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Abstract

Several deterministic models have been proposed in the literature to solve the Machine

Loading Problem (MLP), which considers a set of product types to be produced on a set

of machines using a set of tool types, and determines the quantity of each product type to

be produced at each time period and the corresponding machine tool loading configuration.

However, processing times are subject to random increases, which could impair the quality

of a deterministic solution. Thus, we propose a robust MLP counterpart, searching for an

approach that properly describes the uncertainty set of model parameters and, at the same

time, ensures practical application. We exploit the Cardinality-Constrained approach, which

considers a simple uncertainty set where all uncertain parameters belong to an interval, and

allows tuning the robustness level by bounding the number of parameters that assume the

worst value. The resulting plans provide accurate estimations on the minimum production

level that a system achieves even in the worst conditions. The applicability of the robust

MLP and the impact of robustness level have been tested on several problem variants,

considering single- vs multi-machine and single- vs multi-period MLPs. We also consider

the execution of the plans in a set of scenarios to evaluate the practical implications of MLP

robustness. Results show the advantages of the robust formulation, in terms of improved

feasibility of the plans, identification of the most critical tools and products, and evaluation

of the maximum achievable performance in relation to the level of protection. Moreover, low

computational times guarantee the applicability of the proposed robust MLP counterpart.

Keywords: Machine Loading Problem; Robust Optimization; Cardinality-Constrained Ap-

1



proach; Production Planning.

1. Introduction

Despite factories being considered the quintessence of clock-like accuracy, manufactur-

ing systems must face several uncertain disruptive events, such as failures and variations

of processing times. The level of uncertainty can be reduced by a proper management of

the system, including maintenance interventions to prevent failures or standardization of

the processes to reduce processing time uncertainty. However, even in modern manufactur-

ing systems, uncertainty cannot be neglected and might have a relevant impact on system

throughput, affecting profits and costs. Shapiro [1] already introduced stochastic models for

accounting uncertainty in production planning in 1993. Nevertheless, at that time he also

discouraged the introduction of stochastic models, pointing out that production managers

had just begun to use deterministic models. After two decades, uncertainty is still often ne-

glected by production planners, as reminded in [2]: “Most systems for production planning

do not recognize or account for uncertainty. Yet these systems are implemented in uncertain

contexts”. The reason why models handling uncertainty have not been broadly applied yet

probably stems from their complexity. A proper balance between the complexity of the

model and a fair description of data uncertainty is a key point for a successful application

of such models in practice. Too simple models can be ineffective and provide poor results,

while overcomplicated models can remain confined to research papers.

We focus on the Machine Loading Problem (MLP), which is a relevant problem usually

encountered in manufacturing. It considers a set of product types to be produced over a

set of machines by using a set of available tools. The goal is to define a production plan

that maximizes the profit or another function of interest over a given timeframe. Many

variants of the problem are available in the literature, as well as several solution approaches.

However, almost all the approaches proposed in the literature for the MLP do not take

system uncertainty into account. However, from an industrial viewpoint processing times
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are subject to uncertain increases with respect to their nominal value due to several factors,

such as tool wear, breakages of tools, and so on. Neglecting such uncertainty can result

in production delays and unmet delivery dates. Properly addressing uncertain processing

times would allow companies to implement more robust production plans and ensure that

the minimum planned production levels be reached when plans are implemented.

In this paper, we address the MLP under uncertain processing times, and we develop

the robust counterpart of a deterministic mathematical programming model exploiting the

Cardinality-Constrained (CC) approach [3]. In particular, we refer to the deterministic MLP

model of [4], but the same approach can also be used for other MLP models.

Our aims are to define a robust model that fairly describes the uncertainty set of model

parameters while at the same time being not too complex (to ensure practical application),

and above all to analyze the impact of the robustness in several MLP alternatives.

The fair description and the practical application together are the reason why we focus

on robust optimization rather than on stochastic programming or distributionally robust

optimization, and the reason why, among the robust approaches, we choose the CC approach.

In fact, the CC approach considers a simple uncertainty set in which all uncertain parameters

belong to an interval. Moreover, the level of robustness can be tuned by simply bounding the

number of model parameters that assume the worst value in the interval (i.e., the solution

corresponds to the worst combination of parameter values); such constrained number of

parameters, denoted as cardinality, also lends the name to the approach. Finally, the CC

formulation includes the uncertainty with a reasonable computational effort, i.e., the robust

model is solved once and the counterpart of a linear model remains linear. Thus, the CC

approach provides a trade-off between complexity and robustness, which can be easily tuned

to take into account the specific degree of risk the decision maker accepts.

To validate our robust model and evaluate the impact of robustness with regard to

the deterministic formulation, we apply the model to three problem alternatives that cover

several realistic application scenarios. Moreover, for the most general one we also execute the

solutions in a set of simulated scenarios, to analyze the practical impact and the trade-offs of

including the robustness in practice. Results show the advantages of the robust formulation,

and the low computational times guarantee its applicability.
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To the best of our knowledge, almost all previous approaches do not include uncertainty

in the MLP and, at the same time, the CC approach has so far been marginally exploited in

the manufacturing context (see Section 2.2 for references and details). Thus, the contribution

of our work stands in the integration of a widely adopted MLP deterministic model with

a robust approach to include uncertain processing times. From a theoretical viewpoint,

we choose the most suitable robust approach (i.e., the CC) and discuss the potentialities of

such integration in a general context, which may also include other manufacturing problems.

From an application viewpoint, we show the benefits and the trade-offs of such integration

in the specific MLP case, supported by several numerical experiments. Thus, our work has

practical implications in the potential applicability of the MLP to current manufacturing

problems, since the robust formulation is better suited to practice and answers the needs of

actual industrial scenarios, which are affected by uncertainty.

This work extends a previous conference paper [5] in three directions: 1) we deepen the

discussion about the application of the CC to the MLP and to manufacturing in general;

2) we apply our robust MLP to practical problems characterized by different features and

dimensions; 3) we execute the deterministic and robust solutions in a set of scenarios to

evaluate the practical impact of including robustness in the plan.

The paper is organized as follows. Section 2 analyzes the literature on the MLP and

the CC approach in manufacturing. Section 3 presents the deterministic MLP formulation

[4] and the proposed robust counterpart. The experimental plan is described in Section

4, together with a discussion about the numerical results. Finally, Section 5 draws the

conclusions of the work.

2. Literature review

In this section, we revise the existing literature related to this work. The MLP literature

is analyzed in Section 2.1, while the CC approach and its applications in manufacturing are

discussed in Section 2.2.
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2.1. The Machine Loading Problem

Given a set of product types to produce, a set of machines and a set of tools, the MLP

consists in deciding the quantities to produce on each machine and the tools to be assigned

to the machines, in compliance with technological and capacity constraints. The MLP idea

was firstly introduced by [6] and [7]. Stecke and Solberg [6] conducted an experimental inves-

tigation on the operating strategies for a real computer-controlled Flexible Manufacturing

System (FMS) consisting of nine machines, an inspection station, and a centralized queueing

area. They developed loading policies and real-time flow control strategies, and tested them

through simulation. Results showed a strong dependence of the system performance on the

loading and control strategies. Stecke [7] defined five production planning problems to be

solved for efficient use of a FMS. Moreover, she proposed a mixed integer programming

model for the grouping problem, and another one for the loading problem; finally, she first

developed a nonlinear formulation and introduced several linearization methods.

