Among others, the SON-EM
outperforms (on the considered examples) the RANdom SAmple Consensus (RANSAC) method [10] which has been
adapted in [12] for hybrid systems. In order to have a fair comparison, we here assume that the model structure of the
modes is fixed as for the SON-EM method (the correct regressors y(¢ — 1), y(t — 2), u(¢ — 1), and u(z — 2), are employed
and the NARX model structure selection part is skipped). Both methods address the estimation of all 4 parameters (not
just 99), for each mode. The initial set of candidate switching locations is defined as ‘7'5(0) = {100, 200, ...,2400},
inducing a uniform subdivision of the data-set in 25 sub-periods of 100 samples. The design parameters for the
refinement stage are set to @ = 0.5 and p = 0.25.

An MC analysis has been carried out, running the algorithm 100 times on the same data realization. It turned
out that 92% of the detected switching sequences contained the correct number of time instants. The distribution
of the detected switching time instants for these sequences is reported in Figure 8. These results show that the pro-
posed method performs well in detecting the switchings, in fact the best run yields 7 = {400, 797, 1250, 1500,
1830, 2146} which proves to be quite close to the real one 7. Overall, the maximum and the mean sample classifi-
cation error are respectively 5.96% and 1.54% for the MC runs resulting in a 7 with the correct cardinality. In the
remaining 8% of detected switching sequences, 6 of them missed only the switching at time ¢ = 400, while the other
2 cases resulted in a completely wrong 7.

Figure 9 compares the estimates of ¥ on a single run obtained with the proposed method and the SON-EM
method [12]. It is noteworthy that both methods captured well all the switching time instants and provided good
parameter estimates, thus showing that the proposed method equals in terms of performance one of the most recent
and promising methods. For the considered run, Table 6 reports the performance of the identified hybrid model at
each iteration, the detected switchings, the sample-mode classification for each sub-period and the corresponding
classification error on the training set. From a computational complexity viewpoint, we compared the two methods in
terms of the time required to solve the identification task. It turned out that our method is more demanding w.r.t. the
SON-EM, i.e., on average our method lasted 238.56 seconds against 20.6063.

20



80

3}
8 60
=
b}
—~
—
2 40
[}
@]
3

20| |
SIS “

0 A u i

N D Q N D D N D
ty,

Figure 8: Example 2 - LPV system: Distribution of the detected switching time instants (red markers represent the true switching instants).

Table 6: Example 2 - LPV system: Performance of a single run over iterations.

r LD Lo Lo L® L I3 t 3 ts ts te t7 K Classif. error
1 0.2467 0.9951 0.2838 0.4848 0.4569 400 800 1300 1500 1800 2100 2200 [1,2,32,3,4.2,1] 6.8%
202469 02603 03217 02459 0.2742 400 800 1250 1500 1850 2150 - [1,2,3,2,3,4,1] 1.4%
302469 02275 02615 02934 0.2527 400 800 1275 1500 1825 2150 - [1,2,3,2,3,4,1] 0.8%
4 02469 02275 02615 0.2934 02527 400 800 1275 1500 1825 2150 - [1,2,3,2,3.4,1] 0.8%
5 02469 02315 02542 02934 02513 400 813 1269 1500 1825 2150 - [1,2,3,2,3.4,1] 0.36%
6 02529 02315 02542 02951 0.2533 400 813 1269 1500 1826 2147 - [1,2,3,2,3,4,1] 0.48%
7 02829 02317 02570 0.2735 02514 400 810 1269 1500 1827 2147 - [1,2,3,2,3,4,1] 0.28%
1.5 esmmmm=s e
1+ S T 4
!
!
|
o 0.5+ e .
0 SON-EM
---Real parameter
- -Randomized Two-Stage
-0.5 ‘ ‘ i
N N v QY
time

Figure 9: Example 2 - LPV system: Identification of parameter #) with the proposed method and the SON-EM method.

5.4. Example 3: A 3-mode SNARX case, with nonlinear modes
In this study, the following system has been considered:

mode 1 :y(£) = 0.5y(r — 1) + 0.8u(z — 2)
+u(t — 1)? = 0.3y(1 — 2)* + e(r)
mode 2 :y(£) = 0.2y(r — 1)* = 0.5y(t — 2)
—0.7y(t = 2u(t — 2)* + 0.6u(t — 2)* + (1)
mode 3 :y(r) = 0.4y(r — 1)° %—10.5y(t -2)
— 0.7y(t = 2)u(t — 2)* + 0.6u(t — 2)* + e(t)



where e(?) is a zero mean Gaussian noise of variance 0.01 and u(#) is uniformly distributed in the interval [-1, 1].
Notice that two of the three nonlinear local models have the same model structure (but one different parameter).
An observation window of N = 3400 samples has been collected, which contains 5 switchings, at locations 7 =
{500, 1030, 2115, 2740, 3000}, and corresponding to the mode switching sequence «° = [1, 2, 1, 3, 2, 3].

