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Radial Basis Function Neural Network aided Adaptive
Extended Kalman Filter for Spacecraft Relative Navigation

Vincenzo Pesce∗, Stefano Silvestrini †, and Michèle Lavagna‡

Politecnico di Milano, via La Masa 34, Milano, Italy

This paper presents a novel technique, combining neural network and Kalman filter, for

state estimation. The proposed solution provides the estimates of the system states while

also estimating the uncertain or unmodeled terms of the process dynamics. The developed

algorithm exploits a Radial Basis Function Neural Network that outputs an estimate of the

disturbances that are included in the prediction step of an Adaptive ExtendedKalman Filter. A

recursive form of adaptation is used to limit the computational burden. The proposed solution

is compared to classical navigation filter implementations. A realistic spacecraft relative

navigation scenario is selected to test the filter performance. Simulations are performed with

accurate tuning and also in off-nominal conditions to test the filter robustness.

I. Introduction
Spacecraft absolute and relative navigation are key tasks in the Guidance Navigation & Control (GNC) chain for

current and future missions. Current navigation algorithms rely on the accurate knowledge of the system dynamics. This

is possible whenever spacecrafts orbiting the Earth are considered, where the environment can be accurately modeled to

a great extent of accuracy. Nevertheless, when dealing with relative approach with unknown bodies or interplanetary

missions, the modelling of the system dynamics yields inevitable unmodeled uncertainties. This is mainly due to partial

knowledge of the operative scenario, e.g. orbital disturbances acting on the target spacecraft. Furthermore, the growing

interest towards micro-platforms, both for Earth and interplanetary missions, has significantly reduced the spacecraft

available computational power; hence, very sophisticated models cannot be anymore handled on-board. Such limitation

leads to a degradation of performance of the GNC subsystem [1]. In this framework, on one hand, the dynamical model

employed in the on-board algorithms needs to be simplified, on the other hand, the accuracy of such model significantly

deteriorates the GNC performance [1], due to the absence of nonlinear terms as well as disturbances. The Artificial

Neural Networks (ANNs) are a powerful tool to bridge this gap. ANNs are becoming increasingly important when

dealing with uncertain processes. In particular, their capability of approximating unknown functions can be employed

to reconstruct system nonlinearities, as well as unmodeled environmental disturbances. The advantage of estimating
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such uncertainties benefits the whole GNC process chain. In this framework, Gurfil et al. [2] presented a nonlinear

adaptive neural control method applicable to deep space formation flying. Bae and Kim [3] developed a neural network

aided sliding mode control scheme for spacecraft formation flying. Recently, Zhou [4] proposed a neural-network based

reconfiguration control for spacecraft formation in obstacle environments. Traditionally, the ANNs are solely employed

for disturbance estimation, yet the aim of the Navigation filter is to estimate the system state. In past years, there have

been attempts to couple ANNs with Extended Kalman Filters (EKF). In particular, the most common approach is to

employ EKFs to train the ANNs [5]. In this configuration, the state of the Kalman filter is augmented with the ANN

weights. For a large network this process increases the computational burden. Furthermore, the resulting coupled

structure cannot provide an estimate of the uncertainties, unless the disturbance vector is added to the state vector and

estimated as a constant parameter. An alternative solution is to use the estimated disturbance term, output of the ANN,

directly in the dynamical propagation of the filter [6]. In this way, instead of the state vector, the dynamics of the EKF is

augmented by an ANN that captures the unmodeled dynamics. The ANN learns online the function describing the

disturbance, i.e. the mismatch between the measurement and the a-priori guess given by the model selected for the

EKF. However, in this case, the augmented dynamical model accuracy changes in time and therefore, its covariance

matrix has to be adapted at each step to capture this variation. In the past years, few solutions have been proposed to

derive an efficient formulation for neural network aided filters. Gao et al. [7] derived a Radial Basis Function Neural

Network (RBFNN) - Kalman Filter to improve the estimation accuracy for seam tracking during high-power fiber laser

welding. They proposed a coupled formulation where the RBFNN is used to compensate for the model and noise

uncertainties. However, they do not consider any online adaptation of the filter covariances. Similarly, Stubberud et al.

[6] developed a neuro-observer based on an EKF and a multilayer feed-forward neural network. Their formulation

involves two coupled Kalman Filters, one to estimate the state and the other to tune the neural network. Other authors

also proposed neural network for system identification based on offline training [8, 9]. Jwo and Huang [10] presented a

neural network aided EKF for DGPS positioning. The neural network is used for noise identification to adaptively tune

the EKF. However, their neural network relies on an offline training using the steepest descent technique. Recently Harl

et al. [11] developed a reduced-order modified state observer for uncertainties estimation in nonlinear systems. They

also applied the proposed technique to estimate the uncertain disturbances caused by J2 perturbation around the Earth.