Following these works, the deterministic MLP has been studied in-depth and the number

of publications on the subject is quite extensive. Detailed surveys are available in [8, 9] and,

more recently, in [10, 11]. Among the others, Shanker and Tzen [12] compared a heuristic

approach with the exact formulation. Nagarjuna et al. [13] proposed a heuristic based on

multi-stage programming for the loading problem in random type FMS, to select a subset

of jobs and allocate them among the available machines. Chan and Swarnkar [14] proposed

a fuzzy goal programming model for the machine tool selection and operation allocation

problem of FMS, and applied an approach based on the ant colony optimization to solve

it. Rossi et al. [15] proposes an ant colony optimization system for solving FMS scheduling

with routing flexibility, sequence-dependent setup and transportation time, parallel machines

and operation lag times. Das et al. [16] analyzed the problem in a comprehensive way,

including machine loading, product part type grouping, and operations sequencing. Zeballos

[17] proposed a constraint programming methodology to deal with FSM scheduling, which

handles several industrial features, such as limitations on the number of tools, lifetime of

tools, and tool magazine capacity. Abazari et al. [18] compared two solution strategies

based on a genetic algorithm.

However, in practice, processing times are subject to a large extent to uncertain increases
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due to a variety of reasons (e.g., failures, unexpected tool breaks, unplanned maintenance

interventions), and perturbations on such input data might impair the deterministic MLP

solution, worsening the objective function value or even making the solution infeasible. The

only relevant contributions addressing uncertainty in the MLP are listed below. Vidyarthi

and Tiwari [19] formulated a fuzzy-based solution methodology to address the MLP uncer-

tainty in the tool-machines and piece-tool assignments, to minimize system imbalance and

maximize the throughput. Aldaihani and Savsar [20] considered a flexible manufacturing

cell consisting of two machines, a pallet handling system, and a loading/unloading robot;

they developed a stochastic model to determine the performance of the cell under variable

operational conditions, including random machining times, random loading and unloading

times, and random pallet transfer times. Mandal et al. [21] included machine breakdowns

in the dynamic MLP with a view to maximizing the throughput and minimizing system

unbalance and makespan; the results recorded under breakdowns validated the robustness

of their model. Lugaresi et al. [5] firstly addressed uncertainty of processing times in the

MLP with the goal of computing the price of robust solutions against a fixed number of

disruptions.

2.2. Robust optimization and the Cardinality-Constrained approach

Different approaches have been proposed in the literature to deal with uncertain pa-

rameters in optimization problems, which belong to three groups: stochastic programming,

distributionally robust optimization, and robust optimization [22]:

• Stochastic programming [23, 24].

Uncertain parameters are modeled as random variables whose probability density func-

tions are assumed to be known. The advantage is to provide a comprehensive and de-

tailed description of the uncertain parameters; thus, stochastic programming models

usually produce solutions that are neither over- nor under-conservative and protect

against likely realizations, since they are tailored on the exact probability density.

However, they require a deep knowledge of the real problem to derive the probability

densities, and the resulting optimization problems can be difficult to solve, as they usu-

ally involve a wide number of scenarios to be evaluated. Finally, the risk of producing
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bad solutions when the probability densities are not reliable is not negligible.

• Distributionally robust optimization (and ambiguous chance-constrained approach) [25,

26].

These approaches assume that the probability densities are not known but lie in a

known family of densities. The solution provided protects against the worst-case re-

alization given by the admissible probability densities. The resulting problems are

usually difficult to solve, but there are computationally tractable approximations [26].

• Robust optimization [27, 28, 29].

These approaches assume that the uncertain parameters belong to a given (convex)

uncertainty set, without any knowledge of the probability distribution over this set.

The provided solution is guaranteed to be feasible for all realizations of the parameters

within the set. The resulting problems are usually computationally more tractable

than under stochastic programming; thus, robust optimization approaches represent

a good compromise between the alternatives. Robust optimization is associated with

the risk of producing over-conservative solutions, as they protect against all possible

realizations in the uncertainty set. However, the uncertainty set can be easily adjusted

to exclude unlikely realizations, thus tuning the level of robustness.

We focus on robust optimization approaches, as we aim to address the trade-off between

the complexity of the model and a fair description of the uncertainty set for the model

parameters. There are several robust optimization approaches in the literature, based on

the shape and the assumptions that define the uncertainty set. In all the approaches,

two contrasting aspects must be properly balanced, i.e., the level of robustness versus the

efficiency and cost of the solution. The first is related to the size of the uncertainty set and

refers to the feasibility of the solution in all scenarios given by the possible realizations of

the parameters; the latter refers to the deterioration of the solution when applied to actual

realizations of the uncertain parameters. On the one hand, a very conservative solution

pushed by unlikely scenarios (when too large uncertainty sets are adopted) may turn out to

be highly expensive for more likely scenarios. On the other hand, too weak solutions (when
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too strict uncertainty sets are adopted) easily become unfeasible even for small variations of

the parameters. It is therefore essential to tune the level of robustness by means of proper

uncertainty sets.

One of the earliest contributions was proposed by Soyster [27], who considered a linear

optimization model to construct a solution that is feasible for all the realizations of the

uncertain parameters. He assumed that each model parameter lies in an interval, and the

robust solution protects against the case in which all parameters assume their worst value.

However, it is usually unlikely that all parameters assume the worst value together; thus,

the produced solutions are usually over-conservative and associated with bad values of the

objective function. More recently, Ben-Tal and Nemirovski [28, 30] and Ben-Tal et al. [31]

considered an uncertainty set in which the parameters of each constraint lie in an ellipsoidal

uncertainty set. Thus, the parameters appearing in the same constraint are restricted from

taking their worst values simultaneously. However, this approach leads to difficult conic

quadratic problems, which are nonlinear though still convex.

Bertsimas and Sim [3] considered a different uncertainty set in which all uncertain pa-

rameters belong to an interval and the level of robustness is tuned by superiorly bounding,

for each constraint, the cardinality of the subset of parameters that may assume the worst

value in the interval instead of the nominal value. This approach keeps the simple description

of the uncertainty set proposed by Soyster [27] while, at the same time, avoiding its over-

conservatism. We believe that the CC approach is suitable for addressing the uncertainty

of processing times typical of the MLP. In fact, production managers can easily estimate

the number of disruptive events expected over a given timeframe, and they can use this

knowledge to make reasonable assessments on the cardinality values to adopt, thus tuning

the level of robustness of the solution.

Despite the CC approach has been widely applied by several researchers from heteroge-

neous backgrounds [32], there are several fields in which it has not been exploited yet, or

where it has been employed only recently. Even in manufacturing problems, such as produc-

tion planning, applications of the CC are not common. The valuable contributions, directly

or indirectly related to manufacturing, that can be found in the literature are presented

below.
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Bertsimas and Thiele [33] addressed the optimal control of a supply chain in discreet

time under stochastic demands that are not identically distributed over time. Hazir et al.