An MC analysis has been carried out considering an initial set of candidate switchings defined as 7'5(0) = {200, 400,
..., 3200}, which induces 17 sub-periods of 200 samples. Furthermore, the initial MEPs are all set to 0.33, and the
initial RIPs to % = 0.0061. Regarding the NARX model structure selection, the candidate regressor set is defined by
ng = 3, n, = n, = 4, which makes it abundantly oversized (the model orders are overestimated), amounting to n = 165
regressors. Finally, @ = 0.5 and p = 0.7, for the refinement stage.

Table 7 reports the aggregated results of 50 MC runs. Apparently, the model structures of all the modes have been
detected with a quite high accuracy (over 94%), despite the large combinatorial complexity of the involved model
selection problems. Furthermore, Figure 10 illustrates the robustness of the algorithm in estimating the switching
locations. Indeed, in the best case, a 7 = {499, 1029, 2112, 2739, 2998} was obtained, whereas an error of only
1.6% was obtained regarding the sample classification in the worst run of the MC study.

Table 8 reports the results of a single run, indicating specifically the performance of the identified hybrid model
at each iteration, the detected switchings, the sample-mode classification (for each sub-period) and the corresponding
percentage error. Furthermore, Table 9 reports for each mode the percentage of misclassified samples. As can be
noticed, the first identification stage results in an inaccurate model mainly because of the initial coarse uniform place-
ment of the switching candidate time instants, which leads to a large sample classification error mainly for the first
and third mode (see r = 1 in Table 9). The algorithm adapts the structure selection by extracting the correct terms plus
some extra ones in order to take into account for the misclassified samples (see » = 1 in Table 10). Notwithstanding
this, the first identified switching signal o is already close to the real discrete dynamics. The subsequent refinement
stages (and the identification phases) progressively improve both the local and the global performance leading to a
very accurate final hybrid model (both in terms of the continuous and the discrete dynamics). It is apparent that as the
switching signal is more accurately estimated, the accuracy of the local models also improves, since they are estimated
on more appropriate data sets. Indeed, from the fourth iteration on the sample classification errors are lower than 1%
for all modes (see Table 9) and the extracted structures are correct (see Table 10).

Table 7: Example 3: MC analysis.

Average elapsed time [s] 1247
Percentage of « of correct length 100%
Average # of explored sequences 5042

Total # of allowed switching sequences 131072
Percentage of correct selection of s 94%
Average # of explored models for mode 1 6634.3
Total # of possible model structures for mode 1 4.6768-10%
Percentage of correct selection of s 96%
Average # of explored model structures for mode 2 6377.2
Total # of possible model structures for mode 2 4.6768-10%
Percentage of correct selection of s©® 94%
Average # of explored model structures for mode 3  6144.4
Total # of possible model structures for mode 3 4.6768-10%

6. Conclusions

We consider the identification of switched nonlinear autoregressive exogenous (SNARX) models, and propose an
iterative method that addresses the challenge of the simultaneous identification of the mode switching sequence and of
the NARX model associated to each mode. The proposed method alleviates the combinatorial complexity of the prob-
lem by adopting a two-stage approach. More precisely, in the first stage, candidate mode switching instants are fixed
and adopted to segment the input/output data and jointly solve mode assignment and NARX structure and parameter
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Figure 10: Example 3: Distribution of the detected switching time instants (red markers represent the true switching instants).

Table 8: Example 3: Performance over iterations on a single run.

r L0 L Lo L f f f A 1 K Classif. error
1 0.0395 0.0097 0.0117 0.0257 600 1000 2200 2800 3000 [1,2,1,3,2,3] 7.86%
2 0.0274 0.0097 0.0106 0.0190 550 1000 2150 2750 3000 [1,2,1,3,2,3] 3.57%
3 0.0179 0.0097 0.0107 0.0138 525 1025 2125 2750 3000 [1,2,1,3,2,3] 2.86%
4 0.0135 0.0104 0.0097 0.0116 512 1025 2112 2737 3000 [1,2,1,3,2,3] 0.66%
5 0.0121 0.0105 0.0097 0.0110 505 1032 2112 2737 3000 [1,2,1,3,2,3] 0.37%
6 0.0110 0.0104 0.0097 0.0104 501 1028 2112 2737 3000 [1,2,1,3,2,3] 0.26%
7 0.0098 0.0106 0.0096 0.0098 499 1030 2114 2739 3000 [1,2,1,3,2,3] 0.09%

Table 9: Example 3: Sample classification error over iterations on a single run.

