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Abstract: The development of wheel-rail contact models is an active topic of railway research with 

the dual objective of improving the accuracy of multibody simulations and reducing its 

computational effort. This paper extends the online Hertzian contact model, proposed by Pombo et 

al.[1] to propose a non-Hertzian contact model. The new methodology presented here includes the 

following steps: (i) search of the points of contact; (ii) identification of the undeformed distance 

function; (iii) evaluation of the contact patch; (iv) calculation of the normal and tangential contact 

forces; (v) application of the contact forces in the multibody vehicle model. Among several contact 

models available in the literature, this non-Hertzian contact approach uses the Kik-Piotrowski 

model for the normal contact force, while the tangential forces are obtained from the interpolation 

of the available Kalker Book of Tables for Non-Hertzian (KBTNH) contact. With the purpose to 

demonstrate the proper implementation and selection of parameters that define this new model, 

several contact analysis and dynamic simulations are performed in which the wheel S1002 and the 

rail UIC50 are considered. First, the contact analyses that determine the contact condition of 

different wheel-rail interactions serve to assess the accuracy of the Hertzian and non-Hertzian 

models with respect to the software of reference CONTACT. Second, the Hertzian and non-

Hertzian models are utilized to perform dynamic simulations of a wheelset, a bogie and a vehicle 

running in tangent and curved tracks. In short, this work provides, not only a complete description 

of the implementation of a non-Hertzian contact model in a multibody code, but also suggests for 

the proper selection of the parameters that promote better accuracy and optimal computational 

efficiency. 

Nomenclature 

(.)cp Subscript to identify the contact patch 

(.)w Subscript to identify the wheelset w 

(.)r Subscript to identify the rail 

(.)side Superscript to identify the left and right side 

a Length of semi-axes of SDEC or elliptical contact patch in longitudinal direction 

A Curvature of the contact point in the lateral direction 

Acp Area of the contact patch 
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A Transformation matrix 

b Length of semi-axes of SDEC or elliptical contact patch in longitudinal direction 

b Binormal vector 

B Curvature of the contact point in the longitudinal lateral 

d Distant vector 

D Damping coefficient for the normal contact force 

e Restitution coefficient 

E Young Modulus 

fr Ordinate of the profile that represents the rail cross section 

fw Ordinate of the profile that represents the wheelset w cross section 

fx Normalized longitudinal creep force 

fy Normalized lateral creep force 

Fx Longitudinal creep force 

Fy Lateral creep force 

g Aspect ratio 

gund Undeformed distance function 

g External generalized forces vector 

G Shear Modulus 

H Hertzian 

H Distance between the left and right wheel profiles 

K Contact stiffness 

KBTNH Kalker Book of Tables for Non-Hertzian 

L Left side 

mz Normalized creep moment 

Mz Spin creep moment 

M Mass matrix 

n Hertz nonlinear exponent 

n Normal unit vector 

NH Non-Hertzian 

N Normal force magnitude 

PS Primary Suspension 

P Potential point of contact in the rail 

p0 Maximum normal pressure of the KP model 

pmax Maximum normal pressure 

q System generalized coordinates 

Q Potential point of contact in the wheel 

r Radial coordinate 

r Position vector 

sr Arclength coordinate of the rail surface 

sw Angular coordinate of the wheel surface 

SS Secondary Suspension 

SDEC Single Double Elliptical Contact 

R Right side 

v Velocity vector 

t Tangential vector 

ur Lateral coordinate of the rail surface 
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uw Lateral coordinate of the wheel surface 

xL Length of the strip 

x,y,z Cartesian coordinates 

y0 One dimension of the SDEC 

α Direction of the linear creepage 

γ Tangent angle of the cross-section 

γ Right-hand side of the acceleration constraint equations vector 

δ Penetration magnitude 
max  Maximum penetration velocity 

ΔFx Deviation of the longitudinal creep force 

ΔFy Deviation of the lateral creep force 

ΔMz Deviation of the spin creep moment 

Δr  Step size for the radial coordinate 

Δs Width of the strip 

Δθ Step size for the angular coordinate 

ε Parameter that takes into account the existing deformation  

η Normalized lateral creepage 

θ Angular coordinate 

κ Curvature 

λ Lagrange multipliers vector 

μ Friction coefficient 

ν Magnitude of the linear creepages 

ξ Normalized longitudinal creepage 

σ Poisson ratio 

υx Longitudinal creepage 

υy Lateral creepage 

φ Spin creepage 

Φq Jacobian matrix of the constraint equations 

χ Normalized spin creepage 

ψ Shape factor of SDEC 

ω Angular velocity vector 

1 Introduction 

In railway dynamics, the vehicle-track interaction has been studied mostly through multibody simulations 

where railway vehicles, running in tracks with realistic operation conditions, are analysed in a virtual 

environment [2]. By using these tools, virtual homologation [3–6], prediction of wear and rolling contact fatigue 

of wheels and rails [7–12], among other studies can be performed. A key ingredient in all these case studies is 

the wheel-rail contact model, which evaluates the contact reactions forces developed over the wheel-rail 

contacting area [13–19]. The calculation of these forces, in a multibody code, involves four steps, namely, (i) 

identification of the contact patch, (ii) evaluation of the creepages, (iii) assessment of the normal and tangential 

contact forces in the wheel-rail interface, and (iv) application of the contact forces in the wheelsets and rails. 

Since the assessment of the wheel-rail contact is one of the most time-consuming processes in railway 

multibody simulations, the development of faster, yet accurate wheel-rail contact models is still a challenging 

and active topic of research [20–25]. The use of ‘in-house’ programs, in contrast to commercial software, has the 

advantage of allowing a complete control over of the implementation of the wheel-rail contact methodologies, 

hence allowing to adjust the simulation code to specific problems. However, even when the multibody 



4 

 

formulation is established [26, 27] the implementation of the wheel-rail contact is still a complex task. Few 

works present complete formulations for the implementation of wheel-rail contact models in multibody codes 

[1, 28–33], being common the use of commercial software codes that are used even for benchmarking processes 

[34, 35]. This work aims at presenting a new methodology for non-Hertzian contact models as well as its 

implementation in general multibody codes. 

To perform a multibody simulation of a railway vehicle running in a track, the vehicle, track and vehicle-

track interaction models are required. The multibody model of the vehicle consists of a set of bodies that are 

constrained by kinematic pairs and/or force elements that represent the suspension system of the vehicle [36–

38]. The track model is composed by two surfaces, representing the left and right rails, which control the motion 

of the wheels with the forces developed in the wheel-rail interfaces. The track modelling consists of a geometric 

parameterization problem where the rails positions and orientations are defined as function of selected 

parameters [39–41]. If the track flexibility is an important issue, the material and mechanical properties of the 

infrastructure must also be taken into account [42–45]. In turn, the wheel-rail contact model represents the 

interaction forces developed in the wheel-rail contact interface. The result of the simulation of a general railway 

dynamic problem includes the time history of vehicle kinematics and the forces developed in the multibody 

system, including the joint reaction and the wheel-rail contact forces. 

The first step to solve the wheel-rail contact problem is the contact detection, when contact exists, the 

calculation of the wheel-rail contact patch which is generally considered non-conformal if it lies in a flat plane 

and treated as conformal when it lies in a curved surface. Several different approaches can be considered for the 

evaluation of the contact patch, which can be more or less accurate and computationally expensive. In any case, 

the parameterization of the wheel and rail profiles is always required. Due to the axial symmetry of the wheel, 

the revolution of its profile around its axis defines the wheel parametric surface, being the angle of revolution 

the first parameter while a second parameter is used to describe the transversal wheel profile. In turn, the rail 

surfaces are described as an extrusion of the rail cross-section, being the arc length of the sweep the first 

parameter while a second parameter defines the transversal rail profile. Thus, the contact detection problem can 

be solved as a constraint approach or as an elastic approach [46, 47]. The constraint approach, used by some 

researchers to represent the wheel-rail contact, does not consider pseudo-penetration between the profiles, only 

allowing for one contact point per each wheel-rail pair [48, 49]. The unilateral constraint approach eliminates 

three relative degrees-of-freedom of the wheelset, being the contact points dependent on the longitudinal, lateral 

and yaw motions. In the elastic approach, two methods can be used, namely, the algebraic approaches [1, 28, 50] 

and the nodal search method [30, 51, 52]. In the algebraic approach, normal and tangential vectors at the wheel 

and rail surfaces are defined to describe geometric constraints that define potential points of contact, where the 

minimum distance condition is imposed. In turn, the nodal search method is defined by discrete profiles where 

the penetration of each node of a profile inside the other profile is monitored and associated with a contact force. 

In any of the elastic approach, the six degrees-of-freedom of the wheelset are preserved. The resolution of the 

contact detection problem is one of the most time-consuming tasks in a multibody simulation. The use of lookup 

tables is a strategy to improve the computational efficiency by substituting the search by the interpolation of a 

table given the relative kinematics of the wheel and rail. This is mostly applied in constraint approaches [30, 48]. 

After the contact detection, the assessment of creepages is performed based on a kinematic analysis of the 

two contacting surfaces [1]. In this analysis, three creepages are typically considered, i.e., the longitudinal, 

lateral and spin creepages. While the longitudinal and lateral creepages are straightforward to understand, the 

spin creepage requires a more detailed description. The spin creepage consists of a rotation around the direction 

normal to the contacting area divided by the wheel’s forward speed. Since the direction of the angular motion of 

the wheelset is not perpendicular to the normal of the contact area, spin creepages exist. Special emphasis is put 

in the flange contact, which occurs mainly in curve negotiations, where the spin creepage can increase 

significantly. In the case of a conformal contact, in which the contact slope varies considerably, large variations 

of the creepages over the contact area are expected [53–57]. 
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The normal contact force developed in the wheel-rail interface results from the integral of the normal 

pressure distribution over the contacting area. Hertzian contact theory [58] has been widely used in multibody 

simulations due to its easiness of implementation and representativeness in a very wide number of contact 

conditions existing in engineering systems of interest. Among other conditions, this model assumes that the 

curvature at the contacting area is constant leading to an elliptical contact patch where a semi-ellipsoidal normal 

pressure distribution is considered. Due to the geometry of actual wheel and rail profiles, the Hertz model can be 

inaccurate for some wheel/rail pairs and relative wheel/rail portions. In these cases, a more accurate description 

is required. In this context, the CONTACT program [58], based on the Kalker rolling contact theory, uses much 

more refined rolling contact model providing results of reference. However, the online use of this program is too 

time-consuming to be applied in multibody simulations.  

Contact models that consider virtual penetrations between wheel and rail have been proposed, being their 

accuracy compared with benchmark codes, such as CONTACT, or finite element methodologies [22, 24, 25, 59–

61]. These simplified models find the contact area as a portion of the interpenetration that is determined by the 

undeformed distance function, that is, the separation distance between the wheel and rail profiles. Numerical 

issues can arise during the implementation of such elastic contact models, such as, the numerical instability that 

can occur when considering multi-Hertzian contact, which leads to multiple elliptical contact patches, namely, in 

the case of overlapping contacts. This difficulty can easily be overcome by considering an equivalent and single 

Hertzian contact. However, this approach is not suitable to evaluate the distribution of pressure in the contact 

area. In turn, to simulate a wheelset running on a rigid track it is of crucial importance to include energy 

dissipation in the normal contact problem. For this purpose, Pombo et al. [1, 28] proposed a modified version of 

the Hertzian contact model with hysteresis damping, known as the Lankarani-Nikravesh (LN) contact model 

[62, 63]. This model uses the relative velocity between two surfaces and the restitution coefficient, not only to 

incorporate the energy dissipation that exists in the normal contact, but also to mitigate numerical instabilities 

when simulating wheelsets running on rigid tracks. 