Also in this case, the gain of the observer is user-selected and there is not any kind of adaptation depending on the

experienced scenario. In this paper, we propose a Radial Basis Function Neural Network aided Adaptive Extended

Kalman Filter (RBFNN-AEKF) for state and disturbance estimation. RBFNN are selected for their simple structure and

suitability for fast online training [12]. The neural network estimates the unmodeled terms which are fed to the EKF as

an additional term to the state and covariance prediction step. Finally, a recursive form of the adaptive EKF is employed

to limit the overall computational cost. The intended contributions of the paper are:

• to propose a filter to be employed with unknown or very uncertain environment;
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• to develop a robust filter through the adaptation step;

• to demonstrate the feasibility of exploiting the proposed filter for relative navigation in perturbed orbits with a

very simple dynamical model;

• to compare it with other common techniques for navigation filtering with various degrees of dynamics uncertainty.

The paper is organized as follows: the proposed algorithm architecture is presented in Section II; the neural network

and the filter structure are detailed in Subsections II.A and II.B, respectively. Section III describes the applicative

scenario of spacecraft relative navigation. Section IV presents the simulation environment and the results for the

different filters in nominal and off-nominal case. Finally, in Section V, the conclusions are drawn.

II. Algorithm Architecture
The filter architecture is sketched in Figure 1. The neural network estimates the disturbances acting on the system,

which are then adjuncted in the prediction step of the filter. The innovation term is used to carry out the adaptivity task.

Whereas, the residual term, taking into account the estimation state at step k, is fed into the online learning algorithm of

the network’s weights. Each block of the RBFNN-AEKF is detailed in the following subsections. The system dynamics,

Fig. 1 Proposed architecture for the RBFNN-AEKF.

taking into account the process noise, is assumed to be described as:

Ûx = f (x, u) + w (1)

Alongside, the measurements are assumed to be perturbed by white noise as:

zmeas = Ix + v (2)
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Fig. 2 Architecture of the RBF neural network. The network processes the estimated states yield an estimate
of the disturbance term. The input, hidden, and output layers have n, m, and j neurons, respectively. Φi(x)
denotes the radial Gaussian function at the hidden node i.

Note that in the derivation presented in the following sections, we assume that the observation model is zmeas = Ix + v as

in [11]. Normally, an observation function, often nonlinear, is introduced as explained in Section II.B. Such assumption

implies that the observation matrix H = I or, more in general, h(x) = x. In other words, the state is assumed to be

completely observable for sake of derivation but the approach is applicable to partially observable state and to nonlinear

measurement models.

A. RBFNN

1. Neural Network Structure

The Radial Basis Function Neural Network (RBFNN) is a popular network topology, which has the capability of

universal approximation [12] [13]. Due to its simple structure and much quicker learning process, it stands out compared

to the classic Multi-Layer Perceptron (MLP), especially for function approximation applications [12]. The RBF neural

network is a three-layer feedforward network, as seen in Figure 2. The RBF owns a single hidde-layer because it does

not need multiple layers to obtain nonlinear behaviour clasification, as in Multi-Layer Perceptron. The neurons of RBF

are nonlinear Gaussian function hence a shallow network can be used with the same results of multi-layer perceptron.

Hence, referring to Fig. 1, the lightest network has been chosen, consisting of one input layer, one hidden and one

output layer. The input layer processes the state vector x̂k−1 = [x1 x2 ... xn]T . The hidden layer performs a nonlinear

mapping of the input, whereas, the output layer is a linear combination of the nonlinear hidden neurons transformed into

the resultant output space. The output space is the disturbance vector d̂ [d1 d2 ... dn]T A RBFNN is used to estimate the

unmodeled disturbances, as well as the nonlinearities present in the system dynamics. The generic layout of the network

is sketched in Figure 2. The network has a 3-layers structure, comprising an input, output and hidden layer. For the sake

of derivation we call x ∈ Rn the input vector. It is hereby remarked that the vector x is employed to derive the network

structure: in the following sections the distinction between state vector and estimated state will be described and treated
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accordingly. Similarly to the input vector, Φ ∈ Rm is the hidden layer vector and i the associated index, d ∈ Rj is the

output vector and l the associated index. In this derivation we assume that n ≡ j. Essentially, the hidden layer evaluates

a set of m radial basis functions Φ : Rn → R, where n is the number of states, which are chosen as centered-Gaussian

expression:

Φi(x) = e−η( | |x−ci | |)
2

(3)

for i = 1 : m, where m is the number of neurons and ci is the randomly selected center for neuron i. The number of

neurons m is a user-defined parameter: its value is application-dependent and it shall be selected by trading-off the

reconstruction accuracy and the computational time. The same consideration holds for the parameter η, which impacts

the shape of the Gaussian functions. A high value for η sharpens the Gaussian bell-shape, whereas a low value spreads

it on the real space. On one hand, a narrow Gaussian function increases the responsiveness of the RBF network, on the

other hand in case of limited overlapping of the neuronal functions due to too narrow Gaussian bells vanishes the output

of the network. Hence, ideally, the parameter η is selected based on the order of magnitude of the exponential argument

in Eq. 3. The output of the neural network hidden layer, namely the radial functions evaluation, is normalized:

Φnorm(x) =
Φ(x)∑m

i=1Φi(x)
(4)

The classic RBF network presents an inherent localized characteristic; whereas, the normalized RBF network exhibits

good generalization properties, which decreases the curse of dimensionality that occurs with classic RBFNN [12]. In

the following derivation, the output vector of the hidden layer is simply called Φ(x) without the subscript norm for the

sake of simplicity. For a generic input x ∈ Rn, the components of the output vector d ∈ Rj of the network is:

dl(x) =
m∑
i=1

wilΦi(x) (5)

In a compact form, the output of the network can be expressed as:

d(x) =WTΦ(x) (6)

where W = [wil] for i = 1, ...,m and l = 1, ..., j is the trained weight matrix and Φ(x) = [Φ1(x) Φ2(x) · · · Φm(x)]T is

the vector containing the output of the radial basis functions, evaluated at the current system state.
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2. Online Learning Algorithm

The dynamical model can be described by a set of nonlinear differential equations:

Ûx = f (x) + dext (7)

where the term dext is representative of the unknown disturbance acceleration that is added to the known dynamics

function f (x). In particular the disturbance term gathers the contribution of all the environmental perturbations, and

unmodeled terms. These uncertainties need to be estimated online. Hence, an online learning algorithm, which

drives the update of the weights, is required. The weights update law is derived to guarantee the stability of the

estimation algorithm and neural dynamics, hereby defined as the evolution of the weight matrix in time. In the following

mathematical derivation we make use of the universal approximation theorem for neural networks that guarantees the

existence of a set of ideal weights W that approximates a function with a bounded arbitrary approximation error [12].

Such weights are unknown, hence the algorithm is designed to obtain an estimate Ŵ of the ideal weights by performing

online learning. The neural network learning algorithm relies on the estimation error dynamics, targeting convergence

and stability of the estimated weights matrix Ŵ evolution towards the ideal weights and the error e, calculated in the

EKF. The symbol ˆ(·) is used to refer to estimated quantities.

To derive the error dynamics, let us assume the actual system dynamics is described by Eq. 7, where dext is the

unknown external disturbance term. The actual system dynamics can be rewritten as the following equation, assuming

to include all the nonlinear terms into d(x) : Rn → Rj, j ≡ n, which is the vector-valued function equivalent to the

RBFNN output vector:

Ûx = A · x + d(x) (8)

where the term d(x) captures all the nonlinearities together with the unknown disturbances external to the system,

namely d(x) = f (x) − Ax + dext. The matrix A is a stable, potentially time-varying, matrix representing the linear term,

if any, of the original dynamics expression in Eq. 7. The expression of the continuous single-step Kalman filter can be

written as:

Û̂x = A · x̂ + d̂(x̂) +KkH(x − x̂) (9)

where d̂ is estimated using the radial-basis function neural network, Kk is the time-varying gain matrix of the Kalman

filter (subscript k stands for Kalman here) and H is the observation matrix. In this paper, the observation matrix of the

measurement model is assumed to be the identity matrix, nevertheless the derivation is not altered if one would consider

a different expression for the measurement model. The measurements are assumed to be affected by white noise as

in Eq. 2. Consider that the continuous form is employed for the sake of derivation, indeed the learning rule is then
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discretized for the actual implementation. The error dynamics can be derived as:

e = x − x̂ (10)

Ûe = Ûx − Û̂x = d(x) − d̂(x̂) + (A −KkH)e (11)

Invoking the universal approximation theorem for neural networks [12], we can assume there exists an ideal approximation

of the disturbance term d(x):

d(x) =WTΦ(x) + ε (12)

where W is the neural weights matrix, Φ(x) is the vector-valued function resulting from the evaluation of the Gaussian

functions contained in each neuron of the RBFNN, ε is a bounded arbitrary approximation error. Consequently, the

error in estimation can be written as:

d(x) − d̂(x̂) =WTΦ(x) + ε − ŴTΦ(x̂) (13)

by adding and subtracting the term W · Φ(x̂) and performing few mathematical manipulations, Equation 13 can be

expressed as:

d̃ = W̃T
Φ(x̂) + ε ′ (14)

where d̃ = d − d̂, W̃ =W − Ŵ and the bounded term ε ′ = ε +W · [Φ(x) − Φ(x̂)]. The aim of the learning rule is to

drive the dynamics error to zero, as well as forcing the weights to converge to the ideal ones. Namely:

e→ 0, W̃→ [0]

Similarly to [11], introducing the following scalar Lyapunov function for the feedback system, including the network

weights and the estimation error, the weights update rule Û̂W is derived to guarantee the stability and convergence of the

estimation algorithm:

V =
1
2

tr(ξW̃TW̃) +
η

2
eT e (15)

where tr(·) is the trace operator, ξ, η > 0 are user-defined coefficients. Recalling Eq. 11 and 14, the derivative of the
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Lyapunov function can be written as:

ÛV = tr(ξW̃T Û̃W) + ηeT e

= tr(ξW̃T Û̃W) + ηeT (W̃TΦ(x̂) + ε ′ + (A −KkH)e)

= tr(ξW̃T Û̃W) + ηeTW̃TΦ(x̂) + ηeT ε ′ + ηeT (A −KkH)e

= tr(ξW̃T Û̃W + ηW̃TΦ(x̂)eT ) + ηeT ε ′ + ηeT (A −KkH)e

= tr(W̃T (ξ Û̃W + ηΦ(x̂)eT )) + ηeT ε ′ + ηeT (A −KkH)e < 0 (16)

Recalling that Û̃W = − Û̂W, the expression for the weights update rule that guarantees stability and convergence of the

estimation algorithm and feedback system in Fig. 1 for weights update:

Û̂W =
η

ξ
Φ(x̂)eT (17)

Indeed, by inserting Eq. 17 into Eq. 16, the expression for the derivative of the Lyapunov function reduces to the

stability of the error estimation of the Extended Kalman Filter. The error term in Eq. 17 is defined as Eq. 10. Such term

represent the residual between estimated and actual output of the observed system: in practical terms, the expression is

the innovation of the estimation filter, which takes this form based on the assumption of Eq. 2. The ε ′ term is a bounded

term that derives from the universal approximation theorem of artificial neural networks [12] that states that the term ε

can be arbitrarily small. In practice, it represents an upper boundary for the derivative of the Lyapunov function, as in

[11]. In the case of linear systems, the term (A−KkH) grants asymptotic stability of the Kalman Filter if A is reachable

and H is observable. In the case of nonlinear systems, this is not always true. However, it has been proved [14] that the

estimation error of an EKF is exponentially bounded if:

• A is nonsingular for every t ≥ 0;

• there exist real constants p1, p2 > 0 such that p1 · I ≤ Pk ≤ p2 · I, where Pk is the estimated state covariance

matrix;

• the initial estimation error satisfies | |x̂0 − x0 | | ≤ ε and the process and measurements covariance matrices are

bounded

where x̂0 and x0 are the estimated and true state vector at the initial step. Given the EKF asymptotic stability with

exponential decaying error under the aforementioned conditions, i.e. the derivative of the Lyapunov function of the

estimation error is negative, Eq. 16 is verified and hence the stability of the estimator is guaranteed.

The weights update rule can be discretized using a first-order Euler method, assuming the measurements interval is
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small enough:

Ŵk+1 = ψŴk + h Û̂Wk = ψŴk + h
η

ξ
Φ(x̂k)eTk (18)

where k is the time step index, ψ is a user-defined relaxation factor, h = tk+1 − tk is the time interval between two

consecutive measurements.

B. Adaptive Extended Kalman Filter

The EKF is one of the most common techniques for nonlinear state estimation. In fact, it represents the extension of

the linear Kalman Filter when dealing with nonlinear dynamical systems [15]. The EKF is the standard approach for

relative navigation filters [16–18]. However, sometimes, accurate dynamical models are not available on-board. This is

mostly due to computational limitations (e.g. for Cubesats) or unavailability of precise formulations (e.g. non-Keplerian

dynamics). In these cases, a simpler model has to be used and the unmodeled effects have to be estimated. In this

section the proposed approach combining the introduced RBFNN and a Kalman Filter is presented. The novelties lie

in the formulation of a stand-alone estimator block containing a disturbance estimator and a filter. It is important to

underline as the RBFNN and the filter are tightly coupled and they do not constitute two separate pieces. This is also a

consequence of the implementation of an adaptive form of the process covariance matrix update.

Let’s consider the system and measurement models:

xk = f (xk−1, uk−1,wk−1) = Axk−1 + d(xk−1, uk−1) + wk−1, (19)

zk = h(xk + vk) (20)

with x being the state vector, u the control input, w and v process and measurement noises, described by zero-mean

white noise uncorrelated distributions with covariance matrices Q and R respectively. Please notice that the system

dynamics is described by a linear part plus a non-linear disturbance function d, by assumption (see 8). In this case, the

formulation of the RBFNN-AEKF is given by:

x̂−k =Ax̂−k−1 + d(x̂−k−1, uk−1) (21)

P−k = F̃k−1P+k−1F̃T
k−1 +Qk−1 (22)

Kk = P−k HT(HP−k HT + Rk)
−1 (23)

P+k = (I −KkH)P−k (I −KkH)T +KkRkKT
k (24)

x̂+k = x̂−k +Kk(zk−Hx̂−k ) (25)
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with