[34] addressed the discrete time/cost trade-off problem and formulated three robust models,

which were solved via exact and heuristic algorithms. Moon and Yao [35] developed a

robust mean absolute deviation model for portfolio optimization that controls the impact

of the estimation errors. Alem and Morabito [36] derived robust combined lot-sizing and

cutting-stock models for furniture companies with uncertain production costs and product

demands. Solyali et al. [37] proposed two mixed integer programming formulations for a

robust inventory routing problem that faces dynamic uncertain demands over a finite discrete

timeframe. Hazir and Dolgui [38] addressed the line balancing problem under operation times

with uncertain intervals, and they developed a decomposition-based algorithm to solve large

instances. Lu et al. [39] worked on the single machine scheduling problem with uncertain

and correlated processing times to obtain robust job sequences with the minimum worst-case

total flow time. Moreira et al. [40] considered assembly lines with uncertain and worker-

dependent task execution times, with the goal of finding an assignment of tasks and workers

to a minimal number of stations, such that the resulting productivity level abides by a

desired robust measure.

These works, together with their main features, are summarized in Table 1. We may

observe that the uncertainty is usually included in processing/operation times and demands,

which are the most relevant factors affecting the feasibility and the quality of the production

plans in practice. We can furthermore observe that the CC has not been applied to the MLP

to date.

3. Model formulation

In this section, we integrate a deterministic MLP model available in the literature with

the CC approach. As a deterministic model, we consider the one proposed by Sodhi et al.

[4], which includes all general features of the MLP and addresses the core issues identified

in the literature [9] in a compact formulation. Moreover, it has been used as reference in

several applications, and it allows an easy integration of uncertain processing times (Section

3.2).
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Reference Problem Uncertainty set

[33] Supply chain management Product demand

[34] Project scheduling Cost

[35] Portfolio optimization Return rate of assets

[36] Production planning Production costs, demand

[37] Inventory routing Product demand

[38] Assembly line balancing Operation times

[39] Single-machine job scheduling Processing times

[40] Assembly line balancing Workers’ task execution times

Table 1: Literature works that apply the CC approach to manufacturing.

We present the deterministic MLP, denoted as MLP-D, in Section 3.1, and the devel-

oped robust counterpart, denoted as MLP-R, in Section 3.2. Sets, parameters and decision

variables are summarized in Table 2.

3.1. Deterministic model (MLP-D)

We address the short-term production planning and the allocation of tools to machines.

We consider a set I of product types to be produced on a set M of machines, using a set J

of tool types. We divide the production planning timeframe T into a finite number of time

periods t ∈ T. Within each period t, each machine m ∈ M processes the product types

assigned to it using the selected tools with a given time availability Amt. The processing

time of one unit of product type i ∈ I over the tool of type j ∈ J is denoted by Oij.

The tool storage capacity of each machine is limited, and Km is the total number of slots

available in the tool magazine of machine m. The number of slots occupied by a tool of type

j (independent of the machine) is denoted by kj, while the number of available copies of j

by αj, with αj ≤ |M|. However, only one tool copy can be loaded on machine m at the same

time. The latter assumption is not a limitation, because tools are sequentially used on each

machine and tool wear is not included in the model. In general, αj is strictly lower than

|M| to account for a common situation in production environments where some operations

require expensive tools and only a limited number of copies are kept on site. The marginal
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M
L
P
-D

Sets

I set of product types

J set of tool types

M set of machines

T set of time periods (timeframe)

Parameters

Amt time availability of machine m ∈ M within period t ∈ T

Ci penalty shortage cost per unit of product type i ∈ I

Di demand of product type i ∈ I to be satisfied over the timeframe T

hit holding cost of a unit of product type i ∈ I from period t ∈ T until the

end of the time horizon

kj number of slots occupied by a tool of type j ∈ J

Km total number of slots available in the tool magazine of machine m ∈ M

Oij processing time of one unit of product type i ∈ I over tool type j ∈ J

wi marginal profit per unit of product type i ∈ I

αj number of available copies of tool of type j ∈ J

Decision variables

Ljmt Boolean variable equal to 1 if tool type j ∈ J is loaded on machine

m ∈ M in period t ∈ T; 0 otherwise

pjmt aggregate machining time spent by tool type j ∈ J on machine m ∈ M

in period t ∈ T

Si shortage of product type i ∈ I with regard to Di

xit quantity of product type i ∈ I produced in period t ∈ T

A
d
d
it
io
n
al

fo
r
M
L
P
-R

Parameters

Ōij nominal processing time for one unit of product type i ∈ I

over tool type j ∈ J

Ôij maximum increase of the processing time for one unit of product type

i ∈ I over tool type j ∈ J

Γjt cardinality parameter for tool j ∈ J in period t ∈ T

Decision variables

rij auxiliary dual variable

qijt auxiliary dual variable

Table 2: Sets, parameters and decision variables of the MLP-D and the MLP-R.
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profit per unit of product type i is denoted by wi, while the demand of product type i to be

satisfied over the timeframe by Di. Ci is the penalty cost per unit of product type i for not

satisfying the demand (e.g., the sub-furniture cost if outsourcing is allowed). Finally, hit is

the holding cost of a unit of product type i ∈ I from period t ∈ T (when it is produced)

until the end of the timeframe.

The model determines the production plan in terms of the quantity of each product type

i to be produced in each period t, which is denoted by xit. Moreover, it also determines the

machine tool loading, which is expressed by the Boolean variables Ljmt equal to 1 if a tool of

type j is loaded on machine m in period t, and 0 otherwise. Finally, variables pjmt represent

the aggregate machining time spent by tool j on machine m in period t, and Si denotes

the production shortage of product type i with regard to its demand Di. The goals are to

maximize the total profit related to the production and to minimize shortage and holding

costs, while the workload balancing among the machines is not pursued. The obtained plan

is static, decided once at the beginning of the entire timeframe.

The assumptions at the basis of the model are listed below.

• Planning and scheduling problems are at two different levels, in agreement with several

literature works [41], and the model considers the MLP at the planning level only, as

in [4], addressing the short-term production planning and the allocation of tools to

machines. Thus, scheduling and sequencing problems are not considered, and specific

scheduling issues (as preemption within a period and resource starvation) are not

modeled, since they are addressed at the next scheduling level. Planning is static, as

it determines the production plan once for the entire timeframe T.

• Production quantities xit are continuous, according to [4], enabling the partial pro-

duction of a product of type i over a time period t. In general, they can be limited to

the integer domain to represent single-piece production cases; anyway, the considered

MLP would provide similar insights for integer variables as well.

• The set I of product types and the set J of tool types have been previously composed,

and no tool transportation system is present; thus, it is not possible to change the tool

12



set without stopping the system. On the contrary, tools loaded on a certain machine

can be changed between periods t.

• Tools are sequentially used, i.e., the time to process a unit of product type i is the

sum of Oij values over j.