The tangential forces, namely, the longitudinal and lateral forces and spin moment, are of utmost importance 

for the lateral stability and longitudinal dynamics. Their calculation is typically based on the identification of the 

contact patch, creepages and normal contact force. An interesting comparison between different contact models 

used in multibody simulations has been presented by Vollebregt et al. [64], where the Kalker linear theory [65], 

Vermeulen-Johnson model [66], Shen-Hedrick-Elkins model [67], FASTIM [68], Polach model [69] and 

USETAB [70] are analysed and discussed against CONTACT. In their work, the VAMPIRE software has been 

used to perform dynamic simulations with realistic contact conditions, leading to the observation that FASTSIM 

and USETAB provide good results with respect to CONTACT, with root mean square differences in the range 5-

10%, while the other models exhibit higher deviation in the range of 15-60%. More recently, a method named as 

FaStrip [71], which combines the FASTSIM and the stripe theory has been proposed. This method is an 

alternative to FASTSIM and requires a similar computational effort, while representing more accurately the slip 

velocity distribution. In this paper, particular attention is put in the USETAB that determines the creep forces by 

interpolating pre-calculated tables that have been generated by running CONTACT, considering different 

elliptical shapes and different creepages. Similarly, Piotrowski et al. propose the generation of the Kalker Book 

of Tables for Non-Hertzian contact (KBTNH) [20, 21]. This pre-calculated table is used to obtain creep forces 

and spin moment, being the non-Hertzian contact patch approximated to a Single-Double Elliptical Contact 

(SDEC) patch. With the intention of enhancing KBTNH, a new generation of the lookup table is proposed by 

Marques et al. [72]. Here, a detailed analysis of the interpolation error over the KBTNH has been presented 

either to reduce the refinement of the KBTNH, while maintaining appropriate accuracy, or to maintain the 

refinement while increasing accuracy. The interest on the KBTNH can be observed on a scientific discussion that 

is reported in [73] and [74], where Vollebregt and the authors of the KBTNH discuss the implications of 

considering the origin of the contact patch when defining the spin creepage. 

This work presents the detailed formulation to implement a non-Hertzian contact method developed under 

the framework of multibody system methodologies. The ‘in-house’ multibody code used here, which follows the 
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approach presented in [26], has been widely used not only in railway applications [4, 5, 28, 39, 75–77], but also 

to analyse other multibody mechanical systems [78]. The new non-Hertzian method can be understood as an 

extension of the Hertzian contact approach proposed by Pombo et al. [1, 28], with the addition of a strategy to 

determine the undeformed distance function to allow for the determination of non-elliptic contact patches. 

Among other contact models for non-Hertzian conditions, the Kik-Piotrowski (KP) model [59] and KBTNH [20, 

21] are used to find the normal and tangential contact forces, respectively. Additionally, it is also proposed to add 

the dissipative term of the normal contact force of the LN model [62, 63] in the KP model with the intention of 

improving the realism of the simulations, namely, of a wheelset negotiating a rigid track. The proposed non-

Hertzian approach and the Hertzian contact model [1, 28], which is also briefly revisited here, have been 

compared with the software of reference CONTACT [58], considering different conditions for the wheel-rail 

interaction. Then, multibody simulations are performed for selected railway dynamic scenarios not only to 

demonstrate the effectiveness of the new wheel-rail contact method and the identification of appropriate 

parameters that lead to good results and faster simulations, but also to analyse the influence of the different 

modelling approaches of the wheel-rail contact presented in this work. The wheel and rail profiles S1002 and 

UIC50 are utilized since the contact developed is mainly elliptical, being the comparison between the Hertzian 

and non-Hertzian methods for this scenario done in the process. 

2 Multibody simulation 

The dynamic analysis of a multibody system involves the study of its motion and of the forces transmitted 

during a given time period, as a function of the initial and operation conditions. In railway applications, the 

vehicle model is defined by a set of bodies, such as, the carbody, bogie frame and wheelsets which are 

constrained by kinematic joints and force elements that represent the vehicle suspension system [5, 28, 42]. The 

track, considered in this work as a rigid system, is represented by two databases that describe the position and 

orientation of the left and right rails as a function of their arclength [39, 40]. The vehicle-track interaction is 

represented by forces developed in the wheel-rail contacting surfaces which are obtained from the wheel-rail 

contact module [1] described by the five tasks included in Fig. 1. The inputs for the wheel-rail contact are the 

states of the wheelsets being the force vectors and respective points of application the outputs of the analysis. A 

detailed description of these tasks is presented throughout this paper.  

 

Fig. 1: Wheel-rail contact module of a multibody code where the interrupted and solid arrow paths refer to the Hertzian and non-Hertzian 

methods, respectively. 

Wheel-Rail Contact Module Multibody Simulation

Solve Contact Detection

Determine Contact Patch and Creepages

Apply Contact Forces on Wheelsets

Solve Tangential Contact

Solve Normal Contact

WRCf

Input: Wheelset states

Output: Contact force vectors;

Points of application.
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In this work the multibody formulation is based on a Cartesian formulation where each body has six 

degrees-of-freedom described by the three translation coordinates (x/y/z) and by four orientation coordinates 

represented by Euler parameters [26]. The governing equations of a railway vehicle system are written as [26]: 

 
     

=     
      

q

q

M Φ q g

λ γΦ 0

T

 (1) 

where M is the mass matrix, q  is the vector of the system generalized accelerations, g is the external 

generalized forces vector, Φq is the Jacobian matrix associated with the kinematic constraints, λ is the vector of 

Lagrange multipliers, which are related to the joint reaction forces and γ is the right-hand side of the 

acceleration constraint equations. The forces developed at the contacting surfaces, represented in Fig. 1 by the 

vector fWRC, are included in the term g as external forces. 

It should be noted that, depending on the methods used, the interaction between system components can be 

set as kinematic constraints, therefore involving Jacobian matrix and acceleration equations right hand side, or 

contact forces may develop. For instance, the wheel-rail contact can be done modelled as a unilateral constraint 

as in or as a contact point as in this work. Also, the motor wheelset velocity may be controlled via a kinematic 

constraint or with applied moments. In this work, due to the short distances of circulations, large inertias 

involved and very low dissipation in the wheel-rail contact, no provisions are made to maintain the vehicle 

velocity constant, although it is basically unchanged in all studies shown here. Also, only the wheel-rail elastic 

contact is considering its description with unilateral constraints not addressed. 

3 Wheel and rail surface parameterization 

Since the forces developed in the contacting surfaces interface depend on the wheel-rail interference, the 

parameterization of the wheel and rail surfaces is required, that is, the position, tangent and normal vectors, and 

surface curvatures at any point of the surface must be defined as function of appropriate parameters. It should be 

noted that, in the formulation presented throughout this work, the superscripts ‘L’ and ‘R’ refer to the left and 

right side, respectively, while the superscript ‘side’ is used as a replacement for ‘L’ or ‘R’ when a generic left 

and/or right side is considered. 
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side
zb  

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 
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side
js  ,

side
x jr  ,
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y jr  ,

side
z jr  ,

side
x jt  ,

side
y jt  ,

side
z jt  ,
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x jn  ,

side
y jn  ,
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z jn  ,
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x jb  ,
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y jb  ,
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z jb  

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

r,
side
ends  ,

side
x endr  ,

side
y endr  ,

side
z endr  ,

side
x endt  ,

side
y endt  ,

side
z endt  ,

side
x endn  ,

side
y endn  ,

side
z endn  ,

side
x endb  ,

side
y endb  ,

side
z endb  

Tab. 1: Rail database that defines its position and orientation as a function of its arclength parameter [39, 40] 

The wheel surface is obtained by the revolution sweep of the wheel cross-section, represented in Fig. 2(a), 

around its axis. In turn, the rail surface is described by the translational sweep of the rail cross-section shown in 

Fig. 2(b) along the rail path, which leads to a database that reflects the discretization of the rail and comprises a 

set of nodal points with the structure listed in Tab. 1. Each nodal point includes the position and orientation of 

the rail as a function of r
sides  which is a coordinate that defines the rail arclength shown in Fig. 3. The position of 

the rail profile origin is given by rr
side =[ , ,side side side

x y zr r r ], the unitary vector normal to the rail cross-section is 

defined by rt
side =[ , ,side side side

x y zt t t ], while rn
side =[ , ,side side side

x y zn n n ] is the unitary vector that corresponds to the 

transversal coordinate r
sideu  and the unitary vector rb

side =[ , ,side side side
x y zb b b ] defines the coordinate r

sidef , as shown 

in Fig. 2(b). Note that, the subscripts ‘1’ and ‘end’ refer to the initial and terminal nodal points of the data bases, 

respectively, while ‘j’ refers to a generic nodal point of the rail database. This database is obtained with the pre-
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processor tool that uses the nominal track design geometry, namely, the curvature and cant angle, and the track 

irregularities to generate the current track geometry used in the railway dynamic analyses [39, 40]. Thus, the 

linear interpolation at r
sides  provides the position and orientation of the rail profile for the rail section located at 

the given arc length. 

 

Fig. 2: (a) Wheel and (b) rail profiles defined by a set of nodal points 

Once the wheel and rail cross-sections are specified by a set of nodal points, as illustrated in Fig. 2, the 

interpolation of this information provides a continuous description of the wheel and rail surfaces. Since the 

position, tangent and normal vectors, and the curvature at any point of the surfaces are required, the profiles are 

interpolated by cubic splines [1]. 

 

Fig. 3: Parameterization of the wheel and rail surfaces 

The position of point Q in the left or in the right wheel surface of wheelset w, that is, the vectors L
rQ  and R

rQ  

shown in Fig. 3, can be written as: 
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 ,= + +r r r r
side side side
Q w w w Q  (2) 

where rw is the position vector of the wheelset w, r
side
w  defines the relative position between the wheelset centre 

of mass, where the body fixed coordinate system is located, and the wheel profile origin, and ,r
side
w Q  defines the 

relative position between the wheel origin profile and the point Q, as shown in Fig. 3. Vector r
side
w  is written as: 

    
T TL R0 / 2 0 , 0 / 2 0= = −r A r Aw w w wH H  (3) 

where Aw is the transformation matrix of the wheelset w that also defines the local reference frame attached to 

the wheelset (ξw/ηw/ζw), as depicted in Fig. 3, and H is the distance between the left and right wheel profiles. The 

vector ,r
side
w Q  is defined as: 

 
T

, , ,0 =
 

r A A
side side side side
w Q w w w Q w Qu f  (4) 

in which ( ), ,,side side
w Q w Qu f  are the coordinates of point Q the two-dimensional reference frame ( )/side side

w wu f , as 

shown in Fig. 2(a). The rotation matrix A
side
w  is defined as 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

L L R R
, , , ,

L R

L L R R
, , , ,

cos 0 sin cos 0 sin

0 1 0 or 0 1 0

sin 0 cos sin 0 cos

   − −
   
   = = −
   
   − −
   

A A

w Q w Q w Q w Q

w w

w Q w Q w Q w Q

s s s s

s s s s

 (5) 

where L
,w Qs  and R

,w Qs  are the angular coordinates of point Q in each wheel shown in Fig. 3. Thus, the two 

parameters ,
side
w Qs  and ,

side
w Qu  define any point of the wheel surface. For the wheel, two vectors tangent to the wheel 

surface must be defined [1, 28]. The tangent vectors ,t
side
w s  and ,t

side
w u , depicted in Fig. 3, are used for the purpose. 