F̃ = A +
∂d
∂x

����
x̂−
k

; H =
∂h
∂x

����
x̂−
k

= I (26)

and

Qk = αQk−1 + (1 − α)(Kkδkδ
T
k KT

k ) (27)

being Pk the estimation error covariance and Kk the Kalman gain, α is a forgetting factor and δk = zk−Hx̂−k is the filter

innovation. The Jacobian in Eq. 26 of the vector-valued function reconstructed by the RBFNN is derived from Eq. 6:

∂d
∂x
=
∂WTΦ(x)

∂x
=WT ∂Φ(x)

∂x
∈ Rn×n (28)

In this formulation, the state is assumed to completely observable. This assumption can be relaxed but a different

formulation has to be developed for the neural network (see [11]). The adaptation of Q is performed according to Eq. 27

as in [19] to limit the computational effort. The adaptation step is a fundamental aspect in the implementation of this

estimation technique. In fact, the nonlinear term estimated by the RBFNN d(x) directly affects the state estimation and,

moreover, it influences the accuracy of the adopted dynamical model at each time step. The evolution in time of the

model accuracy is very difficult to be established a-priori being dependent on the effectiveness of the disturbance term

estimation, performed by the RBFNN time-varying. Although this aspect is often neglected [7], an online tuning of the

process covariance matrix Q is fundamental to ensure filter accuracy and robustness. In fact, the adaptive formulation

guarantees that, even when the neural network produces a completely wrong estimates of the disturbances, yielding a

significantly biased dynamical model, the filter, at least, follows the available measurements. In fact, if the network yields

a disturbance term that is significantly off, the dynamical model is no longer reliable. This implies a large value of the filter

innovation δ, which delivers a high-valued process covariance matrix according to Eq. 27. As result, the filter does not

diverge but simply follows the measurements (Eq. 22). The overall algorithm implementation is reported in Algorithm 1:
Algorithm 1: RBFNN-AEKF

begin

Random initialization of the RBFNN

RBFNN estimation step of d using the estimated state at the previous step→ d(x) =WTΦ(x)

RBFNN weight update→ Û̂W = η
ξ Φ(x̂)eT

EKF Prediction step, considering the computed d term→ x̂−k =Ax̂−k−1 + d(x̂−k−1, uk−1)

EKF Update step→ x̂+k = x̂−k +Kk(zk−Hx̂−k )

EKF Q adaptation step→ Qk = αQk−1 + (1 − α)(Kkδkδ
T
k KT

k )

Result: Estimated state x̂+
k
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III. Application to Spacecraft Relative Navigation
In this section, we introduce one of the possible applications of the proposed RBFNN-AEKF. The relative navigation

between two spacecrafts orbiting the Earth is considered for a dual motivation: it is a well-known scenario, hence

sophisticated model can be employed to simulate the reality to evaluate the filter performances; also, there are many

available dynamical models with increasing levels of accuracy that can be used for comparison. It is worth remarking

that this is not the only application nor the most appealing one, since more uncommon scenarios are expected to

emphasize the benefit of the proposed filter, such as interplanetary mission or non-keplerian orbits. Hereby, the different

dynamical models for filter propagation are presented as well as the filter alternatives used for comparison.

A. Relative Dynamical Models

The paper uses a high-fidelity propagator as truth for algorithm validation. The accurate orbital simulator is used

to test the filters in a realistic environment. In fact, the relative motion between target and chaser is obtained by

integrating separately the chaser and the target orbital dynamics considering the perturbations acting on each spacecraft.

In particular, the model considers irregularities in the gravitational potential due to non-spherical distribution of Earth’s

mass, the presence of the Moon and the Sun as third-body, the effect of the solar radiation pressure (SRP) and the

atmospheric drag. The adopted Earth gravitational model is the EGM96 with harmonics up to the third degree and

order. On the other hand, the atmospheric drag force is computed by using the Jacchia Reference Atmosphere model.

The relative dynamics equations, used in the filter implementation as design models, are hereby presented.

1. Clohessy-Wilthsire Equations

The most common set of equations to describe the relative dynamics between two spacecrafts are the well-known

Clohessy-Wiltshire equations, which are presented hereby. For a full derivation, the authors suggest to refer to [20].

With reference to Figure 3, the target spacecraft is in a nominal orbit at a distance r0 from the attractor. If the chaser is

in close proximity of the target, the orbital radius can be expressed as r = r0 + δr. The equation of motion of the chaser

spacecraft is:

Ür = −µ
r
r3 (29)

where µ is the gravitational constant of the central body. Let us attach a co-moving frame of reference centered on the

target spacecraft center of mass, as shown in Figure 3. The x axis is aligned with r0, the z is orthogonal to the orbital

plane along the positive angular momentum vector and the y axis completing the right-hand triad. Such reference

frame is commonly known as Local-Vertical-Local-Horizontal (LVLH). Substituting the definition of r to Eq. 29 and
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Fig. 3 Co-moving LVLH frame [20].

expressing everything in the LVLH, the Clohessy-Wiltshire equations are obtained for a circular reference target orbit:

δ Üx − 3n2δx − 2nδ Ûy = 0

δ Üy + 2nδ Ûx = 0

δ Üz + n2δz = 0

(30)

where n = 2π
T is the orbital mean motion and T is the reference orbital period.