• Machining non-operative times are included in the processing times, and the times

required to set up the machines are already deducted from machine availability.

The deterministic model MLP-D is formulated as follows:

max
∑

i

∑

t

(wi − hit)xit −
∑

i

CiSi (1)

subject to:

∑

j

Ljmtkj ≤ Km ∀m, t, (2)

∑

t

xit = Di − Si ∀i, (3)

∑

i

Oijxit ≤
∑

m

pjmt ∀j, t, (4)

pjmt ≤ LjmtAmt ∀j,m, t, (5)
∑

j

pjmt ≤ Amt ∀m, t, (6)

∑

m

Ljmt ≤ αj ∀j, t, (7)

Ljmt ∈ {0, 1} ∀j,m, t,

pjmt ≥ 0 ∀j,m, t,

xit ≥ 0 ∀i, t,

Si ≥ 0 ∀i.

The objective function (1) maximizes the total profit related to the production and

minimizes holding and shortage costs. Constraints (2) limit the number of tools that can be

loaded onto each machine, as machines have limited tool storage capacity (up to the number

Km of available slots in the machine tool magazine; see Sodhi et al. [4] for further details).
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Constraints (3) compute the shortage Si of each product i, as the difference between the

production of part type i over the entire timeframe (
∑

t xit) and the demand Di. Constraints

(4)-(6) guarantee that the production is made within the time availability of the machines.

Specifically, constraints (4) limit the total production time on tool j in time period t, and

constraints (5) guarantee that, for each tool j, machine m, and period t, the production

can be done only if the necessary tool has been loaded; constraints (6) guarantee that, at

each time period t, the production time at machine m does not exceed the availability Amt.

Constraints (7) limit the number of tool copies αj that are available for type j in each period

t. Finally, the remaining constraints define the domain of the variables.

3.2. Robust model formulation (MLP-R)

We include the robustness to protect from disruptive events that perturb the processing

times from their nominal value up to a worst-case value. According to the CC approach [3],

we model the processing times as random variables Õij characterized by a nominal value

Ōij and a random increase up to a maximum value Ôij; thus, they may take values in the

interval
[
Ōij , Ōij + Ôij

]
. By applying the CC approach, we assume that, for each tool j

and time period t, up to Γjt processing times deviate from the nominal value Ōij up to the

worst value Ōij+Ôij. Both maximum increases Ôij and cardinalities Γjt are easy to derive in

practical applications, from the information commonly available in industry. For instance,

the variation ranges can be derived from historical data, or the maximum increase can be

obtained using the expected Mean Time To Repair (MTTRj) of each tool j, by assuming

Ôij
∼= MTTRj. Furthermore, we can estimate the cardinality parameters from the number

of failures observed for each tool j, which is related to the expected Mean Time Between

Failures (MTBFj) and the time availability of machine m. Bertsimas and Sim [3] assumed

that the random parameters are distributed according to a symmetric density around the

nominal value Ōij, while we only consider positive increases from Ōij
1.

1The CC approach itself does not require the assumption of symmetric distribution, while it relies on

stochastic parameters that are simply characterized by a nominal value and a maximum increase, as we

deal with in our model. Bertsimas and Sim [3] included the assumption of symmetric distributions over[
Ōij − Ôij , Ōij + Ôij

]
in order to determine probability bounds of constraint violation, which is not of
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Considering the MLP-D, the increase of total processing time affects constraints (4). We

denote by Ejt the set of the processing times over tool j at period t and define the cardinality

matrix Γ = {Γjt}, where each Γjt represents the maximum number of product types i ∈ I

subject to an increment of the processing time over tool j at period t, up to the maximum

value Ōij + Ôij. Set Ujt ⊆ Ejt represents the subset of product types whose processing time

increase to the worst value Ōij + Ôij, while processing times in Ejt \Ujt assume the nominal

value Ōij. Subset of Ejt is constrained to have cardinality lower than or equal to Γjt, i.e.,

|Ujt| ≤ Γjt; at the optimum, set Ujt has cardinality Γjt and contains the worst combination

of times that mostly affects the total usage time of tool j in period t.

The robust counterpart of constraints (4) is:

∑

i

Ōijxit +max
Ujt

{
Ôijxit

}
≤

∑

m

pjmt ∀j, t. (8)

The selection of the processing times to include in set Ujt is an inner maximization

problem, which is represented by a specific set of auxiliary decision variables zijt; we set

zijt = 1 if product type i is included in Ujt, and zijt = 0 if not included. Moreover,

continuous values between 0 and 1 allow a partial increase of the processing time between

Ōij and Ōij + Ôij [3].

The inner maximization problem, denoted as Primal, can be written as:

max
∑

i

Ôijx̃itzijt (9)

subject to:

∑

i

zijt ≤ Γjt ∀j, t, (10)

0 ≤ zijt ≤ 1 ∀i, j, t, (11)

where x̃it refers to a given solution of the MLP problem.

The dual of problem Primal, denoted as Dual, is:

min Γjtrjt +
∑

i

qijt (12)

interest for our work.
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subject to:

rjt + qijt ≥ Ôijx̃it ∀i, j, t, (13)

rij ≥ 0 ∀i, j,

qijt ≥ 0 ∀i, j, t,

where rjt and qijt are the dual variables referring to constraints (10) and (11), respectively.

Since the problem Primal is bounded and feasible, for the Strong Duality Theorem the

optimal solution z∗ijt of problem Primal and the optimal solution
(
r∗jt, q

∗
ijt

)
of problem Dual

are equivalent in terms of objective functions (9) and (12). The property holds for any x̃it;

therefore, also for the optimal x∗
it:

Γjtr
∗
jt +

∑

i

q∗ijt = Ôijx
∗
itz

∗
ijt.

In this way, the maximization term maxUjt

{
Ôijxit

}
in (8) is the solution of problem Dual,

and we may replace the maximization term with the Dual objective function. Moreover, this

substitution requires us to add the constraints of problem Dual. Thus, the robust problem

MLP-R is:

max
∑

i

∑

t

(wi − hit)xit −
∑

i

CiSi (14)
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subject to:

∑

j

Ljmtkj ≤ Km ∀m, t, (15)

∑

t

xit = Di − Si ∀i, (16)

∑

i

Ōijxit + Γjtrjt +
∑

i

qijt ≤
∑

m

pjmt ∀j, t, (17)

rjt + qijt ≥ Ôijxit ∀i, j, t, (18)

pjmt ≤ LjmtAmt ∀j,m, t, (19)
∑

j

pjmt ≤ Amt ∀m, t, (20)

∑

m

Ljmt ≤ αj ∀j, t, (21)

Ljmt ∈ {0, 1} ∀j,m, t,

pjmt ≥ 0 ∀j,m, t,

xit ≥ 0 ∀i, t,

Si ≥ 0 ∀i,

rij ≥ 0 ∀i, j,

qijt ≥ 0 ∀i, j, t.

