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The Majorization Principle is a fundamental statement governing the dynamics of information
processing in optimal and efficient quantum algorithms. While quantum computation can be mod-
eled to be reversible, due to the unitary evolution undergone by the system, these quantum algo-
rithms are conjectured to obey a quantum arrow of time dictated by the Majorization Principle:
the probability distribution associated to the outcomes gets ordered step-by-step until achieving
the result of the computation. Here we report on the experimental observation of the effects of the
Majorization Principle for two quantum algorithms, namely the quantum fast Fourier transform and
a recently introduced validation protocol for the certification of genuine many-boson interference.
The demonstration has been performed by employing integrated 3-D photonic circuits fabricated via
femtosecond laser writing technique, which allows to monitor unambiguously the effects of majoriza-
tion along the execution of the algorithms. The measured observables provide a strong indication
that the Majorization Principle holds true for this wide class of quantum algorithms, thus paving
the way for a general tool to design new optimal algorithms with a quantum speedup.

Introduction — Quantum computation holds the
promise to greatly improve the capabilities of computa-
tional platforms relying on the laws of classical physics
[1]. Such potentiality arises from the combination of
both an exponential storage capability and a dynami-
cal parallel processing of the unitary time evolutions.
However, the unprecedented massive computational re-
source offered by the parallel processing alone is doomed
to failure, due to the non-deterministic nature of any
measurement process. Thus, quantum algorithms have
been properly tailored to exploit the power hidden in
quantum resources challenging this limitation [2]. While
quantum correlations are considered to be the fundamen-
tal physical resource responsible for the higher efficiency
of quantum algorithms, we still ignore how to manage
them to effectively produce new quantum protocols [3].
This situation is in sharp contrast with the theory of
classical algorithms, where there exist well-known strate-
gies to devise new algorithms starting from those already
available [5]. However, while a complete picture of the
principles governing the design of new quantum algo-
rithms is still lacking, we can yet control the evolution
to guarantee that a new alleged quantum algorithm is
truly efficient. Such criterion may arguably be provided
by the Majorization Principle (MP) [6–8]. So far, indeed,
all time evolutions ultimately belong to two categories.
Classical evolutions can be described by the Principle of
Least Action [9]: trajectories must obey local constraints
so that the Action remains stationary at each point of the
geodesic. On the contrary, a global description for quan-
tum evolutions requires to sum over all classical trajecto-
ries weighted by the exponential of the phase-Action [10].

MP-constrained evolutions represent a synthesis of these
two typologies, lying between classical observables and
purely quantum processing. Specifically, the MP is be-
lieved to provide a necessary condition that must hold to
produce an optimal algorithm with a quantum speedup.

Here we report on the experimental observation of
the Majorization Principle, acting along the execution
of both a Quantum Fourier Transform (QFT) routine
and a recently introduced quantum validation protocol
aimed at certifying genuine many-boson interference [11].
The importance of these two operations in the context
of quantum algorithms make them a perfect test-bed
for the experimental demonstration of the occurrence of
the MP. The observation has been carried out by im-
plementing the protocols on 3D integrated photonic cir-
cuits realized via femtosecond laser writing technique on
alumino-borosilicate substrates [12–15]. This fabrication
procedure presents the unique advantage of permitting
interferometric architectures with 3-dimensional topol-
ogy. The latter feature enabled the capability of decom-
posing the action of the two protocols into discrete steps,
through which it has been possible to observe the MP.

The Majorization Principle arises with respect to the
probability distributions of all possible outcomes of an al-
gorithm, updated while advancing throughout each step.
Given two probability distributions (~x, ~y), let (~x↓, ~y↓)
be the same vectors with their components sorted in de-
creasing order. We say that ~y↓ majorizes ~x↓ (~y↓ � ~x↓) if
and only if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , ∀ k ∈ {1, ..., d} (1)
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FIG. 1: Majorization Principle in quantum Fourier transform. (a) Conceptual scheme for the experimental observation
of the Majorization Principle in (b) an 8-dimensional quantum Fourier transform: by implementing the QFT with its fast
architecture, it is possible to decompose the evolution in three steps, corresponding to the three layers of beamsplitters (purple)
and phase shifters (blue) between which a step-by-step majorization is observed.