The tangent vectors parallel to the rolling motion of the left and right wheels are defined as: 

    
T TL L R R

, ,1 0 0 , 1 0 0= = −t A A t A Aw s w w w s w w  (6) 

while the transversal tangent vectors are defined as: 

 ( ) ( )
T

, , ,0 cos sin =
 

t A A
side side side side
w u w w w Q w Q   (7) 

where ,
side
w Q  is the angle shown in Fig. 2(a) that can be determined by: 

 
( ),1

, tan−
 
 =
 
 

side side
w w Qside

w Q side
w

df u

du
  (8) 

The curvature of the wheel in the longitudinal direction is defined by: 

 

( )
( )

,
2

,

,

1

1

=

 
 +
 
 

side
w s

side side
w w Qside side

w w Q side
w

df u
f u

du

  (9) 

while in the transversal direction is expressed by: 
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( )

( )

( )
2

3/2
2

2
, , ,

,

d d
1

d
d

  
  = +  
   

side side side side
w u w Q w w Qside

w u side
side w
w

f u f u

u
u

  (10) 

The position of point P in a rail surface is written as: 

 r r,= +r r r
side side side
P P  (11) 

where rr
side  defines the position vector of the rail profile for a given r

sides , which is interpolated from the rail 

database, and r,r
side

P  is the position vector between the rail profile origin and the point P of the rail, as shown in 

Fig. 3, is defined as 

 
T

r, r r, r,0 =
 

r A
side side side side

P P Pu f  (12) 

where ( r, r,,side side
P Pu f ) is the position of point P measured in the profile reference frame ( r r/side sideu f ) as indicated in 

Fig. 2(b), and the transformation matrix r =A
side [ r r r, ,t n b

side side side ] associated to the local reference frame of the 

profile, as depicted in Fig. 3. The unity vectors of the tangent, normal and binormal of the rail at r
sides  are 

obtained from the interpolation of the rail database. 

For the rail, the normal vector to its surface is required [1, 28], being the normal vector at point P written as: 

 ( ) ( )
T

r, r r, r,0 sin cos = −
 

n A
side side side side

P P P   (13) 

where r,
side

P  is the angle shown in Fig. 2(b) that can be determined by: 

 
( )r r,1

r,

r

d
tan

d

−
 
 =
 
 

side side
Pside

P side

f u

u
  (14) 

The curvature of the rail in the longitudinal direction is defined by: 

 r, 0=side
s  (15) 

while in the transversal direction is obtained as: 

 
( )

( )

( )
3/2

2
2

r, r r,

r, 2
r

r

d d
1

dd

  
  = +  
   

side side side side
r P Pside

u side
side

f u f u

uu

  (16) 

It must be noted that the assumption expressed by Eq. (15) is acceptable since in real tracks slope variations are 

very low. 

4  Geometry and kinematics of wheel-rail contact 

4.1 Contact detection 

For the wheel-rail elastic contact models considered in this work, forces are transmitted between surfaces if 

virtual penetration between wheel and rail occurs. Note that the virtual penetration is understood as a local 

deformation of the surfaces. In the contact detection problem, it is necessary to use the tangent vectors ,t
side
w s  and 

,t
side
w u , the normal vector rn

side , and the distance vector d, defined as: 
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 = −d r r
side side side

P Q  (17) 

where points Q and P are defined by the parameters ( ,
side
w Qs , ,

side
w Qu ) and ( r,

side
Ps , r,

side
Pu ), respectively, as shown in Fig. 4 

(a). In non-conformal scenarios, that is, when the contacting surfaces are convex, solving the contact detection 

problem consist of solving the system of four non-linear equations written as [1, 28]: 

 ( )

( )

( )

( )

( )

T

r ,

T

r ,

nl , , r, r, T

r ,

T

r ,

0

0
, , ,

0

0


=



 =


=  
 =



=

n t

n t
F 0

d t

d t

side
w s

side
w u

side side side side
w Q w Q P P

side
w s

side
w u

s u s u  (18) 

The solution of this problem defines two potential points of contact, one in the wheel and another in the rail, for 

which vectors rn
side  and dside are collinear and perpendicular to the vectors ,t

side
w s  and ,t

side
w u , respectively. To verify 

that the contact between the wheel and rail exists, it is assessed the direction of vectors rn
side  and dside, as shown 

in Fig. 4(b). If the r 0dn
T side desi , then the surfaces are in contact, otherwise, no contact exists, being dside the 

vector of the closest proximity between the surfaces. 

 

Fig. 4: (a) Vectors used for the contact detection between two surfaces and (b) the ‘Contact’ and ‘No contact’ configurations 

The contact between the wheel tread and rail is searched independently of the contact between wheel flange 

and rail, as in both cases the contact is, generally, non-conformal. However, the interaction between the wheel 

and rail at the tread-flange transition cannot be identified by this search method since the non-conformality 

assumption is not valid in this region, that is, there is no guarantee that a solution for the problem defined by 

expression (18) exists. Moreover, the contact existing in this concave region would lead to a contact patch 

observed in a curved plane, for which there are no published contact models implemented in multibody codes 

that represent accurately the normal and tangential forces. Thus, two independent convex profiles are considered 

to describe the complete wheel profile, the tread and the flange profiles, and only two points of contact for a 

wheel-rail pair are possible at any particular instant, being one located in the tread and other in the flange. 

4.2 Contact patch 

When Hertzian contact is considered, the contact patch is assumed to be an ellipse that can be defined by the 

semi-axis [1]: 

d

,w st
,uwt

rn

ws

rs

ru

wu
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+ +
= =

+ +

w wh h h h
a m N b n N

A B A B

 
 (19) 

where m and n are tabulated values [1], hw and hr represent material parameters of the wheel and rail, 

respectively, N denotes the normal contact force, and A and B are the curvatures written as: 

 ( ) ( )r, , r, ,

1 1
,

2 2
= + = +side side side side

u w u s w sA B     (20) 

in which curvatures ,
side
w s , ,

side
w u , r,

side
s , and r,

side
u  are determined by equations (9), (10), (15) and (16), 

respectively. 

In the non-Hertzian contact, the shape of contact patch does not depend only on the properties of the main 

point of contact, being necessary to evaluate the undeformed distance function in a ‘potential contact’ region 

enclosing the geometric contact point in order to calculate the contact patch. This task requires the definition of 

the wheel and rail profiles with respect to the contact patch reference frame defined here by ( cp cp cp/ /side side sidex y g ) 

whose origin is the point of contact in the wheel, as shown in Fig. 5, and for which cp , t
side side

w sx , cp , t
side side

w uy  and 

cp r n
side sideg . Note that only a portion of the wheel and rail profiles must be considered, namely, the region where 

virtual penetration occurs, being its domain shown in Fig. 5. In Fig. 5, the dots represent points in the contact 

region, while the crosses represent points where no interference occurs, being out of the domain of interest. The 

domain of axis cp
sidey  is discretised by points equally spaced by Δs, in which cp,

side
iy =0 is included in the domain. 

Moreover, since the wheel and rail profiles are projected onto the plane ( cp cp/side sidey g ), the coordinate cp
sidex  is null 

for any point of the undeformed distance function. 

 

Fig. 5: Definition of the wheel and rail profile in the contact patch reference frame  

The points Q and P, in the reference frame ( cp cp/side sidey g ), are defined as Q≡(0,0) and P≡(0,δside), where δside is 

the maximum penetration defined as: 

 ( )
T

= d d
side side side  (21) 

In order to determine the coordinates from any other point of the wheel and rail, namely, at cp 0= side side
iy y , a 

transformation from the profile reference frame to the contact patch reference frame is required. For the wheel, 

the position vector of a point of the surface can be defined according to two different alternatives: 

 
( )

,

T

, cp ,0

= + +

 = + + +
 

r r r r

r r r r A

i i

i

side side side
y w w w y

side side side side side side side
y i w w w Q i w iy y g
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where the relation of these equations leads to: 

 ( ) ( )
TT

, , , , ,0 0   = − −
   

B
side side side side side side side
i w i w y w Q w y w Qy g u u f f  (23) 

with: 

 
1

cp

−
 =
 

B A A A
side side side

w w  (24) 

being cpA
side =[ , , rt t n

side side side
w s w u ]. Note that the pair ( , ,,side side

w y w yu f ) must be found by solving the non-linear equation 

written as: 

 ( ) ( ) ( ) ( ), , , , ,2,2 2,3 0− + − − =side side side side side side side
w y w Q w y w Q w iB u u B f f y  (25) 

where ,
side
w yu  is the only unknown since , side

w yf f ( ,
side
w yu ). Then, the ordinate of the wheel point at side

iy  is defined 

as: 

 ( ) ( ) ( ) ( ), , , , ,3,2 3,3= − + −side side side side side side side
w i w y w Q w y w Qg B u u B f f  (26) 

For the rail, the same procedure presented above is pursued. In this case, the two alternatives to define the 

position of a point of the rail at cp =side side
iy y  are: 

 
r r,

T

r r, cp ,0

= +

 = + + −
 

r r r

r r r A

i i

i

side side side
y y

side side side side side side
y P i r iy g 

 (27) 

where the relation of these equations leads to: 

 ( ) ( )
TT T

, r, r, r, r,0 0 0 0    = − − +
    

B
side side side side side side side side
i r i y P y Py g u u f f   (28) 

The parameter r,
side

yu  is obtained by solving the non-linear equation written as: 

 ( ) ( ) ( ) ( )r, r, r, r,2,2 2,3 0− + − − =side side side side side side side
y P y P iB u u B f f y  (29) 

and hence the ordinate of the rail point is defined as: 

 ( ) ( ) ( ) ( )r, r, r, r, r,3,2 3,3= − + − +side side side side side side side side
i y P y Pg B u u B f f   (30) 

Since both profiles are defined with respect to the contact patch reference frame, the undeformed distance 

function is obtained as [58]: 

 ( ) ( ) ( )und r= − +side side side side side side side
i w i ig y g y g y   (31) 

Fig. 6(a) shows an example for the undeformed distance function. Thus, the contact patch can be determined, 

being the positive edge of the contact patch defined as [59]: 

 ( ) ( )( )L und2= −side side side side
i Q ix y R g y  (32) 

where ε is a parameter that takes into account the existing deformation to estimate the contacting area [59] and 

RQ denotes the radius at the contact patch in the rolling direction in point Q, written as: 
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,

,

d
1

d

 
 = − +
 
 

side
w Qside

Q w Q side
w

f
R f

u
 (33) 

Note that the contact patch consists of a set of strips, being the contact patch symmetric with respect to the cp
sidey  

axis, as shown in Fig. 6(b), also called semi-Hertzian contact patch. 

Special emphasis is put in the two points shown in Fig. 6 with a circle ‘o’, which represent the limits of the 

undeformed distance function. These points correspond to the value of the undeformed distance function as cp
sideg

=εδ, as depicted in Fig. 6(a), and obtained via linear interpolation between the point outside the contact and the 

closest point in the contact region. Thus, the intersection of the line edge of the contact patch in the axis cp
sidey  is 

ensured, as shown in Fig. 6(b). A strip, with a width smaller than Δs, is added at each extremity of the contact to 

account for the correct limits of the contact patch. When these two limiting strips are not considered, the 

continuity of the contact patch is not ensured during the dynamic simulation leading to numerical instabilities 

that ultimately lead to a degradation of the dynamic response. 

 

Fig. 6: (a) Undeformed distance function and (b) contact patch 

It is worth notice that the undeformed distance function shown in Fig. 6(a) consists of a generalized case 

that represents the contact in the concave region of the wheel. Here, the non-conformal assumption is not valid 

since more than one solution exists for the contact detection problem expressed by equation (18), namely, the 

two minima and the maxima of the undeformed distance function satisfy the conditions to be a potential point of 

contact. In this work, the concave region of the wheel is neglected by modifying slightly its profile in the 

transition between the tread and flange, namely, the curvature in this concave region is forced to be null. Thus, a 

unique solution is ensured for the contact detection problem proposed in this work. To deal with the conformal 

contact that would determine an undeformed distance function as the one shown in Fig. 6(a), a different contact 

detection method would be required. This method must allow determining multiple contacts and contact patches 

in curved planes. Because accurate contact models for conformal contact in multibody applications is still a gap 

in the literature, the simplification of the wheel profile is considered in this work as it is made by other authors 

[1, 34, 47]. The extension of the wheel-rail contact model proposed in this work in order to deal with conformal 

contact is the aim of future developments. 