As mentioned, (17) is given by (8) in which the maximization term is replaced by the

objective function of problem Dual, and (18) are the additional constraints required by this

term. The other constraints and the objective function of the MLP-R are the same as in the

MLP-D. The MLP-R solves the same problem of the MLP-D, but in a scenario where the

worst realization of the times occurs. Such worst realization is automatically determined by

the MLP-R, thanks to the optimal solution of problem Dual that is embedded in (17).

4. Experimental analyses

Three variants of the MLP, which cover the range of possible problem alternatives, have

been considered to evaluate the behavior of the proposed MLP-R with regard to the MLP-D:

• Single-Machine Single-Period (SM-SP) problem with |M| = 1 and |T| = 1;
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• Multi-Machine Single-Period (MM-SP) problem with |M| > 1 and |T| = 1;

• Multi-Machine Multi-Period (MM-MP) problem with |M| > 1 and |T| > 1.

The MM-MP is the most general one, while the SM-SP and the MM-SP are derived by

constraining |M| = |T| = 1 and |T| = 1, respectively. The goal is to first outline relevant

insights in simpler problems (SM-SP and MM-SP) that are anyway of general validity for

the MLP. Afterwards, the goal is to analyze the behavior of the approach in the most general

case (i.e., the MM-MP problem).

We separately present the three problems, specifically discussing the related results. Sev-

eral instances are created, with a range of problem parameters that realistically represent

applications in manufacturing of non-standardized products, characterized by high variabil-

ity both in terms of demand and product mix (ranges of parameter values are based on the

realistic cases reported in [16]). As for the general MM-MP, we also consider the execution

of the solutions in a set of scenarios. Finally, we provide details about the computational

times in Section 4.4.

Briefly, the main findings obtained from the tested cases are: 1) the price of robustness

increases with the cardinality, and the solutions converge to the most conservative one;

2) the robust production plan is not trivial to determine (e.g., with empirical rules), as

the ranking of product types dynamically changes according to the assigned quantities; 3)

machines are equally saturated on account of no cost difference among them in both MLP-D

and MLP-R; 4) failures are equally balanced among machines, and the most critical tools

are not assigned to the same machine; 5) machine availability is saturated starting from the

last periods of the timeframe, to reduce the holding costs; 6) the CC approach easily enables

the identification of critical product types.

In the presentation of the results, we denote the optimal quantity of product type i in

period t as x∗
it and we define:

• the Nominal Production Time per unit of product i as NPTi =
∑

j∈J Ōij;

• the Total Nominal Processing Time allocated to produce parts as

TNPT =
∑

i∈I

(
NPTi ·

∑
t∈T x

∗
it

)
;
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• the Total Failure Time (total time increase for failures) as

TFT =
∑

i∈I,j∈J,t∈T

(
maxUjt

{
Ôij · x

∗
it

})
;

• the Total Processing Time as TPT = TNPT + TFT .

4.1. Single-Machine Single-Period (SM-SP) problem

We consider the SM-SP to compare the MLP-R solution with regard to the MLP-D

under different levels of robustness, focusing on the impact of Γj1 and δ only, where δ is the

relative increase of the processing times defined as:

δ =
Ôij − Ōij

Ōij

.

4.1.1. Problem description

Let us consider a set of |I| = 12 product types to be produced over a single time period

with Atot =
∑

mt Amt = 2700 minutes. A set of |J| = 12 tool types is required. The demand

Di and the nominal times NPTi are reported in Table 3a for each product type i. With the

given Atot, it is not possible to produce all product types; thus, even the MLP-D solution

is not trivial. The production of each product type i requires between 2 and 4 tools, and

the nominal processing times Ōij required for each tool j are reported in Table 3b. Without

loss of generality, we consider equal marginal profits (wi = 30 ∀i) and null shortage costs

(Ci = 0 ∀i). As the problem is single-period, we do not consider the holding costs. We

relax constraints (2) and (15) by assuming that the machine tool magazine has enough tool

storage capacity. Otherwise, a strict limit on tool capacity Km might limit the set of feasible

solutions and, as a consequence, machine availability might not be saturated [4].

We consider three different values for δ, i.e., δ = {0.1, 0.5, 1}. Then, for each δ, we

solve the MLP-R under different cardinality vectors Γ = {Γj1}. The maximum number of

disruptions for a tool is equal to the number of product types requiring the tool, and from

Table 3b we observe that its highest value over the tools is Γmax = 5. Thus, Γj1 ≤ Γmax ∀j,

and in the most conservative case with Γj1 = Γmax ∀j we include up to Γtot = |J|Γmax = 60

events. However, only 37 of them correspond to an actual increase of processing times,

because the increase is null when a tool is not required (no value in Table 3b). In the
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Product type i 1 2 3 4 5 6 7 8 9 10 11 12

Di [units] 160 4 8 8 40 4 4 20 20 8 8 4

NPTi [min/unit] 14.08 11.86 11.88 7.71 7.97 14.86 11.32 7.81 8.32 6.55 20.37 15.48

(a)

Ōij Tool j

1 2 3 4 5 6 7 8 9 10 11 12

P
ro
d
u
ct

ty
p
e
i

1 4.61 2 2.74 4.73 – – – – – – – –

2 2.46 2.51 – 4.19 2.7 – – – – – – –

3 4.4 – – 2.86 4.62 – – – – – – –

4 – – – – – 3.12 1.95 2.64 – – – –

5 – – – – – – – – 4.29 3.68 – –

6 – – – – – – – – 3.15 5.39 2.18 4.14

7 – – – – – – – – – 2.7 2.44 6.18

8 – – 1.92 2.59 3.3 – – – – – – –

9 – – 3.04 5.28 – – – – – – – –

10 4.45 2.1 – – – – – – – – – –

11 – – – – 5.42 4 – – – – 5.48 5.47

12 – – – – – – – 4.22 3.62 3.92 3.72 –

(b)

Table 3: SM-SP problem – Product demand Di [units] and NPTi [min/unit] of each product type (a);

nominal processing times Ōij [min/unit], where “–” denotes that the tool is not required for the product

(b).
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experiments, we consider both cases with equal cardinalities (Γj1 = Γ ∀j) and cases with

cardinalities that vary from tool to tool.

4.1.2. Results

The deterministic solution (Γ = 0 in Table 4) achieves an objective function of 7103.

As expected, with continuous production quantities, the machine availability is saturated.

Moreover, with equal wi, hit and Ci over i, the selection of product types is based only on a

ranking of the nominal production times NPTi, i.e., the product types i with shorter NPTi

are firstly selected to be produced. In our case, the order of selection is 10, 4, 8, 5, 9, 7, 2,

3, 1, 6, 12 and then 11; as the availability is not enough to produce all product types, the

demand of types i = {6, 12, 11} is not satisfied and that of i = 1 is only partially satisfied.

This result is in line with the machine loading literature.