2. Nonlinear Dynamical Model of J2-Perturbed Relative Motion

The nonlinear dynamical model for J2-perturbed relative orbit is described in [21]. Hereby, the fundamental

equations are solely reported; for a thorough derivation, refer to [21]. With reference to Figure 3, the dynamics of the

spacecraft can be written as:

δ Üx = 2ωzδ Ûy − (n2
j − ω

2
z )δx + αzδy − ωxωzδz − (ζj − ζ)sisθ − r(n2

j − n2) + ax

δ Üy = −2ωzδ Ûx + 2ωxδz − αzδx − (n2
j − ω

2
z − ω

2
x)δy + αxδz − (ζj − ζ)sicθ + ay

δ Üz = −2ωxδ Ûy − ωxωzδx − αxδy − (n2
j − ω

2
x)δz − (ζj − ζ)ci + αz

(31)
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where the contributing terms are:

n2 =
µ

r3
0
+

kJ2

r5
0
−

5kJ2s2
i s2

θ

r5 , n2
j =

µ

r3 +
kJ2

r5 −
5kJ2r2

JZ

r7

rJZ = (r0 + δx)sisθ + δysicθ + δzci, kJ2 =
3J2µR2

e

2

ωx = −
kJ2s2isθ

hr3
0

, ωz =
h
r2
0

αx = Ûωx =
kJ2s2icθ

r5
0

+
3 Ûr0kJ2s2isθ

r4
0 h

−
8k2

J2s3
i cis2

θcθ
r6h2

αz = Ûωz = −
2h Ûr0

r3
0
−

kJ2s2
i s2θ

r5
0

, ζ =
2kJ2sisθ

r4 , ζj =
2kJ2rJZ

r5

(32)

in which h is the orbital angular momentum, i orbital inclination, J2 is the zonal harmonic coefficient 1.0826 · 10−3 for

Earth, Re is the Earth radius, θ is the orbital true anomaly and a = [ax, ay, az]T is the forced acceleration vector. Last,

sx and cx stand for sin(x) and cos(x), where x is a generic angle. The spacecraft relative motion is actually described

by 11 first-order differential equations, namely (δx, δy, δz, δ Ûx, δ Ûy, δ Ûz) and (r0, Ûr0, h, i, θ). Nevertheless in this paper, the

latter quantities are computed using the high-fidelity propagator previously described. This can be representative of an

on-board absolute state estimator. Alternatively, these quantities can be included in the integration step of the dynamical

model.

B. Tested Filters

In this subsection, we present the filters used for the comparison. Besides the RBFNN-AEKF, the new filter proposed

in this paper, other filters are tested under the same simulation scenario:

• a state observer based on the formulation in [11];

• a standard, non-adaptive EKF aided with a RBFNN;

• an EKF exploiting a more accurate, nonlinear dynamical model.

1. Observer

The dynamics of the relative motion between the spacecrafts is reconstructed using a modified full-state observer

[11]. In the same fashion as Section II.A, the state observer can be constructed as follows [22]:

Û̂x = Acw · x̂ + d̂(x̂) +Kh(z −Hx̂) (33)

where Acw is the linear time invariant matrix of the Clohessy-Wiltshire dynamics presented in Section III.A.1, d̂ is

estimated using the radial-basis function neural network in Section II.A, Kh is the user-defined observer gain matrix and

H = I is the identity observation matrix, as already stated in Section II.
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Table 1 Chaser-Target Orbital Parameters

Chaser Target
a [km] 8143.1 8143.1
e [-] 1.4·10−1 1.4·10−1

i [◦] 98.2 98.2
ω [◦] 85.9 85.9
Ω [◦] 79.2 79.2
θ [◦] 0 1·10−4

Asp [m2] 1.2 0.2

2. RBFNN-EKF

This filter is a standard EKF aided with RBFNN as presented in Section II. The only difference with respect to

the proposed RBFNN-AEKF is that the value of the process covariance Q is fixed in time. It is worth underlying that

this can be a very weak point because it is hard to a-priori establish the accuracy of the RBFNN-based disturbance

estimation, especially for very uncertain dynamics. In fact, the matrix Q provides an indication of the accuracy of the

dynamical model. Using a neural network to update the dynamical model and to increase its accuracy, it is therefore

necessary to adapt the value of Q at each iteration step. The RBFNN-EKF formulation is based on Equations 21-25.

3. EKF - nonlinear

The last tested filter is an EKF with a different dynamical model. There is not any coupling with the neural network

but the used dynamical model is nonlinear and accounting for J2 perturbations. In particular, a standard EKF is employed

where the evolution of the state vector is described by the nonlinear model introduced in Section III.A.2.