4.3 Creepages 

Once the contacting patch area is identified, a kinematic analysis in this region allows to find the 

longitudinal, lateral and spin creepages, defined as: 

(a)

cp

sidey


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sideg



(b)

cp

sidey

( )Lx y

cp

sidex

( )Lx y−
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v tw s

x
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  (34) 

 
T
rel ,

=
v tw u

y
wV

  (35) 

 
T

r=
ω nw

wV
  (36) 

where Vw and ωw are the absolute longitudinal velocity and the angular velocity of the wheelset w, respectively, 

and vrel is the relative speed at the contacting points defined as: 

 rel = −v v vQ P  (37) 

where vP is null since the track is considered rigid, and: 

 ( ),= + +v v ω r r
side side

Q w w w w Q  (38) 

Note that the spin creepage is expected to be not null, in normal conditions, since the normal vector nr of the 

contacting region and the angular speed vector ωw are not necessarily perpendicular. 

5 Normal contact 

This section provides a brief description of the LN model [62, 63] for the Hertzian contact model [1], and a 

detailed description of the KP model [59] for the non-Hertzian contact method. A discussion on the application 

of these models is presented in section 7, included in the study of a demonstration case. 

5.1 Lankarani-Nikravesh model 

According to the Hertz theory, the normal contact force between two isotropic and elastic spherical bodies 

made of metal follows the relation [58]: 

 H 1.5=N K  (39) 

where parameter K is a generalized stiffness coefficient that depends on the geometry of the surfaces in contact 

and on their material properties. An extension of this theory has been proposed to include a damping force [79]: 

 KV H= +N N D  (40) 

where   denotes the normal contact relative velocity. According to Hunt and Crossley [80], the term D depends 

on the deformation and, based on this idea, Lankarani and Nikravesh defined the damping term as [62, 63]: 

 
( )

( )

23 1

4
−

−
= n

K e
D 


 (41) 

where e is the restitution coefficient that reflects the type of impact, in which for a fully elastic contact e=1 and 

for a fully plastic contact e=0. The parameter ( )− is the relative approach velocity, or normal contact velocity, 

between the bodies immediately before the impact. Thus, the normal contact force model is written as [62, 63]: 

 
( )

( )

2

LN 1.5
3 1

1
4 −

 −
 = +
 
 

e
N K





 (42) 
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This model has been adapted by Pombo et al. [1, 28] for railway applications, being proposed that the 

normal wheel-rail contact force is defined as: 

 
( )2

LN H

max

3 1
max 1 ,0

4

  −
  = +
   

  

e
N N




 (43) 

where max  is defined as the maximum value   during the contact such that the ratio  / max 1 . Note that the 

damping effect is not only used to represent the restitution effect, but also to mitigate high frequency behaviour 

due to the wheel-rail interaction. Thus, the damping in the normal contact helps the numerical integration by 

mitigating numerical instabilities when no other source of damping in the multibody model exists besides that 

naturally associated to the wheel-rail contact, such as in the case of a wheelset negotiating a rigid track. 

5.2 Kik-Piotrowski model 

For the non-Hertzian contact, the normal contact pressure proposed by Kik and Piotrowski is used [59]. In 

this model, a semi-elliptic normal pressure distribution is assumed in the rolling direction, as depicted in Fig. 

7(a) and which can be expressed as [59]: 

 ( )
( )

( )20
cp cp L cp cp

L

,
0

= −
p

p x y x y x
x

 (44) 

where p0 is the maximum normal pressure. Since during the multibody simulation p0 is not known, the Kik-

Piotrowski model estimates the maximum pressure as [59]: 

 
( )

( )
( )

( )

( )L cpR

L L cp

1
2 2
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0 cp cp2 2 2
cp cp

0
d d

2 1

−

−

 
− 

=
 

− +  

 

x yy

y x y

x y xE x
p x y

x y

 


 (45) 

where E and σ are the Young’s modulus and the Poisson’s ratio of the wheel and rail materials, respectively. For 

the multibody simulation, the normal contact force is required. This normal contact force results from the 

integration of the pressure distribution over the contacting area, written as [59]: 

 
( )

( )

( )

( )

( )
( )

( )L cp L cpR R

L LL cp L cp

1
2 2
L cp cpKP 2 2

cp cp L cp cp cp cp2 2 2
cp cp

d d d d
2 1

−

− −

 −
 

= −
 

− +  

   

x y x yy y

y yx y x y

x y xE
N x y x y x x y

x y

 


 (46) 

Note that the first integral contains a singularity at (xcp,ycp)=(0,0), namely, at this point the first integrating 

function tends to infinity. By using a numerical integration method based on Cartesian coordinates, the result 

would strongly depend not only on the points where the function is evaluated, but also on the discretization of 

the integration area. To overcome this difficulty, a polar coordinate system is used to perform the integration, as 

shown in Fig. 7(b). In this conversion, the following relations are used: 

 
( )

( )

cp cp

cp

cp

cp

2

cp

2

sin

cos

d d d d

=

=

=

= +

x r

y r

x y r r

r x y







 (47) 

being the normal contact force of the KP model obtained in polar coordinates as: 
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 (48) 

In the evaluation of the integrals, for the θ coordinate, only half of the contact area is considered due to the 

symmetry of the contact patch with respect axis ycp. Moreover, the limits for the r coordinate depends on θ, 

namely, only the area contained within the thick line show in Fig. 7(b) is considered. To speed up the 

calculations, the trapezoidal integral method is used, being NKP obtained as: 
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 (49) 

where Δθ and Δr are the step sizes for the coordinates θ and r, respectively. Note that Nθ=π/Δθ which is the 

number of angular sectors used to discretize the contact patch, while Nr is the number of steps considered for a 

given θi. 

 

Fig. 7: For a rolling direction along xcp: (a) Normal pressure distribution of the KP model and (b) integration area defined by a polar 

coordinate system 

An alternative to the original KP model consists of adding a dissipative term to KP model, maintainning the 

equivalent feature in the LN model. This proposed alterantive model is written as: 

 
( )2

KP,d KP
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3 1
max 1 ,0

4

  −
  = +
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e
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


 (50) 

Note that the introduction of the dissipative term not only reflects the mechanics of the normal contact but also 

contributes to the numerical stability of the time integration process of the dynamic equations of motion of the 

railway dynamics system. 
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6 Tangential contact 

This section provides a brief description of the Polach model [69] for the Hertzian contact model [1], and a 

detailed description of the KBTNH model [20, 21] for the non-Hertzian contact method. A discussion of these 

models presented in section 7 in the framework of the demonstration case. 

6.1 Polach model 

For the Hertzian methodology, the Polach model is used to determine the longitudinal and lateral creepages, 

neglecting the spin creep moment [69]. These forces are defined as: 

 
yPolach Polach Polachx

x y z
C C C

, , 0= = + =SF F F F F M

 

  
 (51) 

where F is the tangential contact force caused by longitudinal and lateral creepages, υC is the modified 

translational creepage, which accounts the effect of spin creepage, and FηS is the lateral tangential force caused 

by spin creepage. The reader is referred to reference [69] for more details on the calculation of F, υC and FηS. 

6.2 KBTNH model 

For the non-Hertzian approach to wheel-rail contact, the so-called Kalker Book of Tables for Non-Hertzian 

(KBTNH) contact, proposed by Piotrowski et al., is used here [20, 21]. This model approximates the non-

Hertzian contact patch by a single double-elliptical contact (SDEC), as shown in Fig. 8. To interpolate the 

KBTNH and hence to obtain the tangential contact forces, five regularized inputs must be determined. Three of 

the inputs are related to the normalised longitudinal, lateral and spin creepages being defined as: 

 
yx , ,= = =

c c

 
  

  
 (52) 

where ρ is a characteristic length of the elliptical contact patch, μ is the friction coefficient and =c ab  [20, 21]. 

The normalised creepages ξ and η are alternatively defined by: 

 2 2 1, tan−  
= + =  

 


   


 (53) 

where v is the translational creep magnitude and α is directional angle with respect to the rolling direction, 

respectively. The pair v and α is considered to define the domain of the KBTNH. Two input parameters related to 

the shape of the contact patch are defined as 

 0,= =
ya

g
b b

  (54) 

where a, b and y0 are the dimensions of the SDEC region, shown in Fig. 8(b), obtained as: 

 
( )

( )cp cp 1 23 1 2
0

1 2 3 1 2

, ,
+ −

= = =
+ +

A A W WW W W
a b y b

W W W W W 
 (55) 

where Acp is the area of the contact patch, and W1, W2 and W3 are the dimensions depicted in Fig. 8(a). The 

outputs of the KBTNH are the normalised creep forces fx and fy and the normalised creep moment mz, obtained 

from linear interpolation of the pre-calculated lookup table. The creep forces are obtained as: 

 KBTNH KBTNH KBTNH
x x y y z z, ,= = =F Nf F Nf M cNm    (56) 
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The discretization and the number of points considered for each input of the KBTNH are listed in Tab. 2. 

Note that, owing to the symmetry properties of the SDEC shape, α only covers the domain [–π/2; π/2], while 

only positive values of χ are considered. To determine contact forces for the remaining cases, not comprised in 

the KBTNH domain, the symmetries listed in Tab. 3 are used. The right column of this table represents the 

domain described in Tab. 2. In each cell of this table, it is described not only the sign of the interpolated 

variables ξ, η, χ and ψ, but also by the outputs of the lookup table. For example, for a set of inputs that fits the 

conditions ξ<0, η≥0, χ<0 and ψ≥0, which is defined by the cell in the top left, the outputs are obtained based on 

the ones listed in the cell in 3rd row of the right column, that is, 3= −x xf f , 3= −y yf f  and 3= −z zm m . Therefore, the 

lookup table constituting the KBTNH has to be generated only for the sign combinations shown in the right 

column of Table 3, whilst the other cases can be obtained based on symmetry relations. 
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


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  nν=7 
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Tab. 2: Domain of the Kalker Book of Tables for Non-Hertzian (KBTNH) contact [20] 

 

Fig. 8: (a) Simple double-elliptical contact patch and creepages, and (b) input and output of the KBTNH 

7 Demonstration cases 

With the purpose of analysing the wheel-rail contact models presented in this work, static contact and 

dynamic analyses have been performed in selected applications cases. The contact analysis, or static analysis, in 

which the wheel and rail are tested for different pseudo-penetrations and creepages, serves to validate the contact 

models by comparing with software CONTACT. The dynamic analysis consists of multibody simulations where 

the Hertzian and non-Hertzian contact models discussed in this work are used to represent the wheel-rail contact 

forces. The results obtained from the multibody simulations are used not only to assess the wheel-rail 

interaction, but also to analyse the computational efficiency of the procedures proposed. The ML95 vehicle, 

operated by the Lisbon Metro has been considered in all cases [1, 28], whereof the wheel and rail profiles are 

shown in Fig. 9 and the modelling parameters of the application cases are listed in Tab. 4. 
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Tab. 3: Symmetries of the KBTNH [20, 21] 
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Three multibody models are considered in this work to represent the wheelset, the bogie system and the 

whole vehicle. The bogie system comprises a bogie frame and two wheelsets that are interconnected by the 

primary suspension. The vehicle comprises a carbody and two bogie systems that are interconnected through the 

secondary suspension. Both suspensions are represented by linear spring-damper elements that are described in 

references [1, 28, 81]. The wheel profile is defined by the two set of nodal points shown in Fig. 9(a) which are 

obtained based on the S1002 profile. The tread and flange profiles are extended, crossing each other as shown in 

Fig. 9(a). This is done to ensure a solution for the contact detection problem during the multibody simulation, 

meaning that potential points of contact that lie in these segments do not represent points contacting the rail. 

Note that the deviation from the real profile is acceptable according to the results presented hereafter, meaning 

that no contact is expected at the flange-tread transition. In turn, the rail profile UIC50 is obtained without 

introducing any approximation. The analyses presented throughout this section are intended not only to 

demonstrate the wheel-rail contact models and discuss their accuracy, but also to identify proper parameters for 

the Hertzian and non-Hertzian contact models, namely, e, Δs, Δr and Δθ. The relation Δs=Δr, for the quantities 

defined in Fig. 7, is used throughout the study to decrease the number of parameters required to define the 

contact models. 