We now consider the solutions from the robust approach. The objective functions are

first shown in Figure 1 in relation to Γtot and δ. The gap between the value of the objective

function in the deterministic solution and that in any robust solution represents the price

of robustness, i.e., the cost to protect from unfortunate events, which is paid in terms of a

reduced planned production. As expected, the price of robustness monotonically increases

over both Γtot and δ, because of a larger uncertainty set in which the number of disruptive

events and the impact of each event increase. As the Γtot increases, the solution converges

for each δ to that of the worst-case, in which all processing times increase. Furthermore, it

can be noticed that, on average, the marginal decrease of the performance is higher for low

cardinality values, since the most disruptive events are firstly selected by the robust model,

according to the CC approach. Moreover, let us remark that, as the increased times in (9)

are selected in order from the worst to the least relevant, the latest increases up to Γj1 = 5

are not always related to an actual use of the tool once all processing times are selected

(empty entries in columns of Table 3b).

Table 4 collects the results obtained for equal cardinalities Γj1 = Γ ∀j. They show

that, while product types i = {2, 3, 4, 5, 7, 8, 10} are always top ranked and their demand

completely satisfied, the ranking based on NPTi does not hold in the robust cases; for

example, it happens that product types i = {6, 11, 12} are produced for Γ > 0 although
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δ = 0.1 δ = 0.5 δ = 1

i Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5 Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5

1 124.8 103.8 108.6 107.6 107.4 107.3 63.3 58.5 62 61.2 60.8 37.2 27.4 30.6 29.4 28.8

2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

5 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

6 0 4 0 0 0 0 4 4 0 0 0 4 4 0 0 0

7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

8 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

9 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

11 0 0 0 0 0 0 2.7 0 0 0 0 4.5 1.8 0 0 0

12 0 2.6 0 0 0 0 4 3.5 0 0 0 4 4 0 0 0

Table 4: SM-SP problem – Optimal solutions x∗

i1 in relation to Γ and δ, with Γj1 = Γ ∀j; the case Γ = 0 refers to the MLP-D.
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Figure 1: SM-SP problem – Objective function while varying Γtot for different δ values. While Table 4 only

includes equal cardinalities Γj1 = Γ ∀j, the abscissa values are given by cardinalities Γj1 that depend on j,

with higher Γj1 values associated with higher Ōij . The worst case corresponds to Γj1 = 5∀j with Γtot = 60.
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the demand of type i = 1 is not completely satisfied. Indeed, the selection depends on the

cardinality and finding rules to guide the selection is not trivial. Let us denote by PTR
i the

robust processing time to produce a unit of type i, which includes the disruptive events and

depends on the subset of processing times Oij : j ∈ Ej1. Thus, the ranking of product types

is based on times PTR
i that dynamically change with Γ (and δ).

To describe the phenomenon, let us consider an example with Γ = 1, δ = 1 and a solution

x = {0, 0, 0, 8, 40, 0, 0, 20, 0, 4, 0, 0} where each tool is used by only one product type (see

Table 4b); therefore, all product types are affected by disrupting events (one event for each

j and thus for each i). The next product type in the deterministic ranking is i = 9, with

NPT9 = 8.32 min/part. However, since types i = 9 and i = 8 share some tools, as the

quantity of type i = 9 increases it becomes the critical product type for the shared tools

instead of type i = 8. Thus, the ranking changes because the robust processing time for

a unit of type i = 9 is PTR
9

= 13.6 min/unit and other product types might be selected

although the demand of type i = 9 is not satisfied yet.

Figure 2 shows the TPT (cases with Γj1 = Γ ∀j and δ = 0.5) divided among tools;

we may observe that the TNPT decreases with Γ, because less parts are loaded, while the

TFT increases to account for more disruptive events. Although TPT = Atot, more time is

accounted for possible failures; thus, the plan is more robust because the machine is less

saturated.

From a practical viewpoint, the CC approach allows us to evaluate the most critical

products by analyzing how the disruptive events are distributed over the product types.

The higher the number of events, the more critical the product type is. Thus, the tools

required to produce critical product types should be subject to particular maintenance to

moderate the risk of failure occurrence. Let us consider the cases with δ = 1 in Table 4.

Figure 3 represents the number of events allocated to the production of each product type

i. All product types are produced for Γ = 1 and, according to the CC approach, the failures

are allocated on products types i = {1, 3, 4, 5, 7, 11}. Hence, a particular attention must be

paid to the production of these products because failures associated with them determine

the highest detriment of the objective function. Product types i = {2, 6, 8, 9, 10, 12} are less

critical: failures occurring during their production have a smaller impact.
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Figure 2: SM-SP problem – TNPT (light blue) and TFT (black) divided among tools at different cardinality

values Γj1 = Γ∀j (case δ = 0.5).
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Figure 3: SM-SP problem – Number of failures affecting product types for different cardinalities Γj1 = Γ∀j

(case δ = 1).
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Furthermore, it is worth mentioning that the effect of other problem parameters can be

trivially derived. For example, the satisfied demand and the objective function increase with

the availability, the objective function decreases while costs increase, and increased values

wi modify the ranking of product types such that the product types i with higher wi are

selected beforehand.

4.2. Multi-Machine Single-Period (MM-SP) problem

Although the MM-MP is the most general problem, single period applications represent

common situations for practitioners. As for the SM-SP, we analyze the effect of the ro-

bustness level by solving each problem instance for different cardinalities. The analysis is

mostly focused on the effect that multi-machine features might have on the robust solution,

by investigating the assignment of tools to machines. This analysis will also hold for the

MM-MP problem.

4.2.1. Problem description

We consider a set of |I| = 4 product types to be produced, and 30 instances are created by

combining two factors: the number of machines (i.e., |M| = {4 : 8}) and the number of tools

(i.e., |J| = {15 : 20}). Product demands Di are independently sampled ∀i from a uniform

distribution over the interval [1, 100], the nominal processing times Ōij are independently

sampled from a uniform distribution over the interval [50, 250], and the number of operations

per part randomly varies between 6 and 8. In each instance, the total availability allows us to

satisfy the demands under the deterministic setting (i.e.,
∑

m∈M,t∈T Amt =
∑

i∈I Di ·NPTi).

As in the SM-SP experiments, we assume equal wi (100 per unit), equal Ci (10 per unit)

and null hi1 ∀i. We also relax constraints (2) and (15), and we assume that only one copy

is available for each tool type (i.e., αj = 1 ∀j).

For each instance, we solve the MLP-R under different cardinality vectors Γ = {Γj1};

in particular, we consider equal elements Γj1 = Γ > 0, ∀j. Since the effect of δ is purely

proportional (see results in Section 4.1), without loss of generality we consider only δ = 0.5

in the analyses.

27



Figure 4: MM-SP problem – Normalized objective functions for increasing cardinality Γj1 = Γ∀j.

4.2.2. Results

The values of the objective functions are normalized to provide comparable results, by

dividing each one by that of the corresponding deterministic solution with Γ = 0. Figure 4

collects the normalized objective functions and shows the price of robustness, which increases

with the cardinality in all solved instances. The worst-case corresponds to Γ = 4, since

|I| = 4. Results are aligned with those of the SM-SP (Section 4.1.2).

We now provide the detailed results for one MM-SP instance (i.e., that with |J| = 15

and |M| = 4) in Table 5; insights are aligned with those of other MM-SP instances.