The concept of majorization can be extended in a nat-
ural way to quantum algorithms. Let |ψ(s)〉 represent the
state of the register of a quantum computer at a step s
of the algorithm. We can associate to |ψ(s)〉 a vector of
probabilities p(s) by writing the register in the computa-

tional basis |j〉, in such a way that p
(s)
j = |〈j|ψ(s)〉|2. Con-

sequently, a quantum algorithm is said to undergo a di-

rect (reversed) majorization if and only if p(s)
↓ ≺ p(s+1)↓

(p(s)
↓ � p(s+1)↓) for all steps s [7]. An intuitive reason

for the physical connection between quantum process-
ing and direct (reversed) majorization is that of a neat
flux of probability towards (away from) the result of the
computation, making the probability distribution steeper
(flatter) throughout the whole algorithm.
The principle can now be stated as follows [6]:

Majorization Principle: In all optimal and efficient
quantum algorithms, the set of sorted probabilities asso-
ciated to the quantum register must obey either a direct
or a reverse step-by-step majorization.

All known quantum algorithms which are both optimal
and efficient, i.e. with a quantum speedup over the best
classical algorithm, have been proven to satisfy the con-
jectured MP with a direct or reverse majorization [8]. Re-
markably, similar majorization constraints have already
found applications in highlighting arrows in several other
physical processes [16, 17]. Similarly, the MP promises to
represent the arrow which operates within optimal and
efficient quantum algorithms.

The validity of the principle has been proved theoreti-
cally for both Grover-like [18] and phase estimation-like
[19] algorithms. Further optimal algorithms studied in-
clude a variant of the Berstein-Vazirani algorithm [20],
a set of quantum adiabatic algorithms [21] and a quan-
tum random walk algorithm [22]. For all such instances,
quantum speedups over the classical state of the art were

always found to be associated to a step-by-step majoriza-
tion, while non-efficient computations did not. The case
of the Berstein-Vazirani algorithm is of even greater in-
terest, since no entanglement is created along the com-
putation, while majorization is indeed verified [8]. Thus,
a strong evidence exists that the MP will represent a fun-
damental tool for the design of future efficient quantum
algorithms. The goal of this paper is to provide exper-
imental evidence that this statement holds true for two
quantum algorithms, the quantum Fourier transform and
a recently proposed validation protocol.

Majorization Principle in a fast QFT — The class of
phase-estimation algorithms, which includes Shor’s fac-
torization and discrete logarithms [19], is of particular
importance for the exponential speedup over the best
available classical equivalents. Such quantum speedup is
ultimately rooted in the efficient processing of the QFT
routine, whose m-dimensional unitary evolution UQFT

m is

given by |l〉 → 1√
m

∑m−1
q=0 e2πi

lq
m |q〉.