 

Parameter Value 

Mass of the vehicle and weight per wheel 19560 kg and 23985 N 

Mass of the bogie system and weight per wheel 4200 kg and 10301 N 

Mass of the wheelset and weight per wheel 1109 kg and 5440 N 

Nominal wheel radius, R 0.430 m 

Distance between wheel profiles, H 1.500 m 

Distance between points of contact, H* 1.525 m 

Young modulus, E 208 GPa 

Shear modulus, G 80 GPa 

Friction coefficient, μ 0.3 

Restitution coefficient, e 1 or 0.75 

Poisson ratio, σ 0.3 

Parameter for the undeformed distance function, ε  0.55 [59] 

Rail cant 1/20 or 2.87° 

Gauge 1.435 m 

Longitudinal stiffness of PS 12.420 MN/m 

Lateral stiffness of PS 2.060 MN/m 

Vertical stiffness of PS 1.280 MN/m 

Longitudinal damping of PS 172.580 kNs/m 

Lateral damping of PS 70.290 kNs/m 

Vertical damping of PS 55.410 kNs/m 

Longitudinal stiffness of SS 0.075 MN/m 

Lateral stiffness of SS 0.750 MN/m 

Vertical stiffness of SS 0.250 MN/m 

Longitudinal damping of SS 26.038 kNs/m 

Lateral damping of SS 26.038 kNs/m 

Vertical damping of SS 68.538 kNs/m 

Tab. 4: General characteristics of the ML95 vehicle [1, 28] 
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Fig. 9: (a) Tread and flange profiles that represent the wheel S1002 and (b) rail profile that represents the rail UIC50 

7.1 Contact Analysis 

The contact analysis serves to study the contact conditions of different wheel-rail interactions. In the static 

analysis, the wheelset is kept centred with the track, being prescribed its height and its relative motion with 

respect to the track to reach specified normal and creep forces. Quantities, such as, the contact patch, maximum 

normal pressure and creep forces are evaluated with the CONTACT software and with the non-Hertzian and 

Hertzian models presented in this work. A discussion addressing the comparison of results obtained and the 

influence of selected input parameters is carried hereafter. 

The CONTACT formulation used in this work is described in reference [82]. Briefly, the inputs for the 

CONTACT software are: the undeformed distance function, which is determined with the non-Hertzian contact 

method, the refinement for the discretization of the contact patch, namely, Δx and Δy that are set equal to Δs, the 

creepages that are determined using the procedure described in section 4.3, and the material properties G and μ 

that are listed in Tab. 4. 

7.1.1 Normal Problem 

In order to assess the normal contact, three wheel-rail interactions are considered, in which a wheelset, a 

bogie and a vehicle run in a track with no initial lateral misalignment with respect to the track centreline. To 

represent such scenarios, the wheelset height is prescribed such that the normal force is similar to the weights 

per wheel, listed in Tab. 4. In addition, the parameter Δs is tested for the values 0.1, 0.2 and 0.3 mm, while the 

parameter Δθ is tested for the values 10º, 5º and 2.5º. These values, which span a wide area of applications, are 

selected based on the experience gained in this work. For each case study, the wheelset height is adjusted, with 

exception for the cases that use the non-Hertzian method, namely, when Δθ is 5.0º and 2.5º, the wheelset height 

corresponds to the height considered in case Δθ=10º. This exception allows to study the impact of Δθ on the 

normal force, N. 

Simulations have been carried out, with the different methodologies, namely: 9 simulations with 

CONTACT; 27 with the Non-Hertzian method; and 3 simulations with the Hertzian method. The results of these 

simulations are shown in Fig. 10 where the contact patches, the pseudo-penetration, normal force and maximum 

normal pressure are presented. Fig. 10 shows that the contact patch size is proportional to the normal force. The 

contact patches obtained with CONTACT, non-Hertzian and Hertzian exhibit similar contact areas. The non-

elliptic shapes obtained with CONTACT and from the Non-Hertzian model are identical to the SDEC shape 

presented in section 6.2. Generally, the contact patch obtained with CONTACT is larger in the x direction and 

shorter in the y direction when compared with the shape obtained with the non-Hertzian method. 
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Fig. 10: Contacting areas obtained from the CONTACT, non-Hertzian and Hertzian contact models 

The pseudo-penetrations δ obtained with CONTACT and with the Non-Hertzian are similar, not deviating 

more than 0.7 μm. For the Hertzian method, lower penetrations than those obtained with CONTACT are 

observed. In particular, a decrease of 4, 8 and 14 μm in the penetration for the wheelset, bogie and vehicle case 

studies, respectively, are observed. The larger deviations are due to the Hertzian model being stiffer. Regarding 
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the maximum normal pressure, CONTACT and the Hertzian method are in a good agreement, while the non-

Hertzian contact method exhibits values about 10% lower in all cases. This is due to the larger contact patches 

obtained from the non-Hertzian method, thus requiring lower pressure for the same contact force. 

The variation of parameter Δs requires an adjustment of the pseudo-penetration to maintain the normal load 

similar. Since the CONTACT software exploits a discretisation of the contact area, it is not possible to reach 

exactly a specified normal force by adjusting the pseudo-penetration. However, the maximum deviation from the 

force of reference is about 5 N, as observed in Fig. 10. On the contrary, the non-Hertzian method can reach any 

normal force by adjusting the pseudo-penetration. Although the contact patch is discretized by strips, the width 

of the strips in the extremities of the contact area can vary and hence the continuity of the normal force as 

function of the pseudo-penetration is ensured. When the limiting strips, shown in Fig. 6(b), are not considered, 

the continuity of the contact patch is not ensured during the dynamic simulation, leading to numerical 

instabilities and hence degradation of the dynamic response. 

The effect of parameter Δθ can be assessed by comparing the normal loads obtained from the non-Hertzian 

method. Here, the same pseudo-penetration is considered for all values of Δθ. From the results shown in Fig. 10, 

the largest scatter obtained among, the different values for the normal load, is 28N. The amount of the scatter can 

be considered negligible, compared to the reference value provided by the non-Hertzian model with Δθ=10º, 

which is 23985N. 

7.1.2 Tangential Problem 

Different relative motions between the wheel and rail are tested to analyse the creep forces. Thus, for the 

wheel-rail interference described in Fig. 10, three different states of the wheel are considered, as described in 

Tab. 5. The longitudinal and lateral velocities, Vx and Vy, and the pitch and yaw angular velocities, ωy and ωz, are 

varied according to three combinations and the resulting creepages are listed in Tab. 5. In each case study, one 

single creepage component is emphasized. Note that the spin creepage is not zero in the longitudinal and lateral 

slip cases since the normal vector of the contacting surface is not perpendicular to the axis of the wheelset. Here, 

β is a prescribed parameter to promote the slip, in particular, positive values, increase the creepage in study. 

Parameters R and H* are listed in Tab. 4. 

 

Case study β Vx  

[m/s] 

Vy  

[m/s] 

ωy  

[rad/s] 

ωz  

[rad/s] 

υx υy φ 

Longitudinal slip 0.000770 10 0 (1+β)Vx/R 0 -0.00077 0.00000 -0.01983 

Lateral slip 0.000745 10 –βVx Vx/R 0 0.00000 -0.00074 -0.01981 

Spin slip 0.396000 10 0 (1+β)Vx/R –βVx/H* 0.00000 0.00000 -0.54706 

Tab. 5: Motions of the wheelset to emphasize longitudinal, lateral and spin creepages, one at a time 

The results obtained from the longitudinal, lateral and spin slip case studies are shown in Fig. 11, Fig. 12 and 

Fig. 13, respectively. The creep forces obtained from CONTACT with Δs=0.1 mm are given in absolute values, 

whereas the creep forces of the other simulations are given in relative errors defined as: 

 
y,ref y,x,ref , z,ref z,

x y z
x,ref y,ref z,ref

, ,
−− −

 =  =  =
simx sim simF FF F M M

F F M
F F M

 (57) 

where Fx,ref, Fy,ref and Mz,ref refer to the creep forces obtained from CONTACT with Δs=0.1 mm, while Fx,sim, 

Fy,sim and Mz,sim refer to the creep forces obtained from another simulation, sim. In Fig. 11, Fig. 12 and Fig. 13, 

the maximum absolute relative error for each force in each case study is also given. There, the grey band plotted 

in each column are related to the relative errors. Bars directed to the left correspond to negative values, whereas 

bars directed to the right refer to positive values, and the largest bar observed in each column refers to the 

highest relative error in absolute terms. 
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Fig. 11: Comparison between creep forces obtained from the longitudinal slip case study described in Tab. 5 

 

Fig. 12: Comparison between creep forces obtained from the lateral slip case study described in Tab. 5 

In general, the spin creep moments are negligible for all cases considered in this work, being null for the 

Hertzian method, since the spin moment is neglected in the Polach model [69]. In turn, high relative errors are 

observed. For instance, Fig. 12 shows an error of 199.0% for the longitudinal creep force, nevertheless, these 

forces are very low compared with the lateral creep forces. Thus, special attention is put in the deviation of the 

creep forces that show higher absolute values, with particular focus on the longitudinal creep forces shown in 

Fig. 11 and on the lateral creep forces shown in Fig. 12 and Fig. 13. In these cases, it must be noted that: (i) the 

relative errors obtained from the wheelset, bogie and vehicle case studies are similar, meaning that the normal 

load has a small impact on the relative errors of the creep forces; (ii) for the longitudinal and lateral slip, the 

Hertzian method shows the higher absolute relative errors of 4.5% and 3.7%, respectively, while for the spin slip 

case, the non-Hertzian contact reaches an absolute error of 14.8%; (iii) the parameter Δθ does not have much 

Case Study

Simulation of reference F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm]

CONTACT Δs =0.1mm 1.002 0.034 0.063 1.622 0.067 0.152 3.023 0.159 0.518

Case Study

Comparative simulations ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%]

CONTACT Δs =0.2mm -0.6 -1.4 -6.5 -0.7 -1.0 -5.0 -0.8 -1.6 -2.8

Δs =0.3mm -3.6 -6.0 -9.9 -1.5 -2.8 -10.6 -1.2 -2.0 -6.2

Hertzian -3.6 91.1 − -4.5 89.3 − -4.4 86.2 −

Δs =0.1mm, Δθ=10º 1.9 10.3 -12.2 2.1 10.2 -16.7 2.0 10.2 -22.1

Δs =0.1mm, Δθ=5º 1.9 10.3 -12.2 2.1 10.3 -16.6 2.0 10.2 -22.1

Δs =0.1mm, Δθ=2.5º 1.9 10.3 -12.2 2.1 10.2 -16.7 2.0 10.2 -22.1

Δs =0.2mm, Δθ=10º 1.3 9.2 -14.4 2.0 10.0 -17.4 1.9 10.0 -22.5

Δs =0.2mm, Δθ=5º 1.3 9.2 -14.4 1.9 10.0 -17.5 1.9 10.0 -22.5
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Simulation of reference F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm]

CONTACT Δs =0.1mm 0.000 1.001 -0.561 0.001 1.626 -1.294 0.007 3.045 -3.626

Case Study

Comparative simulations ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%]

CONTACT Δs =0.2mm -199.0 -0.5 1.0 -17.8 -0.6 1.1 -6.7 -1.0 1.0

Δs =0.3mm 195.9 -3.4 6.2 -121.7 -1.4 2.2 -37.2 -1.3 1.4

Hertzian 99.7 -2.0 − 100.0 -3.1 − 100.2 -3.7 −

Δs =0.1mm, Δθ=10º -116.8 4.8 6.4 -127.5 4.4 7.5 -76.0 4.1 8.6

Δs =0.1mm, Δθ=5º -117.1 4.8 6.3 -127.3 4.4 7.6 -76.1 4.0 8.6

Δs =0.1mm, Δθ=2.5º -117.0 4.8 6.3 -127.4 4.4 7.5 -76.1 4.0 8.6

Δs =0.2mm, Δθ=10º -120.5 4.1 6.0 -128.9 4.3 7.4 -76.7 3.9 8.5

Δs =0.2mm, Δθ=5º -120.2 4.2 6.1 -129.2 4.2 7.2 -76.7 3.9 8.5

Δs =0.2mm, Δθ=2.5º -120.3 4.2 6.1 -129.1 4.2 7.2 -76.6 3.9 8.6

Δs =0.3mm, Δθ=10º -122.2 4.4 6.1 -132.7 3.5 6.6 -75.5 4.4 8.9

Δs =0.3mm, Δθ=5º -123.2 4.3 5.7 -132.6 3.5 6.6 -75.6 4.4 8.9

Δs =0.3mm, Δθ=2.5º -122.9 4.3 5.8 -132.7 3.5 6.6 -75.6 4.4 8.9

199.0 4.8 6.4 132.7 4.4 7.6 100.2 4.4 8.9Max. abs. relative error

Creep forces obtained from simulation of reference

Relative errors with respect to the simulation of reference
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influence on the deviations of the creep forces, meaning that, increasing Δθ up to 10º does not degrade the 

results; (iv) increasing the parameter Δs can degrade significantly the accuracy of the results obtained from 

CONTACT, as shown in Fig. 11, namely, the deviation increases from 0.6% to 3.6% when Δs is increased from 

0.2 up to 0.3 mm. Nevertheless, in the non-Hertzian method, the increase of Δs from 0.1 to 0.3 mm has no 

significant impact. 