r Model Mode2 Mode?3
1 11.94% 0% 5.45%
2 8.85% 0% 0.91%
3 242% 0% 0.89%
4 1.06% 0% 0.89%
5 032% 0.63% 0.27%
6 0.19% 0.38% 0.27%
7 0% 0.25% 0.09%

identification; in the second stage, the candidate mode switching instants are refined. As for the combinatorial opti-
mization problem in the first stage, it is addressed using a computationally attractive randomized method where mode
assignment and SNARX model structure are modeled through discrete probability distributions that are progressively
tuned via a sample-and-evaluate strategy, until convergence to a limit distribution concentrated on the best SNARX
model of the system generating the observed data. Numerical examples show the efficacy of the proposed method.
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Appendix A. Theorem proofs

Appendix A.1. Proof of Theorem 3.1
The proof goes along the lines of that reported in Appendix A.1 in [7], where the special case of categorical dis-

tributions with only two outcomes (Bernoullian distributions) is discussed. The proof is here reported for the sake of
clarity within the notation introduced in this paper.
Consider first the case x}‘ = i. Then, the index 6?) (11) can be lower bounded as follows:
6) 2 TPy (ax*) - T, (A1)

where J° j(.i) = MaXyex.x;# J (¥). Indeed, for the first term in the RHS of (11),

Ep [Ty =il = Z T @P,(x) = T )Py (x™), (A2)

xeX:x;=i

where the inequality follows upon observing that x* € {x € X : x; = i} and that J(x) > 0.
On the other hand, the second term in the RHS of (11),

Ee [Ty, # 11 < T, (A3)

by definition. Therefore, applying the bounds A.2 and A.3 in (11), one obtains (A.1).
A similar reasoning applies for the case x;.* # i, leading to the following bound:
87 < T = TPy (x™), (A4)

where J j@ = MaXyex.x;=i J (¥). Indeed, for the first term in the RHS of (11),

e, [Ty =il < TV, (A.5)
by definition.
The second term can be bounded as
Ep, [TWly; #i] = Z T @R, (x) = J(x™*)P, (x™). (A.6)
xeX:x;#i

Therefore, applying the bounds A.5 and A.6 in (11), one obtains (A.4).

Now, under the assumption that x* is unique, if one sets

> max j(x)
xeX\lx*} J(x*)

and P, (x*) > o, one obtains that 67) > 0if x; = i, from bound A.1. On the other side, 65.0 < 0if x}‘ # I, from bound
A4,
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Appendix A.2. Proof of Theorem 3.2
Let IP’gf{ ) be the probability distribution associated with the probability matrix z at iteration k. Assuming that
IF’g‘ ) (x*) > o, where o makes the condition of Theorem (3.1) valid. Then one obtains that:

(')>O Vjixy =i
6(].')<O V].xj;&l

and therefore, according to (12) and recalling that y > 0:

7k +1) =20k + x8) > 7 Vj:xy=i
‘”(k +1) = n(”(k) + X(s(’) < n(’)(k) Vjixh#i

Recalling that:

(k)(x) l_[ l—[ (l)(k)

j=1 i=1

it follows that
PO %) > PP > o.

We then have a sequence of strictly monotonically increasing scalars that are upper bounded by 1, which entails
that limy_,e P\ (x*) = 1

Appendix B. Digression on local convergence of the heuristic implementation

The absence of local convergence is showed upon observing that the sign of fﬁ? in (28) could be different from
that of 55’3 (22). To show that, consider first the relation between J(1) and J® (0', s(i)), i=1,...,Ny:

Ny N Ky
1 i i - . 4 _4
j(/l) = e_KA'E(/l) = e_K'{'[N Z[:N,-¢0 N,--,E“(K,SU)] = | | [j(l) (K, s(l))] n (Bl)

i=1

Based on (B.1) and under the assumption of independence between modes, and between regressors, one can reformu-
late the first term in the RHS of (22) as:

N; Ky Nyu Ni K)
E [(7 O (k)" oy = 16 = K] | ]E [(J O (ks?) " e = KH . B2

n#i

Ee, [T loji = 11 = ) Pe()

Similarly,

N; Ky Nu N; K)
E [(J O (k)" oy # 16 = K] | ]E [(J O (ks?) " e = KH B3

n#Q

Ee, [T loji # 11 = ) Pe(x)
By substituting (B.2) and (B.3) in (22), one obtains:
Ep, [TDlpji =1 = Ep [TWpji # 1] =

_ pr(,()[ [(jm (x. s(,)))N LR g_K]_ [(jm (x s(z)))w L g_K” ] [jm (x. s(z)))N 3 |§=K}

(B.4)
That is, the sign of each single 2513 (the inner part of the summation over «) may be different from that of 6’5[3
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