In this article, we report on the experimental observa-
tion of the MP in the case of the QFT, where the rou-
tine is encoded in the optical modes. The correspond-
ing transformation has been implemented on a photonic
platform by adopting an efficient scheme developed by
Barak and Ben-Aryeh [23] (BB) to minimize the num-
ber of optical elements required. This scheme repre-
sents the quantum analogue of the Fast Fourier Trans-
form (qFFT), the well-known classical algorithm to ef-
ficiently calculate the discrete Fourier transform. By
adopting this approach, valid for transformations of di-
mension m = 2p, the necessary number of beamsplitters
and phase shifters is significantly reduced to (m/2) logm
[23], from the O(m2) elements needed for the most gen-
eral decompositions [24]. The qFFT has been realized on
photonic integrated interferometers taking advantage of
the 3-D capabilities of femtosecond laser writing [12, 13],
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which allows to arrange the waveguides in arbitrary and
fully-scalable three-dimensional structures [14, 15]. More
in particular, the step-by-step reversed majorization can
be directly monitored thanks to the sequential struc-
ture that naturally emerges from the BB decomposition,
as shown in Fig.1. The observation has been carried
out by injecting single-photon Fock states into three 8-
mode integrated interferometers {I1, I2, I3} which cor-
responds to partial implementations of the qFFT pro-
tocol, with different degrees of completion. The num-
ber of fabricated interferometers Is, each consisting of s
layers of beamsplitters and phase shifters, corresponds
to the number of layers in the decomposition of an 8-
dimensional QFT. The last interferometer I3 performs
the complete 8-mode qFFT, where one photon encodes
3 qubits over the optical modes. The effective unitaries
implemented by the physical interferometers, which dif-
fer from the ideal ones due to unavoidable experimental
imperfections, have then been reconstructed. The re-
construction process has been performed by exploiting
a-priori knowledge on the architecture, to estimate the
transmissivities of the directional couplers and the rela-
tive phases in the phase shifters [35]. Parameters have
been retrieved by minimizing a suitable χ2 function with
the single-photon and two-photon measurements. The fi-
delities Fs between the reconstructed transformations in
the Is and the ideal unitaries obtained with the decom-
position are F1 = 0.9954± 0.0002, F2 = 0.9921± 0.0005
and F3 = 0.9527± 0.0006, thus confirming the quality of
the fabrication process. The errors have been estimated
with a Monte Carlo simulation, by sampling 1000 sets of
new experimental data normally distributed around the
ones measured.

For each input state i and each partial transformation
Is, the output probability distributions pi have been re-
trieved for the eight output states. The most convenient
tool to convey the validity of the Majorization Principle
is then offered by the Lorenz curve, a continuous piece-
wise linear function representing the partial cumulative
Cp(k) =

∑k
i=1 p

↓
i for the k most probable outcomes. For

the MP to be satisfied, the curves Cp at each step of
the QFT must not cross, due to the inequality (1). As
shown in Fig.2, a step-by-step reversed majorization is
then observed between the output probability distribu-
tions of the three interferometers Is, i.e. by comparing
Cp(1)(k), Cp(2)(k) and Cp(3)(k) according to (1).

Majorization Principle in a validation protocol —
Quantum computation aims at developing algorithms
able to outperform the classical counterparts on specific
tasks. However, in this sought-after regime of a quan-
tum supremacy, where standard computers no longer can
check the results of a quantum device, the need for a
quantum validation protocol becomes urgent and funda-
mental. This necessity arises prominently in the context
of Boson Sampling experiments [25–32], specialized de-
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FIG. 2: Lorenz diagrams for a QFT Majorization experiment,
with a single photon encoding three qubit on the first layer I1
(blue), first and second layer I2 (green) and complete struc-
ture I3 (orange) of the 8-dimensional Fourier interferometer.
For each intermediate Is, eight diagrams are shown relative
to all possible single-photon input states. Each curve repre-
sents the partial cumulative probabilities Cp(k) for the k most
probable outcomes. Error bars are estimated with a Monte
Carlo simulation, to take into account the sorting procedure.

FIG. 3: Scheme of the validation protocol. The algorithm
certifies full many-boson interference of Fock states (F) in a
Fourier interferometer, against the alternative hypotheses of
Distinguishable (D) and Mean-Field (MF) states.