 

Fig. 13: Comparison between creep forces obtained from the spin slip case study described in Tab. 5 

7.2 Dynamic Analysis 

The non-Hertzian and Hertzian methods are considered in the multibody simulations that represent three 

case scenarios: a wheelset negotiating a tangent track; a bogie negotiating a tangent track; and a vehicle 

negotiating a curved track with the geometry shown in Fig. 14. In all cases, an initial lateral misalignment of 2 

mm is considered to promote the hunting motion, while the height of the bodies is adjusted so that no wheel-rail 

contact exist in the beginning of the simulation. Thus, these simulations are characterized by a first period in 

which the wheels fall over the track and, due to the lateral misalignment, the wheel-rail contact is initiated in the 

left wheels and then in the right wheels. The initial longitudinal speed for the wheelset is 10 m/s, while for the 

bogie and vehicle is 18.3 m/s in both case scenarios. The initial rolling angular speed of the wheelsets is defined 

according to the longitudinal speed and wheel nominal radius. The multibody code is implemented in MATLAB 

and the numerical integration handled by ‘ode15s’, being the absolute and relative tolerances set to 10-7 with the 

maximum integration step size of 10-4 s. The results are reported with a sampling frequency of 200 Hz. The 

simulation times for the tangent and curved track scenarios are 10 and 41 s, respectively. 

7.2.1 Efficiency and accuracy analysis 

The non-Hertzian contact model presented in this work requires the selection of parameters Δs and Δθ to 

determine the undeformed distance function, which is illustrated in Fig. 6, and to discretize the contact area, as 

shown in Fig. 7(b). Since parameters Δs and Δθ impact the accuracy of the solution and the computational cost, 

a batch of simulations has been performed considering several combinations of Δs and Δθ. The simulations 

performed in this analysis consider the bogie negotiating a tangent track.  

Case Study

Simulation of reference F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm] F x [kN] F y [kN] M z [Nm]

CONTACT Δs =0.1mm 0.032 1.000 0.369 0.075 1.898 0.879 0.239 4.394 2.812

Case Study

Comparative simulations ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%] ΔF x [%] ΔF y [%] ΔM z [%]

CONTACT Δs =0.2mm -5.8 0.9 -6.4 -1.9 1.3 -4.9 -2.4 0.6 -4.0

Δs =0.3mm -11.7 2.4 -15.3 -5.5 2.6 -9.5 -3.2 1.5 -6.8

Hertzian 99.9 6.8 − 100.0 7.0 − 100.1 6.5 −

Δs =0.1mm, Δθ=10º -7.8 14.8 -30.1 -33.8 14.3 -30.3 -37.4 12.6 -30.8

Δs =0.1mm, Δθ=5º -7.9 14.8 -30.1 -33.8 14.3 -30.3 -37.4 12.6 -30.8

Δs =0.1mm, Δθ=2.5º -7.9 14.8 -30.1 -33.8 14.3 -30.3 -37.4 12.6 -30.8

Δs =0.2mm, Δθ=10º -9.7 13.9 -32.5 -34.6 14.0 -30.8 -37.8 12.4 -31.1

Δs =0.2mm, Δθ=5º -9.6 13.9 -32.5 -34.8 14.0 -30.8 -37.8 12.4 -31.1

Δs =0.2mm, Δθ=2.5º -9.6 13.9 -32.5 -34.7 14.0 -30.8 -37.8 12.4 -31.1

Δs =0.3mm, Δθ=10º -10.8 14.2 -31.6 -36.5 13.0 -33.4 -37.3 13.1 -29.5

Δs =0.3mm, Δθ=5º -11.0 14.1 -31.5 -36.5 13.0 -33.4 -37.3 13.1 -29.5

Δs =0.3mm, Δθ=2.5º -10.9 14.1 -31.5 -36.5 13.0 -33.4 -37.3 13.1 -29.5

99.9 14.8 32.5 100.0 14.3 33.4 100.1 13.1 31.1

Wheelset Bogie Vehicle

Creep forces obtained from simulation of reference

Relative errors with respect to the simulation of reference

Max. abs. relative error
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Fig. 14: Curvature and cant angle of the curved track 

To analyse the simulations in terms of computational cost and accuracy, the computational time of the 

simulation and the normal contact force of the left leading wheel, are used. Here, the Hertzian method is also 

considered in this batch of simulations only to compare the computational effort with respect to the non-Hertzian 

method. In addition, the impact of considering dissipation in the normal contact is assessed by setting parameter 

e to values 1 and 0.75 in different simulations of the same test case. Thus, the time and error ratios are assessed 

by: 

 
( ) ( )ref

ratio ratio
fastest max ref

d
,

d

−
= =

−





sim
sim

N t N t tt
t error

t N N t
 (58) 

where tsim is the computational time of simulation sim; tfastest is the lowest computational time obtained from this 

batch of simulations; Nsim is the normal force obtained from simulation sim; Nref is the normal force obtained 

from simulation of reference; and Nmax is the normal force of simulation that shows lower accuracy with respect 

to the simulation of reference. The normal forces are reported to the left wheel of the leading wheelset, i.e., to 

the outer wheel when negotiating the curve, and the simulation of reference is the one that utilizes the non-

Hertzian method with Δs=0.1 mm and Δθ=2.5º, which corresponds to the more refined combination. Despite of 

a good agreement between the results obtained for the cases that use the non-Hertzian method, the calculation of 

errorratio allows to sort the applications by accuracy. 

 

Fig. 15: Time and error ratio of the batch of simulations that consider the bogie negotiates a tangent track for elastic wheel-rail contact, 

e=1, and slightly damped contact, e=0.75 

Fig. 15 shows the time ratio and error ratios, being bars plotted in each column related to the magnitude of 

the obtained values. From these results, the non-Hertzian method shows to be 2.6 to 8.0 times slower compared 

to the Hertzian method. The use of damping in the normal contact decreases slightly the computational cost. The 

parameters Δs and Δθ show a significant impact on the time ratio, namely, higher values lead to slower 

simulations. In turn, an increase of these parameters leads to a higher error ratio as shown in Fig. 15. Note that 

Δs=0.3 mm exhibits error ratios much higher when compared with the others. Among the simulations 
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performed, the combination Δs=0.2 mm and Δθ=5º is selected as the best trade-off between efficiency and 

accuracy. 

7.2.2 Wheelset negotiating a tangent track 

The normal force of the left wheel tread is shown in Fig. 16. Since the wheelset lands in the track, impacts of 

the wheel with the rail are observed in the first period of the simulation, which lead to high normal contact force 

when compared to the weight per wheel. The initial part of the simulation, when the wheels falls over the track, 

does not correspond to any realistic condition and is used only to initialise the model simulation being the results 

obtained during the stabilization period not considered. When e=1, the stabilization period is 0.8 s while a 

shorter period of 0.3 s is observed when e=0.75. After the stabilization period, the normal contact force exhibits 

high frequency varying between 0.5 and 13 kN when e=1, as shown in Fig. 16(a). In turn, a nearly constant 

force similar to the weight per wheel of 5.4 kN is observed in Fig. 16(b) where e=0.75. The hunting motion of 

the wheelset is related with the oscillatory motion of the normal contact force, observed in the detailed graphic 

shown in Fig. 16 (b). Thus, it is demonstrated the importance of considering energy dissipation in the normal 

load, represented by the restitution coefficient e<1, which not only reduces the computational cost but also 

smooths the contact forces. 

 

Fig. 16: Normal contact forces of the left tread obtained from the simulations that represent the wheelset negotiating a tangent track, (a) 

when the dissipation is neglected, e=1, and (b) when dissipation is considered, e=0.75 

7.2.3 Bogie negotiating a tangent track 

In the case of the dynamics of a bogie, the stabilization of the contact in the wheel-rail contact model occurs 

even when no energy dissipation is considered in the normal contact, as shown in Fig. 17(a). In this case, the 

stabilization is ensured by the energy dissipation performed of the primary suspension by vertical dampers that 

constrain the motion of the wheelset. In addition, the parameter e does not play a key role, as it can be observed 

from the results shown in Fig. 17(a) and Fig. 17(b). Also, the non-Hertzian model shows a slightly higher 

amplitude of the normal force comparing with the Hertzian model, which can be due to the lateral motion of the 

wheelsets, as shown in Fig. 18. The small difference of the wheelset motion obtained with the non-Hertzian and 

Hertzian methods is caused using different tangential contact models. 
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Fig. 17: Normal contact forces of the left tread obtained from the simulations that represent the bogie negotiating a tangent track, (a) 

when the dissipation is neglected, e=1, and (b) when dissipation is considered, e=0.75 

 

Fig. 18: Lateral motion of the leading wheelset obtained from the simulations that represent the bogie negotiating a tangent track, (a) 

when the dissipation is neglected, e=1, and (b) when dissipation is considered, e=0.75 

7.2.4 Vehicle negotiating a curved track 

In the curve negotiation scenario, tread and flange contacts are expected to occur simultaneously in the outer 

wheels. To assess the impact of the simplification in the wheel profile, the contacting points in the tread and 

flange are shown in Fig. 19. This result is obtained from the simulation that considers the Hertzian method with 

e=0.75, however, a similar result is obtained from the other simulations that represent this case study. Fig. 19 

shows that the points of contact in the tread span the portion of the profile ranging from uw=5.5 mm to uw=18.0 

mm, whereas the contact in the flange occurs around uw=-38 mm. Here, the tread and flange profiles represent 

well the S1002 wheel profile, since the contact points lie in segments where the real and simplified profiles are 

equal or very similar, as shown in Fig. 19. 

In a curve negotiation, the flange contact is observed especially in the outer wheels. Fig. 20 shows the 

normal contact forces in the flange contact in the leading wheelset of the front bogie. These results are obtained 

with the Hertzian and non-Hertzian models in which parameter e is set equal to 1 and 0.75. In both simulations, 

a sudden increase of the normal contact force is observed when the flange contact initiates, which indicates the 

beginning of the curve negotiation. Then, another sudden variation of the normal contact force occurs at t=8.3 s 

which is related to the initiation of the flange contact in the leading wheelset of the rear bogie. Note that, due to 

the suspension system of the vehicle, only the leading wheelsets of each bogie exhibit the flange contact during 

the whole curve negotiation. It is worth noting that the normal contact force reaches a constant value of 11.2 kN, 

during the curve segment negotiation, which is approximately one half of the centrifugal force. A similar 

magnitude of the normal contact force is developed in the flange contact in the rear bogie. Thus, the equilibrium 
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between the centrifugal force and the two flange contacts is verified. Moreover, by comparing the Hertzian and 

non-Hertzian models and the effect of parameter e, the main difference is observed when drastic variation of the 

normal contact force occurs. 

