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Abstract—We analyze a city-wide dataset of 4G mobile network
traffic obtained directly from user-side logs, allowing fine-grained
analyses of different application services over time and space. We
group applications in classes and analyze their traffic patterns:
the analysis reveals great heterogeneity in the usage of different
applications and in their space/time correlations, with important
implications for future networking services such as network
slicing and resource allocations.

I. INTRODUCTION

The massive increase of mobile cellular data traffic (7-fold
from 2016 to 2021, according to Cisco) has pushed the entire
telco community to rethink completely the traditional mobile
network architecture and to introduce novel hardware and
software technologies to support and optimize the delivery
of different application services. To this end, the upcoming
5G networks will strongly rely on a series of virtualized and
cloudified tools to provide novel and flexible functionalities
both in the core (Network Function Virtualization (NFV)
and network slicing) and at the edge/access (Multi-access
Edge Computing (MEC), Cloud-RAN). Orchestrating such a
complex set of heterogeneous technologies is very challenging
and many research efforts are ongoing to provide working
solutions to the problem. As an example, we mention here the
SPOTLIGHT project!, which aims at improving the perfor-
mance of nowadays architectures by exploiting parallelization
of network functions in the cloud.

In this complex scenario, it is envisioned that big data
analysis and machine learning/data-driven methodologies will
play a major role in all phases of the process. Indeed, in
the last few years, network operators have started collecting
massive data sets from their networks and analyzing it in
order to obtain a deep understanding of the communication
patterns of users and its implications on social dynamics (user
interactions, demographics, epidemics, etc.), user mobility
(mobility models, traffic prediction, etc.) and network planning
(resource management, energy efficiency, etc.) [1]. The major-
ity of such works exploit Call Detail Records (CDR) [2] and
focus on aggregated data, voice and messages traffic volumes
exchanged in the network, sometimes distinguishing between
incoming/outgoing calls or uplink/downlink data traffic, but
rarely separating traffic produced by different services (e.g.,
video streaming, web browsing). However, the 5G vision
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requires to gain an even deeper understanding on the usage
patterns of the different application services, rather than look-
ing at aggregate traffic patterns. Only recently, with the advent
of powerful Deep Packet Inspection (DPI) commodities, some
works have analyzed traffic datasets with the goal of describing
the properties of different services, either focusing on macro-
service classes [3], [4] or on specific applications [5], [6]. The
datasets used in such works are generally obtained from DPIs
located at Gateway GPRS Support Node (GGSN) or Packet
Data Network Gateway (PGW) for 3G and 4G networks,
respectively. While on the one hand such a method allows to
obtain very large datasets, possibly covering entire countries,
on the other hand it has two weaknesses: (i) spatial accuracy
is limited, since the geolocation information available at the
GGSN/PGW are not updated during intra-RAT handovers but
only during inter-RAT handovers or disconnections and (ii) the
entire method relies on the classification power of the used DPI
tools, which is not 100% accurate.

In this work we add a step in the direction of understanding
the spatio-temporal usage patterns of different application
services, focusing on a one-month city-wide mobile traffic
dataset. The peculiarity of this dataset is that, differently from
previous works, it is collected directly from the users rather
than from network aggregation points. This allows a much
finer spatial resolution (data is geolocated at the eNodeB
level) as well as increased accuracy in the classification of
the different services (which are labeled directly from users).

We focus on different types of analysis over the available
dataset, including per-service traffic distributions in space and
time, spatio-temporal traffic correlations and finally eNodeB
clustering. Our analysis confirms some of the insights recently
provided in related works on service characterization built
from network-side measurements and provides important de-
sign guidelines for future works, especially the ones related to
C-RAN optimization, radio resource management and network
slicing [7].

The rest of this paper is structered as it follows: Section
IT details the dataset under consideration and the main data
preprocessing operations. Section III, IV and V focus on the
temporal, spatial and joint spatio-temporal analysis of different
application services, respectively, while Section VI describes
and discusses clustering of eNodeBs. Finally, Section VII
concludes the paper.
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Fig. 1: Distribution of classified data traffic into application classes for
Downlink(left) and Uplink(right).

TABLE I: Dataset details

Dataset size [GB] 17
Uplink to Downlink volume ratio 0.015
Number of unique users 125609
Number of eNodeBs 406
Total number of applications 7215
Classified applications 172

II. DATASET

Differently from previous works, the dataset under analysis
in this paper is directly obtained from about 125k customers
of Vodafone, one of the major European mobile network
operators. An ad-hoc Android application is installed on the
user equipments (UE) after explicit consent of their owners:
the application runs in background and logs statistics relative
to the different applications run by a user, including the
uplink/downlink 4G traffic volume as well as the serving
eNodeB indicator. All data is reported to a central server using
anonymous identifiers for users and then aggregated hourly at
the eNodeB level to further ensure not to raise any privacy,
ethical or legal issues. In this paper we restrict the analysis
to the eNodeBs of a middle-sized European city. The dataset
under analysis is relative to the entire month of April 2018
and covers a fraction of the total operator customers in the
city. Table I reports further details on the dataset.