IV. Scenarios & Results
In this section, the numerical simulation environment to evaluate the filter performance is described. First, the

selected scenario is presented. Subsequently, the capability of disturbance reconstruction of the RBFNN-AEKF is

tested. Then, the filters presented in Section III.B are compared using a realistic orbital environment. At this point, the

definition of measurement noise levels and filters tuning are introduced. Finally, the same simulation is performed using

non-nominal filter tuning conditions to test the robustness of the navigation filters.

A. Orbital Scenario

The reference relative orbital motion is generated considering two spacecraft with the same initial orbital parameters

except for the true anomaly. Table 1 reports the chaser and target initial orbital parameters along with the cross sectional

area, important for disturbances evaluation. with Asp being the cross sectional area. These orbital parameters result in
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the following relative initial conditions, expressed in the target LVLH reference frame:

ρ0 = [−0.0017 − 12.2042 4.7 · 10−4] m (34)

Ûρ0 = [−0.0017 3.9 · 10−6 − 5.6 · 10−10] m/s (35)

Please note that the reference orbits are eccentric and that the cross sectional area are different, resulting in a different

perturbation effect and potential dynamical mismodeling. In fact, the different cross sectional areas lead to a different

differential drag and solar radiation pressure perturbations. It is worth underlying that at the selected altitude, the

effect of the drag is not relevant but still present. A similar reasoning can be done for the solar radiation pressure.

The most relevant effect is given by the eccentricity of the orbits: the design models neglecting such contribution (e.g.

Clohessy-Wiltshire) deliver a modelling errors of tens of meters after one relative orbits. The presented scenario has

been selected as representative of a leader-follower formation, separated along the orbit by a difference in the true

anomaly. The truth model, as discussed before, is propagated true the high fidelity propagator considering all the

perturbation effects. The dynamical models used by the filters depend on the selected architecture and are detailed in

III.B.

B. Disturbance Reconstruction

The RBFNN disturbance approximation capability is assessed through the simulation of the scenario presented in

Section IV.A. In order to have a quantitative disturbance term, which can be compared to the ANN estimation, the actual

relative motion is propagated using the J2-perturbed relative motion in Section III.A.2. Instead, the filter exploits a

simple Clohessy-Wiltshire linearized model described in III.A.1. The normalized ANN consists of 60 hidden neurons

with Gaussian-basis radial functions; the function centers are generated randomly. The number of neurons has been

selected by trading-off the reconstruction accuracy and the computational time. In such framework, the disturbances

that need to be estimated are caused by the following elements:

• J2 zonal gravity perturbation

• e , 0, elliptical orbits;

together with the nonlinearities neglected in the derivation in Section III.A.1. Using the J2-perturbed nonlinear model

in Section III.A.2, the disturbance term is explicit in the form of d = [dx dy dz]T acceleration term. For the coherence

of vectors dimensionality the estimation is actually performed for the vector d6x1 = Gd, where G = [03x3; I3x3]. The

reference orbit is a LEO, which is incidentally assumed to be the orbit of the target spacecraft. Table 1 reports the orbital

parameters of the two spacecrafts. It is assumed to have relative position and velocity measurements at 1Hz, with a noise

level described by a Gaussian distribution with standard deviation σpos = 10−2m and σvel = 10−4m/s. These values

are representative of a relative RF metrology system (see [1]). The estimation of the disturbance acceleration term
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Fig. 4 Estimation of the disturbance acceleration term for LEO reference orbit. The perturbations are in the
order of 10−5 m

s2 . The plots show the initial phase of the neural network learning, regarded as the main learning
process. From left to right: dx , dy and dz .

converges after a transient time of nearly 350 s: this represents the main learning process of the randomly initialized

network. The network is said to be converged when the estimation error is less than 10% of the nominal value. Figure

4 shows the learning curve of the network during the early phase of the orbital motion. The RBFNN is randomly

initialized: indeed, the estimation is significantly off by almost ∼ 6 orders of magnitudes during the initial phase. The

disturbance acceleration components, after the main learning process, are shown in Figure 5. Despite the measurement

noise, the estimation yields a RMSE reported in Table 2.

C. Relative Navigation - Nominal Case

An accurate orbital simulator is used to test the filters in a realistic environment, as described in Section III.A. The

normalized neural network consists of 60 hidden neurons with Gaussian-basis radial functions; the function centers

are generated randomly. This reference orbits are also used to generate relative measurements by adding a fictitious

noise, representative of realistic sensors uncertainty. In particular, the noise level associated to relative position and
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Fig. 5 Estimation of the disturbance acceleration term for LEO reference orbit after the main learning process.
The plots show the estimation of the disturbance term by the neural network after the network has converged.
From left to right: dx , dy and dz .

velocity measurement respectively, is described by a Gaussian distribution with standard deviation σpos = 10−2m and