 

Fig. 19: Contact points in the tread and flange of the outer wheel of the leading wheelset 

 

Fig. 20: Normal contact forces of the outer leading flange obtained from the simulations that represent the bogie negotiating a curved 

track, (a) when the Hertzian method and (b) when the non-Hertzian method are utilized 

Since high creepages are expected in the flange contact due to the high angle between the normal of the 

contacting area and the wheel axis, the tangential contact model defined by the KBTNH is analysed. Fig. 21 

shows the inputs of the KBTNH of the outer leading flange obtained from simulations that consider e=0.75 and 

e=1. From the analysis of these results, it is observed that the contact shape is nearly elliptical since the higher 

value of ψ is never higher than 0.05, in absolute terms. However, g reaches values higher than 5 and, since 

extrapolation of the KBTNH is not considered, the input g has been truncated when the boundaries of the table 

are exceeded. The variation of parameter e has impact not only on the normal force, but also on the creepages ν 

and χ, namely, in the curve transition negotiation, which can be related to variation of the velocity of penetration 

due to approximation and separation of the wheel and rail in the flange contact. Finally, the angle α reaches 

values around 45º meaning that the longitudinal and lateral creep forces are of the same order of magnitude. 
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Fig. 21: Inputs of the KBTNH of the left tread obtained from simulations (a) with no damping (e=1) and (b) with damping (e=0.75) 

8 Conclusions 

A detailed description of a non-Hertzian contact model and its implementation in a multibody code is 

presented. The wheel-rail contact method proposed in this work consists of an enhancement of the Hertzian 

contact model proposed by Pombo et al. [1, 28] by introducing a strategy that determines the undeformed 

distance function and the corresponding non-elliptic contact patch. To solve the normal contact problem, the KP 

model has been selected [59]. In addition, the hysteresis damping considered in the LN model [62, 63], which is 

used in the Hertzian contact, is proposed to be introduced in the KP model. In turn, the tangential forces are 

estimated by interpolating the KBTNH [20, 21], whereas the Polach method [69] is used for the Hertzian contact 
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model. To show the impact of considering the Hertzian and non-Hertzian contact models, contact analyses and 

multibody simulations of selected case studies are performed, being the wheel profile S1002 and the rail UIC50 

considered. For the contact analysis, the CONTACT program is also used to provide results of reference. Here, 

the normal contact force has been prescribed, and the differences between the three methods are analysed in 

detail. Comparing the contact patches obtained from CONTACT and the non-Hertzian method, it is concluded 

that the SDEC shape is capable of accurately reproducing the non-Hertzian contact patch, which is formed by 

the wheel and the rail. Thus, the KP and the KBTNH models are suitable to handle the wheel-rail contact 

problem considered in this work. From the multibody simulations, several conclusions have been drawn. First, 

the parameters of the non-Hertzian method have been selected to solve the trade-off between accuracy and 

computational cost, namely, the non-Hertzian method can be 2.6 to 8.0 times slower than the Hertzian contact. 

Second, the hysteresis damping in the normal contact plays a key role in the simulation of a wheelset negotiating 

a rigid track, namely, the absence of energy dissipation in the normal contact leads to a stiff problem that 

provides unrealistic results. For the multibody models that comprise damping in the suspension system, the 

dissipation in the normal contact model effect is only perceived when the flange contact initiates. Overall, this 

work suggests that the non-Hertzian contact model obtained combining the KP method to solve the normal 

problem and the KBTNH to solve the tangential problem provides numerical results that are more accurate than 

those obtained from traditional Hertzian contact models yet leading to an acceptable computational effort. 

Future developments are suggested by the results presented in this work. First, different normal and 

tangential contact models can be used in the non-Hertzian method, being possible to improve the accuracy and 

efficiency. Second, extending the domain of the KBTNH is required since the parameter g exceeds its upper 

limit as observed in the multibody simulations performed in this work. In turn, a different work [72] has 

demonstrated that the parameterization of the KBTNH domain plays a key role on the accuracy of its 

interpolation. Thus, the accuracy of the tangential forces obtained from this model can be improved. Third, 

although the non-Hertzian contact model proposed here determines non-elliptical contact patches, these are 

symmetry with respect to the rolling direction. The improvement of the strategy used to determine the strips of 

the contact area is intended to obtain non-symmetric contact patches as observed for higher yaw angles [25]. 

Then, the extended Kik-Piotrowski model can be applied to solve the normal contact [25], corresponding to an 

improvement of the estimation of the wheel-rail contact forces. Fourth, an enhanced strategy to solve contact 

detection is envisaged so that the conformal contact can be tackled while ensuring the reliability of the 

multibody simulations. In this way, the simplification of the wheel profile is no longer required, making it 

possible to consider worn wheels. 

 

Acknowledgements 

The first and second authors express their gratitude to the Portuguese Foundation for Science and 

Technology (Fundação para a Ciência e a Tecnologia) through the PhD grants SFRH/BD/96695/2013 and 

PD/BD/114154/2016, respectively. This work was supported by FCT, through IDMEC, under LAETA, project 

UID/EMS/50022/2019”. 

References 

1.  Pombo, J., Ambrósio, J., Silva, M.: A New Wheel-Rail Contact Model for Railway Dynamics. Veh. Syst. 
Dyn. 45, 165–189 (2007). doi:10.1080/00423110600996017 

2.  Weidemann, C.: State-of-the-Art Railway Vehicle Design with Multibody Simulation. J. Mech. Syst. 
Transp. Logist. 3, 12–26 (2010). doi:10.1299/jmtl.3.12 

3.  Polach, O., Böttcher, A., Vannucci, D., Sima, J., Schelle, H., Chollet, H., Götz, G., Garcia Prada, M., 
Nicklisch, D., Mazzola, L., Berg, M., Osman, M.: Validation of simulation models in the context of 



33 

 

railway vehicle acceptance. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 229, 729–754 (2015). 
doi:10.1177/0954409714554275 

4.  Magalhaes, H., Madeira, J.F.A., Ambrósio, J., Pombo, J.: Railway vehicle performance optimisation 
using virtual homologation. Veh. Syst. Dyn. 54, 1177–1207 (2016). doi:10.1080/00423114.2016.1196821 

5.  Magalhaes, H., Ambrósio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction 
compatibility analysis. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230, 251–267 (2016). 
doi:10.1177/1464419315608275 

6.  BogojeviĆ, N., Lučanin, V.: The proposal of validation metrics for the assessment of the quality of 
simulations of the dynamic behaviour of railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid 
Transit. 230, 585–597 (2016). doi:10.1177/0954409714552700 

7.  Tao, G., Ren, D., Wang, L., Wen, Z., Jin, X.: Online prediction model for wheel wear considering track 
flexibility. Multibody Syst. Dyn. 44, 313–334 (2018). doi:10.1007/s11044-018-09633-5 

8.  Spangenberg, U., Frohling, R.D., Els, P.S.: Influence of wheel and rail profile shape on the initiation of 
rolling contact fatigue cracks at high axle loads. Veh. Syst. Dyn. 54, 638–652 (2016). 
doi:10.1080/00423114.2016.1150496 

9.  Ignesti, M., Innocenti, A., Marini, L., Meli, E., Rindi, A.: Development of a model for the simultaneous 
analysis of wheel and rail wear in railway systems. Multibody Syst. Dyn. 31, 191–240 (2014). 
doi:10.1016/j.wear.2014.10.008 

10.  Pombo, J., Ambrósio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., Kuka, N.: Development 
of a Wear Prediction Tool for Steel Railway Wheels Using Three Alternative Wear Functions. Wear. 271, 
238–245 (2011). doi:10.1016/j.wear.2010.10.072 

11.  Pombo, J., Ambrósio, J., Pereira, M., Lewis, R., Dwyer-Joyce, R., Ariaudo, C., Kuka, N.: A Study on 
Wear Evaluation of Railway Wheels based on Multibody Dynamics and Wear Computation. Multibody 
Syst. Dyn. 24, 347–366 (2010). doi:10.1007/s11044-010-9217-8 

12.  Six, K., Meierhofer, A., Trummer, G., Marte, C., Müller, G., Luber, B., Dietmaier, P., Rosenberger, M.: 
Classification and Consideration of Plasticity Phenomena in Wheel-Rail Contact Modelling. Int. J. Railw. 
Technol. 5, 55–77 (2016). doi:10.4203/ijrt.5.3.3. 

13.  Meymand, S.Z., Keylin, A., Ahmadian, M.: A survey of wheel–rail contact models for rail vehicles. Veh. 
Syst. Dyn. 54, 386–428 (2016). doi:10.1080/00423114.2015.1137956 

14.  Knothe, K., Böhm: History of Stability of Railway and Road Vehicles. Veh. Syst. Dyn. 31, 283–323 
(2010). doi:10.1076/vesd.31.5.283.8362 

15.  Enblom, R.: Deterioration mechanisms in the wheel–rail interface with focus on wear prediction: a 
literature review. Veh. Syst. Dyn. 47, 661–700 (2009). doi:10.1080/00423110802331559 

16.  Sugiyama, H., Araki, K., Suda, Y.: On-line and off-line wheel/rail contact algorithm in the analysis of 
multibody railroad vehicle systems. J. Mech. Sci. Technol. 23, 991–996 (2009). doi:10.1007/s12206-009-
0327-2 

17.  Piotrowski, J., Chollet, H.: Wheel–rail contact models for vehicle system dynamics including multi-point 
contact. Veh. Syst. Dyn. 43, 455–483 (2005). doi:10.1080/00423110500141144 

18.  Elkins, J.A.: Prediction of Wheel/Rail Interaction: The State-of-the-Art. Veh. Syst. Dyn. 20, 1–27 (1992). 
doi:10.1080/00423119208969385 

19.  Alonso, A., Guiral, A., Giménez, J.G.: Wheel Rail Contact: Theoretical and Experimental Analysis. Int. J. 
Railw. Technol. 2, 15–32 (2013). doi:10.4203/ijrt.2.4.2 

20.  Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. 
Veh. Syst. Dyn. 55, 875–901 (2017). doi:10.1080/00423114.2017.1291980 



34 

 

21.  Piotrowski, J., Bruni, S., Liu, B., Di Gialleonardo, E.: A fast method for determination of creep forces in 
non-Hertzian contact of wheel and rail based on a book of tables. Multibody Syst. Dyn. 45, 169–184 
(2018). doi:10.1007/s11044-018-09635-3 

22.  Sichani, M.S., Enblom, R., Berg, M.: Non-Elliptic Wheel-Rail Contact Modelling in Vehicle Dynamics 
Simulation. Int. J. Railw. Technol. 3, 77–96 (2014). doi:10.4203/ijrt.3.3.5 

23.  Sh. Sichani, M., Enblom, R., Berg, M.: A novel method to model wheel-rail normal contact in vehicle 
dynamics simulation. Veh. Syst. Dyn. 52, 1752–1764 (2014). doi:10.1080/00423114.2014.961932 

24.  Sun, Y., Zhai, W., Guo, Y.: A robust non-Hertzian contact method for wheel–rail normal contact analysis. 
Veh. Syst. Dyn. 56, 1899–1921 (2018). doi:10.1080/00423114.2018.1439587 

25.  Liu, B., Bruni, S., Vollebregt, E.: A non-Hertzian method for solving wheel–rail normal contact problem 
taking into account the effect of yaw. Veh. Syst. Dyn. 54, 1226–1246 (2016). 
doi:10.1080/00423114.2016.1196823 

26.  Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs, 
New Jersey (1988) 

27.  Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston, 
Massachussetts (1989) 

28.  Pombo, J., Ambrósio, J.: Application of a Wheel-Rail Contact Model to Railway Dynamics in Small 
Radius Curved Tracks. Multibody Syst. Dyn. 19, 91–114 (2008). doi:10.1007/s11044-007-9094-y 

29.  Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for 
wheel/rail contact problems. J. Sound Vib. 269, 295–325 (2004). doi:10.1016/S0022-460X(03)00074-9 