A. Preprocessing

To manage the high number of unique applications con-
tained in the dataset (more than 7k), a grouping operation
is performed. Grouping is implemented considering only
those applications generating at least 1 GB of traffic in the
observation period, disregarding applications generating an
insignificant amount of traffic or with identifiers that could
not be linked to any application service. In total we observed
that 95% and 93% of downlink and uplink traffic, respectively,
are covered by just 172 applications, which are grouped in 11
application classes, detailed hereafter:

o Video streaming: YouTube, NetFlix, Facebook video, etc.

« Social and instant messaging: Whatsapp, Facebook messen-
ger, Viber, Snapchat, Musically, etc.

o Browsers: Chrome, Firefox, Android built-in browsers, etc.

« Google play services

« Maps and navigation: Google Maps, Moovit, Waze, etc.

« Music: Spotify, Tidal, Deezer, etc.

TABLE II: Busy hours per app class for Downlink and Uplink

Downlink busy hour | Uplink busy hour

Total traffic 18 16
Social 14 18
Video 18 19
Browsers 18 18
Maps 18 18
Music 18 7
Google Play 8 8
E-mail 12 14
Sync 19 16
News 8 8
Shopping 8 14
Games 13 14

e E-mail: Gmail, Outlook, Yahoo, etc.

o Gaming: Clash Royale, Candy Crush, etc.

« Shopping: Wish, Amazon, Ebay, etc.

o News: TGCOM?24, Google News, Flipboard, etc.
o Syncing: Google Docs, Dropbox, WeTransfer, etc.

Figure 1 shows the application classes ranked by percentage
of generated traffic volume. The rankings are nicely fitted
with a Zipf distribution with parameters 1.84 and 1.2 for
the downlink and uplink case, respectively. We observe that
such parameters are in line with the study done in [6],
where Zipf distributions were fit on a one-week country-
wide dataset obtained from DPI measurements. We note that
Video, Browsing, Social applications and Google Play services
dominate the downlink traffic, accounting for almost 90% of
the total traffic. Video class alone accounts for 60% of the
downlink traffic, in line with recent Cisco estimates on mobile
video traffic’2. Things are very different for uplink traffic,
where social media applications, video and file uploads as
well as e-mail transmissions dominate the ranking. Similar
behaviours were observed in [6] and indicate that the dataset
under consideration in this work, although obtained only from
a subset of the operator’s customers, is representative of the
whole population of mobile users.

III. TEMPORAL ANALYSIS
A. Traffic Signatures

In this section we analyze traffic focusing on its temporal
characteristics, through the use of traffic signatures. Creating
signatures of the data traffic is an essential process because
it reduces the dimensionality of the observation space by
focusing on the most peculiar features of the data traffic
behavior in time. In this work, we consider the Median Week
Signature (MWS) [2], obtained for each eNodeB by taking the
median value of its downlink and uplink traffic over the same
hours and days of a week.

B. Application classes busy hour

As a first step, we consider the whole traffic generated in
the network by summing together all MWS for all eNodeBs,

Zhttps://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/mobile-white-paper-c11-520862.html
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Fig. 2: Median Week Signatures per application class for Downlink(left) and Uplink(right).

as well as the traffic produced by the different application
classes. The results are shown in Fig. 2, both for the downlink
and the uplink, where traffic is normalized to unity not to
disclose the absolute volumes as per the operator request. We
notice that while total traffic exhibits the typical and well-
known periodical behavior over a week, different applications
have very distinctive patterns in the traffic signatures. As an
example, the behavior of downlink video traffic is almost the
same every day, while for the uplink has a strong peak on
saturdays nights (mainly due to Instagram and Facebook live
video upload). Conversely, music applications downlink traffic
show two sharp peaks during work days, corresponding to
commuting times in the morning and in the evening, while the
traffic during weekends is much lower. Table II summarizes the
downlink/uplink traffic busy hours per application, obtained by
averaging together all median hourly values for the different
days and by picking the hour corresponding to the maximum
traffic. As one can see, the usage of different applications
define three different downlink activity peaks times during a
day: morning for applications such as Google Play, Music and
Shopping, lunch break for E-Mail and Games and evening for
the remaining set of applications, which also define the total
traffic busy hour. Similar activity temporal patterns can be
found for the uplink, with classes such as Music and News
having their busy hours in the morning, E-mail, Shopping and
Games during lunch break/early afternoon and the remain-
ing applications in the evening. This analysis confirms the
large heterogeneity present in the temporal usage of different
applications and must certainly be taken into account during
the design phase of future advanced network slicing services
envisioned by 5G.