σvel = 10−4m/s, similarly to the previous case. It is important to remark that the orbits are eccentric and the cross

sectional areas of the two spacecrafts are significantly different, yielding a strong differential perturbation effect due to

the solar radiation pressure and drag. The estimation errors, used for performance assessment, are introduced. The

relative position error is defined as:

eρ =
√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 (36)

where x̂, ŷ, ẑ are the position components estimates. Similarly, the relative velocity error is:

e Ûρ =
√
( Ûxi − Û̂xi)2 + ( Ûyi − Û̂yi)2 + ( Ûzi − Û̂zi)2 (37)
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Table 2 Root-mean-squared error of the disturbance estimation term for the LEO reference orbit

Value
σx [ms2 ] 7.2 · 10−7

σy [ms2 ] 7.6 · 10−7

σz [ms2 ] 5.9 · 10−7

Fig. 6 Relative Position Error Fig. 7 Relative Velocity Error

with Û̂x, Û̂y, Û̂z are the velocity components estimates.

The measurement covariance matrix R for all the filters is tuned according to the imposed measurement noise level.

The same process covariance matrix Q is used for the RBFNN-AEKF and RBFNN-EKF and, for the nonlinear EKF, it

is properly selected to guarantee the best steady state error performance. Similarly, the observer gain Kh is tuned to

guarantee the minimum steady state error. A statistical analysis of the filters has been performed over 100 runs for the

described scenario. The filters run with a frequency of 1Hz and the simulation duration is set to three chaser orbits to

appreciate the disturbances effect. Figures 6 and 7 show the relative position and velocity error averaged over 100 runs.

For a more quantitative analysis of the results, the Root Mean Square Error (RMSE) starting from time step 300 (at

ateady-state) are computed and reported in Table 3 to evaluate the steady state performance of the filters.

Figure 6 and 7 show the beneficial effect of the filters compared to the measurements error. The RBFNN-AEKF and

the EKF-nonlinear show a similar behaviour for the relative position error (Figure 6) and, as in Table 3, they outperform

the other alternatives. On the other hand, for what concerns the velocity estimation, the Observer, with this tuning, has

better performance than the other filters. Despite these small differences, the compared filters show similar performance,

and the order of magnitude of the RMSE, reported in Table 3, is the same.

18



Table 3 Filters RMSE Results

RMSE - Position [m] RMSE - Velocity [m/s]
Observer 0.0079 2.39·10−5

RBFNN - AEKF 0.0063 4.49·10−5

RBFNN - EKF 0.0074 4.03·10−5

EKF - nonlinear 0.0064 3.92·10−5

Table 4 Filters RMSE Results - Non-Nominal

RMSE - Position [m] RMSE - Velocity [m/s]
Observer 0.0149 5.98·10−5

RBFNN - AEKF 0.0064 4.79·10−5

RBFNN - EKF 0.0090 9.34·10−5

EKF - nonlinear 0.0110 9.55·10−5

D. Relative Navigation - Non-nominal Case

A proper tuning of the filter, however, is difficult to achieve when the process dynamics is not well known and

time-varying. Moreover, it is very hard to a-priori determine the accuracy in the estimation that the RBFNN can achieve

for that particular case. For this reason, we tested all the filters with off-nominal conditions. In particular, for each

simulation, the value of Q and Kh were randomly selected according to a uniform distribution centered in the nominal

value and spanning two order of magnitudes. This can be a very high uncertainty value for some applications, but we

wanted to show how the tuning strongly affects the filter performance. Table 4 shows the relative position and velocity

RMSE computed over 100 runs.

It is possible to appreciate how the estimation error of the RBFNN-AEKF is very similar to the nominal case. This

is an evidence of high robustness of the proposed solution. On the contrary, all the other filters are badly affected from

the inappropriate selection of Q or Kh respectively.

V. Concluding Remarks
An original approach for state estimation and uncertainties estimation has been presented. The proposed algorithm

relies on a RBFNN coupled with an EKF. The proposed neural-network performs an online estimation of the disturbances

acting on the spacecraft, which are included in the prediction step of the filter. The online learning algorithm exploits

the state estimation worked out by the filter itself to update the neural network weights. Moreover, an innovation-based

recursive filter architecture is employed. Preliminary numerical validation, performance assessment and comparison are

carried considering a spacecraft relative navigation scenario. Realistic target/chaser relative dynamics are reproduced.

Simulation results show the capability of the proposed solution to reconstruct the dynamics of a spacecraft in elliptic

orbits with the J2 perturbation in an Earth orbit environment. Furthermore, the filter performance is compared to more

classical approaches and tested on realistic scenarios, through statistical simulations. Finally, the robustness over very
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poor tuning of the state covariance matrix is considered. Satisfactory results are obtained for the proposed solution

in all the presented cases and the sensitivity analysis demonstrated the algorithm robustness in non-ideal situations.

Future developments aim at transforming the feed-forward neural network into a recurrent structure, which is expected

to be significantly more performing when secular disturbance terms become predominant. This paper has shown the

application of the navigation algorith, to a Earth-bounded motion but it is applicable to other scenarios.
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