30.  Sugiyama, H., Sekiguchi, T., Matsumura, R., Yamashita, S., Suda, Y.: Wheel/rail contact dynamics in 
turnout negotiations with combined nodal and non-conformal contact approach. Multibody Syst. Dyn. 
27, 55–74 (2012). doi:10.1007/s11044-010-9215-x 

31.  Meli, E., Ridolfi, A.: An innovative wheel-rail contact model for railway vehicles under degraded 
adhesion conditions. Multibody Syst. Dyn. 33, 285–313 (2013). doi:10.1007/s11044-013-9405-4 

32.  Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: Determination of wheel-rail contact points with 
semianalytic methods. Multibody Syst. Dyn. 20, 327–358 (2008). doi:10.1007/s11044-008-9123-5 

33.  Zaazaa, K.E., Schwab, A.L.: Review of Joost Kalker’s wheel-rail contact theories and their 
implementation in multibody codes. In: Proceedings of the ASME 2009 International Design 
Engineering Technical Conference & Computers and Information in Engineering Conference. pp. 1889–
1990 (2009) 

34.  Marquis, B., Pascal, J.P.: Report on a railway Benchmark simulating a single wheelset without friction 
impacting a rigid track. Veh. Syst. Dyn. 46, 93–116 (2008). doi:10.1080/00423110701506905 

35.  Shackleton, P., Iwnicki, S.: Comparison of wheel–rail contact codes for railway vehicle simulation: an 
introduction to the Manchester Contact Benchmark and initial results. Veh. Syst. Dyn. 46, 129–149 
(2008). doi:10.1080/00423110701790749 

36.  Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail 
vehicle dynamics context. Veh. Syst. Dyn. 49, 1021–1072 (2011). doi:10.1080/00423114.2011.586430 

37.  Eickhoff, B.M., Evans, J.R., Minnis, A.J.: A Review of Modelling Methods for Railway Vehicle 
Suspension Components. Veh. Syst. Dyn. 24, 469–496 (1995). doi:10.1080/00423119508969105 

38.  Alfi, S., Bruni, S., Mazzola, L.: Impact of suspension component modelling on the accuracy of rail 
vehicle dynamics simulation. In: Procedings of the 11th Mini conference on Vehicle System Dynamics, 
Identification and Anomalies, Budapest, Hungary (2008) 

39.  Pombo, J., Ambrósio, J.: An Alternative Method to Include Track Irregularities in Railway Vehicle 



35 

 

Dynamic Analyses. Nonlinear Dyn. 68, 161–176 (2012). doi:10.1007/s11071-011-0212-2 

40.  Ambrósio, J., Antunes, P., Pombo, J.J., Pombo, J.J.: On the requirements of interpolating polynomials for 
path motion constraints. Mech. Mach. Sci. 26, 179–197 (2015). doi:10.1007/978-3-319-10723-3_19 

41.  Bezin, Y., Funfschilling, C., Kraft, S., Mazzola, L.: Virtual testing environment tools for railway vehicle 
certification. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 229, 755–769 (2015). 
doi:10.1177/0954409715587596 

42.  Antunes, P., Magalhaes, H., Ambrosio, J., Pombo, J., Costa, J.: A co‐simulation approach to the rail‐
wheel contact with flexible railways. Multibody Syst. Dyn. 45, 245–272 (2018). doi:10.1007/s11044-
018-09646-0 

43.  Wu, Q., Sun, Y., Spiryagin, M., Cole, C.: Parallel Co-Simulation Method for Railway Vehicle-Track 
Dynamics. J. Comput. Nonlinear Dyn. 13, 041004 (2018). doi:10.1115/1.4039310 

44.  Costa, J., Antunes, P., Magalhaes, H., Ambrósio, J., Pombo, J.: Development of flexible track models for 
railway vehicle dynamics applications. Proc. Third Int. Conf. Railw. Technol. Res. Dev. Maintenance". 
110, (2016). doi:10.4203/ccp.110.98 

45.  Di Gialleonardo, E., Braghin, F., Bruni, S.: The influence of track modelling options on the simulation of 
rail vehicle dynamics. J. Sound Vib. 331, 4246–4258 (2012). doi:10.1016/j.jsv.2012.04.024 

46.  Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail 
contact problem. Nonlinear Dyn. 40, 169–193 (2005). doi:10.1007/s11071-005-5200-y 

47.  Sugiyama, H., Suda, Y.: On the Contact Search Algorithms for Wheel/Rail Contact Problems. J. Comput. 
Nonlinear Dyn. 4, 41001 (2009). doi:10.1115/1.3187211 

48.  Escalona, J.L., Aceituno, J.F.: Multibody simulation of railway vehicles with contact lookup tables. Int. J. 
Mech. Sci. 155, 571–582 (2019). doi:10.1016/j.ijmecsci.2018.01.020 

49.  Matsumura, R., Sugiyama, H., Suda, Y.: Analysis of Vehicle/Turnout Interactions of Railroad Vehicles 
Using Multiple Contact Tables. J. Syst. Des. Dyn. 5, 450–460 (2011). doi:10.1299/jsdd.5.450 

50.  Falomi, S., Malvezzi, M., Meli, E.: Multibody modeling of railway vehicles: Innovative algorithms for 
the detection of wheel–rail contact points. Wear. 271, 453–461 (2011). doi:10.1016/j.wear.2010.10.039 

51.  Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel–rail contact analysis. 
Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 225, 127–138 (2011). doi:10.1177/2041306810394721 

52.  Bozzone, M., Pennestrì, E., Salvini, P.: Dynamic analysis of a bogie for hunting detection through a 
simplified wheel-rail contact model. Multibody Syst. Dyn. 25, 429–460 (2011). doi:10.1007/s11044-010-
9233-8 

53.  Pascal, J.P., Jourdan, F.: The “Rigid-Multi-Hertzian Method” as Applied to Conformal Contacts. In: 
Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts 
A, B, and C. pp. 1811–1825. ASME (2007) 

54.  Blanco-Lorenzo, J., Santamaria, J., Vadillo, E.G., Correa, N.: On the influence of conformity on wheel–
rail rolling contact mechanics. Tribol. Int. 103, 647–667 (2016). doi:10.1016/j.triboint.2016.07.017 

55.  Vollebregt, E., Segal, G.: Solving conformal wheel–rail rolling contact problems. Veh. Syst. Dyn. 52, 
455–468 (2014). doi:10.1080/00423114.2014.906634 

56.  Vollebregt, E.A.H.: Conformal contact: corrections and new results. Veh. Syst. Dyn. 56, 1622–1632 
(2018). doi:10.1080/00423114.2018.1424917 

57.  Marques, F., Magalhaes, H., Pombo, J., Flores, P., Ambrosio, J.: Development of a new wheel-rail 
contact model for multibody simulations. In: Proceedings of the Fourth International Conference on 
Railway Technology: Research, Development and Maintenance". , Sitges, Spain (2018) 



36 

 

58.  Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, 
Dordrecht, The Netherlands (1990) 

59.  Piotrowski, J., Kik, W.: A simplified model of wheel/rail contact mechanics for non-Hertzian problems 
and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46, 27–48 (2008). 
doi:10.1080/00423110701586444 

60.  Ayasse, J.B., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. 
Syst. Dyn. 43, 161–172 (2005). doi:10.1080/00423110412331327193 

61.  Quost, X., Sebes, M., Eddhahak, A., Ayasse, J., Chollet, H., Gautier, P., Thouverez, F.: Assessment of a 
Semi-Hertzian Method for Determination of Wheel-Rail Contact Patch. Veh. Syst. Dyn. 44, 789–814 
(2006). doi:10.1080/00423110600677948 

62.  Lankarani, H.M., Nikravesh, P.E.: Continuous Contact Force Models for Impact Analysis in Multibody 
Systems. Nonlinear Dyn. 5, 193–207 (1994) 

63.  Lankarani, H.M., Nikravesh, P.E.: A Contact Force Model with Hysteresis Damping for Impact Analysis 
of Multibody Systems. AMSE J. Mech. Des. 112, 369–376 (1990) 

64.  Vollebregt, E.A.H., Iwnicki, S.D., Xie, G., Shackleton, P.: Assessing the accuracy of different simplified 
frictional rolling contact algorithms. Veh. Syst. Dyn. 50, 1–17 (2012). 
doi:10.1080/00423114.2011.552618 

65.  Kalker, J.J.: On the Rolling Contact of Two Elastic Bodies in the Presence of Dry Friction, (1967) 

66.  Johnson, K.L., Vermeulen, P.J.: Contact of Non-Spherical Bodies Transmitting Tangential Forces. J. 
Appl. Mech. 31, 338–340 (1964). doi:10.1115/1.3629610 

67.  Shen, Z.Y., Hedrick, J.K., Elkins, J.A.: A Comparison of Alternative Creep Force Models for Rail Vehicle 
Dynamic Analysis. Veh. Syst. Dyn. 12, 79–83 (1983). doi:10.1080/00423118308968725 

68.  Kalker, J.J.: A Fast Algorithm for the Simplified Theory of Rolling-Contact. Veh. Syst. Dyn. 11, 1–13 
(1982). doi:10.1080/00423118208968684 

69.  Polach, O.: A Fast Wheel-Rail Forces Calculation Computer Code. Veh. Syst. Dyn. 33, 728–739 (1999). 
doi:10.1080/00423114.2013.826370 

70.  Kalker, J.J.: Book of Tables for the Hertzian Creep-Force Law. Delft University of Technology, Delft, 
The Netherlands (1996) 

71.  Sh. Sichani, M., Enblom, R., Berg, M.: An alternative to FASTSIM for tangential solution of the wheel–
rail contact. Veh. Syst. Dyn. 54, 748–764 (2016). doi:10.1080/00423114.2016.1156135 

72.  Marques, F., Magalhaes, H., Liu, B., Pombo, J., Flores, P., Ambrósio, J., Piotrowski, J., Bruni, S.: On the 
generation of an enhanced lookup table for wheel-rail contact models. In: The 11th International 
Conference on Contact Mechanics and Wear of Rail/Wheel Systems. , Delft, The Netherlands (2018) 

73.  Vollebregt, E.A.H.: Comments on ‘the Kalker book of tables for non-Hertzian contact of wheel and rail.’ 
Veh. Syst. Dyn. 56, 1451–1459 (2018). doi:10.1080/00423114.2017.1421767 

74.  Piotrowski, J., Bruni, S., Liu, B.: Reply to comments on ‘The Kalker book of tables for non-Hertzian 
contact of wheel and rail’ by E. A. H. Vollebregt. Veh. Syst. Dyn. 56, 1460–1459 (2018). 
doi:10.1080/00423114.2018.1437274 

75.  Magalhaes, H., Ambrósio, J., Pombo, J.: Simulation of a Railway Vehicle Running in a Mountainous 
Track at a Prescribed Speed. Proc. Third Int. Conf. Railw. Technol. Res. Dev. Maintenance". (2016). 
doi:doi:10.4203/ccp.110.100 

76.  Magalhaes, H., Pombo, J., Ambrosio, J., Madeira, J.F.A.: Rail vehicle design optimization for operation 
in a mountainous railway track. Innov. Infrastruct. Solut. 2, 1–6 (2017). doi:10.1007/s41062-017-0088-1 



37 

 

77.  Ambrósio, J., Pombo, J., Antunes, P., Pereira, M.: PantoCat statement of method. Veh. Syst. Dyn. 53, 
314–328 (2015). doi:10.1080/00423114.2014.969283 

78.  Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without 
clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42, 317–
345 (2018). doi:10.1007/s11044-018-9613-z 

79.  Goldsmith, W.: Impact - The Theory and Physical Behaviour of Colliding Solids. Edward Arnold LTD, 
London, United Kingdom (1960) 

80.  Hunt, K., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 7, 
440–445 (1975) 

81.  Pombo, J., Ambrósio, J.: A Computational Efficient General Wheel-Rail Contact Detection Method. J. 
Mech. Sci. Technol. Sep. Vol. KSME Int. J. 19, 411–421 (2005) 

82.  Vollebregt, E.: User guide for CONTACT, Version v17.1, (2017) 

 