C. Correlation between application classes

We also compute the Pearson’s correlation coefficient for
all application classes considering the downlink and uplink
traffic and additionally splitting the analysis in working days
and weekends. Results are shown in Fig. 3 and 4. This
allows to have a quick overlook on which applications exhibit
similar temporal behaviors, which may be useful for allocating
resources dynamically in future network architectures [7]. As
one can see, applications are generally more correlated in

downlink than in uplink, and in working days than in week-
ends. The stronger correlations are among video, browsing
and social applications, which are as well the classes which
generate most of the traffic. Other application classes such as
Music or Google Play services for the downlink, and Maps
for the uplink are in general less correlated with other classes,
indicating that they exhibit unique temporal behaviors.
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Fig. 3: Correlation matrix between classes for working days (left) and weekend
(right) in Downlink.

1.0 1.0

0.8

o
Y

1
ks
Correlation value

Correlation value

0.2

verage correlation value: 0.46. Average correlafion value: 0.40°

0.0 0.0

Fig. 4: Correlation matrix between classes for working days (left) and weekend
(right) in Uplink.

IV. SPATIAL ANALYSIS

The dataset under consideration is annotated at the eNodeB
level, therefore it allows to perform a fine-grained analysis of
how different applications are used in different locations in the
city. We focus here only on downlink traffic, although similar
considerations can be done for the case of uplink.



2019 IEEE Wireless Communications and Networking Conference (WCNC)

There are 406 eNodeBs in the dataset, for which we plot in
Fig. 5 (left) the Cumulative Distribution Function of the total
downlink generated traffic. As one can see, 20% of eNodeBs
are generating more than 50% of the total traffic, while 95% of
the total traffic is generated by less than 70% of the eNodeBs.
We consider only this subset for the analysis that follows.

A. Spatial correlation between eNodeBs

In Fig. 5 (right) we compute the correlation matrix between
the MWS of the total traffic for each pair of eNodeBs,
where eNodeBs are sorted in decreasing order of the cor-
responding total traffic. As one can see, spatial correlation
is generally lower than temporal correlation, with just some
specific pairs of eNodeBs showing high correlation values.
We observe some eNodeBs (140 and 143 in Fig. 5) which
are completely uncorrelated with the rest of the network,
but still producing a high amount of traffic. This means
that there are eNodeBs characterized by unique temporal
behaviors and whose location could be analysed for spotting
possible anomalies (e.g., excessive downlink/uplink volume
during nights). The analysis is continued by breaking down the
total traffic spatial correlation matrix into different application
classes in Fig. 6. The horizontal line inside each box represents
the median spatial correlation value and the triangle mark
stands for the average value, while the lower and upper edges
of a box indicate the 25th and 75th percentiles. The lines
outside the box are representing minimum and maximum
values. The analysis reveals application classes of two kinds:
Social, Video, Browser, Gplay and Maps classes show a
moderate average spatial correlation, in line with the matrix
shown for total traffic. The distribution of correlations seem
somehow balanced, with median values in between minima
and maxima. Conversely, other classes like Games, Shopping,
News, Syncing, Mail and Music, have very low median value
of correlation, but exhibit very high maxima values. This
means that usage of these applications is not correlated in
most cases in space, but there are strong locality effects in
which such applications behavior is very similar. Considering
such results together with the temporal correlations between
classes shown in Fig. 3, we conclude that even though some
classes have high correlation from the temporal point of view,
the way they are used in space may be very different. This
adds another design guidelines for future resource allocation
and network slicing tools, which need to consider such high
spatio/temporal heterogeneity in order to work efficiently.

V. JOINT SPATIO-TEMPORAL ANALYSIS

From the results in Sections III and IV, we conclude that the
analysis should combine temporal and spatial characteristics
of the traffic behavior. To understand this better, we recompute
the average spatial correlation between eNodeBs restricted
to time intervals of 4 hours. In details, the MWS of each
eNodeB is split in 6 signatures, considering only specific time
interval during each day. This decomposition of time allows
to observe how spatial correlations of each application class
evolve during time. Results is shown in Fig. 7. We observe
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Fig. 5: Cumulative traffic over ranked eNodeBs (left), Correlation matrix
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Fig. 6: Distributions of correlations between eNodeBs for each app class.

very different behaviors in time, with high values of average
spatial correlation for the two first intervals mainly due to
very similar activities of users (low usage in the late night and
exponential increase of usage in the morning). We show here
only average correlations for space reasons, but the variances
shown in Fig. 6 remain persistent in each time interval. This
means that operations such as spatial clustering of eNodeBs
may benefit of dynamic algorithms which exploit this time-
varying similarities.