The TPT is equally apportioned among the machines and the machine availability is sat-

urated (TPT =
∑

m∈M, t∈T Amt). Since only one copy is available for each tool, each product

type might need to be processed by several machines. Although a scheduling problem arises,

as mentioned earlier, we do not consider this problem at the planning level. Actually, ma-

chines might starve with consequences on the feasibility of the plan. Anyway, robustness

also caters from these situations.

When uncertainty is considered, the impact of failures is balanced among the machines
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Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 4

x∗
11

71.9 71.9 71.6 72.0 72.0

x∗
21

86.0 42.4 28.1 19.2 19.2

x∗
31

29.0 28.4 22.8 26.0 26.0

x∗
41

74.0 74.0 74.0 74.0 74.0

Objective
26086 21670 19646 19122 19122

function

Table 5: MM-SP problem – Optimal solutions x∗

i1 for the instance with |J| = 15 and |M| = 4 in relation to

Γ, with Γj1 = Γ ∀j; the case Γ = 0 refers to the MLP-D.

m Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 4

1 0 13070 23186 25197 25197

2 0 14707 23556 25197 25311

3 0 18727 22040 25311 25197

4 0 17591 24293 25209 25209

Table 6: MM-SP problem – TFT for each machine m ∈ M at different Γ values (with Γj1 = Γ ∀j) for the

instance with |J| = 15 and |M| = 4.

(Table 6) and the tool assignment to machines varies with the cardinality level (Figure 5).

Moreover, tools having the highest impact on the TFT are not assigned to the same machine.

4.3. Multi-Machine Multi-Period (MM-MP) problem

Multi-period analysis focuses on the temporal distribution of product quantities over time

for the robust solution. In the multi-period MLP, products are produced in a time period

depending on the time availability in the period and the holding costs, which incentives

the production delay to later periods. As in the MM-SP problem analysis (Section 4.2),

several instances are created with a range of problem parameters that realistically represent

applications in manufacturing.
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Figure 5: MM-SP problem – Assignment of tools to machines with nominal processing times (light blue)

and failure times (black) for each tool j. Results are shown at different Γ values (with Γj1 = Γ∀j) and refer

to the instance with |J| = 15 and |M| = 4.

30



4.3.1. Problem description

We consider a timeframe of two weeks (i.e., 7400 minutes), which is divided into several

time periods. We create 30 instances using a space filling design (Latin Hypercube Design)

by varying the problem dimension, i.e., the number of product types from |I| = 6 to 18, the

number of machines from |M| = 2 to 8, the number of tools from |J| = 5 to 25, and the

number of periods from |T| = 2 to 5.

Product demands Di are independently sampled from a uniform distribution over the

interval [4, 50], nominal processing times Ōij are independently sampled from a uniform

distribution over the interval [4, 25], and the number of operations per product type randomly

vary between 1 and 10. Holding costs hit linearly decrease with the period t, i.e., hit =

Hi (|T| − t+ 1) with values Hi independently sampled for each i from a uniform distribution

over the interval [0.001, 0.02]. As in the other problems, we assume equal marginal profits

(wi = 1 ∀i) and null shortage costs (Ci = 0 ∀i). Furthermore, we relax constraints (2)

and (15), and assume that multiple copies of tools are available (αj randomly chosen in the

interval [1, 4] ∀j). Finally, we assume that the total availability is equally distributed among

the machines (same Amt ∀m) and that such availability allows to meet the demands under

the deterministic setting only in some instances, while in the others the demand of some

products cannot be met completely even in the deterministic setting.

For each instance, we solve the MLP-R by assuming δ = 0.5 and under different cardi-

nality matrices Γ = {Γjt} with equal elements, i.e., Γjt = Γ ∀j, t.

4.3.2. Results

As in the MM-SP, the values of the objective functions are normalized by dividing each of

them by that of the corresponding deterministic solution with Γ = 0. Figure 6 collects these

values, which decrease with the cardinality of all solved instances, as the total produced

quantity
∑

i∈I,t∈T x
∗
it decreases.

Detailed results for one of the MM-MP instances (i.e., with |J| = 18, |I| = 6, |M| = 4,

|T| = 3 and Hi as in Table 7) are provided in Table 8, which shows how the increased

robustness forces to split the production over time periods in order to saturate the availability

Amt in late periods firstly. Moreover, the production of product types i with higher Hi values
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Figure 6: MM-MP problem – Normalized objective functions for increasing normalized cardinality Γ/Γmax.

i 1 2 3 4 5 6

Hi 0.0162 0.0151 0.0164 0.0082 0.0127 0.0119

Table 7: MM-MP problem – Values Hi for the instance MM-MP with |J| = 18, |I| = 6, |M| = 4, |T| = 3.
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is postponed to later periods to reduce the impact of the holding costs on the objective

function.

The most critical product types for the deterministic case are i = {1, 3} and their

production is entirely assigned to period t = 3. However, the ranking of products in the

robust solution is more complex (see discussion in Section 4.1) and it might happen that

quantities x∗
it do not have a monotonic behavior in t and Γ, due to the dynamic ranking

of products. As the cardinality varies, the production is differently assigned to periods.

Let us consider product type i = 3: for the deterministic solution {x∗
31
, x∗

32
, x∗

33
}|Γ=0 =

{0, 0, 9} units, while for the robust solutions {x∗
31
, x∗

32
, x∗

33
}|Γ=1 = {0, 5.59, 3.41} units and

{x∗
31
, x∗

32
, x∗

33
}|Γ≥2 = {0, 0, 9} units. Although this product type has the highest holding cost

Hi, its production is partially anticipated to period t = 2 in the solution with Γ = 1, whilst

product type i = 1 is always kept in period t = 3.

Similar insights can be derived from the other MM-MP instances, and these results are

also aligned with those of SM-SP problems (Section 4.1.2) and MM-SP problems (Section

4.2.2).

4.3.3. Execution of the solutions

In this section, we evaluate the performance of the robust plans obtained with the MLP-

R against realistic variations of the parameters. Notice that the total monetary cost of a

robust plan remains unchanged since the parameters of the objective function (1) are not

subject to uncertainty. However, when real processing times are considered, the slacks of

the constraints with time availability are significantly reduced, when they do not actually

become negative. Therefore, we have chosen the saturation of the time availability Atot as

key performance index of the robust plans.

Let us define the robust plan x∗
it(Γ, δ) ∀i, t as the solution of the MLP-R model with

input parameters Γ, δ, and the Actual Time (AT ) needed to produce a robust plan as the

time necessary to produce all products as stated in the plan x∗
it(Γ, δ) when facing realistic

realizations of the processing times Õij:

AT (Γ, δ) =
∑

i∈I, j∈J, t∈T

x∗
it (Γ, δ) Õij.
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Γ = 0 Γ = 1 Γ = 2 Γ = 3 Γ = 4 Γ = 5

i

t
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 42.0 42.0 42.0 42.0 42.0 42.0

2 7.0 39.0 18.4 14.2 13.4 8.2 37.1 0.7 34.9 11.1 25.6 20.4 25.6 20.4

3 9.0 5.6 3.4 9.0 9.0 9.0 9.0

4 39.1 6.9 16.1 9.5 11.7 20.3 8.9 24.3 4.1 26.1 1.9 26.1 1.9

5 15.2

6 8.0 8.0 8.0 2.3 2.0 3.7 8.0 8.0

Table 8: M-MP problem – MLP-D (Γjt = Γ = 0, ∀j, t) and MLP-R (Γjt = Γ > 0, ∀j, t) solutions x∗

it in relation to Γ. Results of the MM-MP

instance with |J| = 18, |I| = 6, |M| = 4, |T| = 3.
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Hence, we define:

η(Γ, δ) =
AT (Γ, δ)

Atot

− 1 (22)

as performance index of the robust plan x∗
it(Γ, δ) for a given realization of processing times

Õij. The value η = 0 is a feasibility threshold. A positive η value means that the production

time required is larger than the total available time, and that the solution of the MLP-R is

unfeasible with the encountered realization. On the other hand, a negative η value means

that the available time is larger than the required one.