To understand better how different applications’ space usage
vary over different time intervals, we plot in Fig. 8 heat-
maps of traffic generated by eNodeBs for specific classes. The
behavior of applications usage is changing among time inter-
vals, as well as between different applications. The overlap of
heat-map layers created by different applications shows that
some of the most active areas, mainly in the central part, are
persistent among application classes, while the differences in
the location of peaks indicate distinctive activity patterns of
applications in space. These two observations underlines the
fluctuations in application usage and general dynamics in the
network on a daily basis.

VI. CLUSTERING

Based on the outcomes from our temporal and spatial
analysis, we decided to proceed with a clustering of eNodeBs
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per application class (e.g., grouping together those eNodeBs
whose temporal behavior per application is most similar). The
main goal of such process is to understand whether eNodeBs
are clustered in the same groups when considering different
application classes. Clustering is performed starting from
the normalized MWS of each eNodeBs: several techniques
can be used to cluster the signatures of similar eNodeBs
together, including k-Means, k-Shape and DBSCAN (8], [9].
All clustering techniques produce similar clusters, although
here we report results only for k-Means, which outperformed
other approaches in terms of both Silhouette [10] and Davies-
Bouldin [11] clustering evaluation indicators. The same met-
rics were also used to obtain the value £ of clusters, which for
most applications was equal to 3. Cluster centroids resulting
from the clustering process for some representative cases are
shown in Fig. 10, while the locations of eNodeBs on the
map of the city are shown in Fig. 11. We can observe that
even though clustering is done on a per-application basis,
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the centroids extracted are always very similar. Three main
behaviors may be observed:

1) Commuting-specific pattern: the first centroid highlights
strong peaks during morning and evening and very low
usage during weekends, and it is common to all ap-
plications. Observing the locations of the corresponding
eNodeBs on the maps, they tend to be localized in few
spots, relative to big commuting hubs like main train and
subway stations.

2) Daily periodic pattern: in the second pattern the daily
behavior remains quite constant throughout the week,
with different applications having small differences. As
an example Social class tends to have pronounced activity
peaks during evenings. Observing the locations of eN-
odeBs in the city, they tend to be localized in residential
areas. Note that some applications related to business
activities (e.g., e-Mail) do not show this behavior.

3) Working days / week ends pattern: the third centroid
shows the well known daily differences between working
days and week ends typical of business areas [2]. The
eNodeBs grouped in this cluster are generally located in
the city center where all business activities take place.

Figure 9 shows the distribution of applications inside each

cluster when eNodeBs are clustered using the MWS of total
traffic. The three different clusters have very similar distri-
butions, with Video, Browser and Social classes dominating
the ranking. However, the rankings for different applications
in each cluster are different. For example, in the second and
third cluster (residential and business locations), Google Play
services are generating more traffic than Music apps, while in
the first cluster (commuting areas) the ranking is inverted.
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From Figure 11 we also observe that there are differences in
how eNodeBs are clustered according to different applications.
This means that even clustering resulted in the creation of very
similar temporal centroids for different applications, the spatial
behavior of clusters is not always the same.

The observations in this section indicate the importance of
fine-grained spatio-temporal analysis for eNodeBs clustering.
At the same time, the existence of standard and well-known
temporal profile patterns common to all applications can
greatly simplifies the design of advanced networking solutions,
which can be built using template signatures to be adapted to
each application / network slice in a space-dependent fashion.

VII. CONCLUSION

In this paper we analyzed the time and space characteristics
of the network usage of different mobile applications. The
dataset under consideration is derived directly from user
terminals, therefore allowing very fine-grained spatial as well
as application classification accuracy. Although the dataset is
coming from a subset of users, we confirmed results recently
presented in the state of the art, indirectly validating the
available data. The analysis reveal that (i) different applications
are used very differently in both space and time, (ii) the
correlation between eNodeB usage of different application has
great spatio-temporal variance and (iii) clustering eNodeBs
based on temporal usage produce similar centroids for all
applications. Future research directions will explore how to
apply the results from this paper on dynamic clustering of
distributed units in the C-RAN architecture as well as on the
combination of the results with emerging 5G technologies like
network slicing or MEC orchestration.
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