We execute the solutions in a setup where the processing times may increase up to twice

their nominal value, and where smaller increases are more likely than higher ones. Indeed,

we have independently generated 5 matrices of processing times Õij by sampling them from

a triangular density function with parameters a = b = Ōij and c = 2 Ōij (where a denotes

the minimum value, b the mode, and c the maximum value). Notice that other densities

might be used as well, with no loss of generality for our conclusions.

We have selected the MM-MP instance with |J| = 18, |I| = 6, |M| = 4, and |T| = 3,

whose robust plans are in Table 8. We have computed η(Γ, δ) for the MLP-R solutions

with Γ = {0, 1, 2, 3, 4, 5, 6} and δ = 0.5 under the 5 generated matrices of processing times

Õij. Figure 7 shows the behavior of η(Γ, δ) over Γ. The deterministic solution is always

unfeasible when simulated, as the required time is larger than the total availability
∑

mt Amt.

By increasing the robustness of the plan with higher Γ values, solutions become feasible as

the temporal slack becomes larger. Indeed, the plan x∗
it(1, 0.5) is feasible for 2 out of 3

realizations of Õij and the plans x∗
it(Γ, 0.5) are feasible in all realizations for Γ ≥ 2. Table 9

summarizes the mean η value (η̄), its standard deviation (ση) and its standard error (SE(η))

over the experiments, which show the low variability of the index with respect to its mean

value.

These results confirm the effectiveness of the CC approach. Indeed, even small values

of Γ guarantee the feasibility of the production plans in the tested case. Moreover, results

show that the MLP-R performs well even if the impact of the variations is underestimated

by using δ = 0.5 (though processing times may increase up to twice their nominal value in

the realizations). From the application viewpoint, the η(Γ, δ) values obtained in a specific
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Figure 7: MM-MP problem – Simulation results obtained with the robust plans x∗

it(Γ, δ) with δ = 0.5 and

increasing Γ values. Results refer to the 5 replications for the MM-MP instance with |J| = 18, |I| = 6,

|M| = 4, and |T| = 3.

case allows to evaluate the advantage or disadvantage for a production manager in adopting

the robust solution. The deterministic solution is worthy of being implemented when η ≤ 0,

while the robust solution is beneficial when η > 0. When η ∼= 0 other measures can be

also considered (e.g., time availability) to decide between the deterministic and the robust

solution.

4.4. Computational times

In this section, we summarize the computational times required to run the MLP-R for

all instances presented in this paper. Experiments have been run with CPLEX 12.6 on a

computer equipped with processor Intel Core i7 @ 2.5 GHz and 16 GB of installed RAM.

The observed computational times are all below 35 seconds, thus ensuring the practical

applicability even for decision support tools that must provide a solution quickly. Moreover,

the 40.9% of the times are below 6 seconds and the 90.6% below 7 seconds. Figure 8 shows

all computational times in function of the number of decision variables; we may observe
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Γ δ η̄(Γ, δ) ση SE(η)

0 0.5 0.340 0.090 0.040

1 0.5 -0.022 0.080 0.036

2 0.5 -0.102 0.075 0.034

3 0.5 -0.102 0.075 0.034

4 0.5 -0.102 0.075 0.034

5 0.5 -0.102 0.075 0.034

6 0.5 -0.102 0.075 0.034

Table 9: MM-MP problem – Performance η obtained with the robust plans x∗

it(Γ, δ). Results refer to 5

simulations of instance MM-MP with |J| = 18, |I| = 6, |M| = 4, and |T| = 3.

that they are not affected by the problem size even for the largest instance considered that

includes 6646 decision variables (with |J| = 25, |I| = 11, |M| = 7 and |T| = 10).

5. Conclusions and future developments

In this work, we develop the robust counterpart of an existing MLP model. The goals

are to allow companies to implement more robust production plans and guarantee minimum

production levels that the system can achieve even in the worst conditions when plans are

implemented. The robust model has been defined exploiting the CC approach to address

the trade-off between the complexity of the model and a fair description of the uncertainty

set for the model parameters, and to easily tune the specific degree of risk that the decision

maker accepts. Thus, the resulting model provides a robust solution against a given number

of unfortunate events that the production planner is expecting or against which he/she

wishes to cover.

The behavior of the model and the impact of robustness level have been analyzed by

means of several numerical experiments, considering single- vs multi-machine and single-

vs multi-period problems. Outcomes show the capability of the approach to cope with

uncertainty, and allow us to analyze the trade-off between robustness (the protection against

uncertainty) and its price. In particular, the numerical analyses have confirmed that i) the
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Figure 8: Scatterplot of the computational times in function of the decimal logarithm of the number of

decision variables Log10(NDV ).

robustness of the MLP solution can be easily tuned with the CC approach, ii) the most

critical tools and products can be investigated from the robust solution, as the CC approach

provides the worst case scenario, and iii) the impact of the amount of unfortunate events

on the performance can be easily assessed.

The results achieved can be useful in terms of impact analysis at the first stages of a

production planning process. Indeed, the robust model allows us to evaluate the maximum

performance that can be obtained in the absence of disruptive events and the best perfor-

mance once a level of protection is set (in terms of cardinality and entity of the disruptions).

It is worth mentioning that the reference MLP of Sodhi et al. [4] does not consider

the detailed production scheduling within a period t, which is usually addressed at the

next decision level. Thus, we neglect specific scheduling issues as preemption within a

period and resource starvation. Our future work will address the integration of the proposed

approach with the scheduling level. Even though some issues can be easily considered (e.g.,

the robustness of solution can absorb the starvation time that can be seen as part of the

processing time uncertainty), a complete integration will require us to modify the MLP-D
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at the basis of our current work.

In the future, we will also evaluate the behavior of the robust model both in a rolling

horizon perspective and in a dynamic context. In the former case, the plan will be defined at

a fixed frequency and, if less events occur, the remaining time will be used to reschedule the

remaining products and the newly arrived orders before the definition of the new plan. In the

latter case, the solution at the MLP will define how to react at time t given the events that

occurred in the previous time instants, as the decision variables will be replicated over a set

of possible realizations. Finally, future development will be devoted to include a comparison

with other existing deterministic MLP models, by applying the CC approach to them.
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