vices whose task is to provide a first evidence of this
future quantum supremacy [33]. In this direction, var-
ious protocols have been developed [11, 34–38] and im-
plemented [15, 29–31] to certify their correct functioning
against undesired alternatives [39]. One of these pro-
tocols, recently developed by Tichy et al. [11], allows
to efficiently certify the source of a Boson Sampling ex-
periment, ruling out alternative hypotheses which would
yield output probability distributions similar to that with
fully indistinguishable photons. In particular it was ob-
served that, for symmetric input states of specific inter-
ferometers, quantum many-particle interference may de-
termine the suppression of a large number of output com-
binations in a way efficiently predictable [11], i.e. with-
out having to go through the calculation of a permanent,
which is at the core of the computational complexity of
the Boson Sampling problem [33]. Specifically, denoting

with |R〉 = |r1r2...rm〉 = â†r11 â†r22 ...â†rmm |0〉 a generic in-
put state with ri indistinguishable photons in the mode
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FIG. 4: Lorenz diagrams for a two-photon Majorization experiment on the first layer I1 (blue), first and second layer
I2 (green) and complete structure I3 (orange) of the 8-dimensional Fourier interferometer for the validation algorithm. a)
Two photons in the same input mode (5,5). The distribution is the product of two QFT acting on the single photons.
b, c) Input modes whose sum is odd (5,6) or even (5,7) respectively. d) Cyclic input (2,6) for the validation algorithm.
Each curve is obtained by calculating the partial cumulative probabilities Cp(k) for the k most probable outcomes in the
case of distinguishable (black triangles) and indistinguishable (circles) photons. Shaded areas are included within the curves
corresponding to fully indistinguishable photons (lighter regions) and to fully distinguishable photons (darker regions), as
expected from the reconstructed unitary transformations. Error bars, smaller than the markers, have been estimated via a
Monte Carlo simulation to take into account the sorting procedure.

i of the m-mode interferometer, the probability p
(U)
S,T of

having a certain output configuration |T 〉, given one in
the input |S〉, is given by

p
(U)
S,T =

∣∣ 〈T |U |S〉 ∣∣2 =
|Per(UST )|2∏m

i=1 si! ti!
(2)

being UST the submatrix obtained by repeating si (ti)
times the column i (row j) of U , and being Per(M) the
permanent of the matrix M [40]. Indeed, let us con-
sider a np-dimensional Fourier interferometer described
by (UF

np)l,q = (np)−1/2 e2πi
lq
np . When injected with

cyclic input states, i.e. n-photon Fock states distributed
over the input modes satisfying j(a,b) = b+ (a− 1)np−1,
with a ∈ {1, . . . , n}, b ∈ {1, . . . , np−1} and p ∈ N, they
all result in the suppression of the output combinations
which do not satisfy the relation mod (

∑n
l=1ml, n) = 0,

being ml the output mode of the lth photon [11, 15, 31].
The efficiency and scalability of this algorithm are cru-

cial features for its application in a hard to simulate
regime. Hence, we expect the MP to be always satisfied
while certifying genuine many-photon interference for the
cyclic input states. The experiment was carried out by
injecting two-photon states into the three 8-mode inte-
grated interferometers {I1, I2, I3} implementing partial
instances of the qFFT. According to the validation test,
a suppression of specific output configurations was ex-

pected due to the interference of symmetric states. This
effect was indeed observed by measuring all

(
8+2−1

2

)
= 36

two-photon coincidence events at the output of each Is for
a given cyclic state, to retrieve the scattering probabili-

ties p
(s)
i,j of having two photons in the output modes (i, j).

For the MP to be observed, the whole set of outcomes
has to be recorded: this requirement involved the mea-
surement of the eight bunching events (i, i), i.e. when
two-photon exited from the same output mode. This
measurement was carried out by adding, at the end of the
fiber array coupled to the output of the interferometer,
additional fiber optic splitters to redirect the bunched
photons in two separate detectors. A detection system
was then able to register all the one-to-one coincidences
between any number of firing detectors. For all three Is,
the probability distributions p(s) of 4 two-photon input
states have been measured and plugged into (1) to test
the validity of the MP. All 36 patterns for the partial
cumulative probabilities Cp(k) can in fact be divided in
four distinct classes [41], as shown in Fig.4. Non-crossing
curves are expected for Fig.4a, since the probability dis-
tribution is the product of two single-photon QFT. Fur-
thermore, we observe in Fig.4b-c that non-crossing curves
are present also for non-cyclic input states, which are
not employed in the validation protocol [11]. This lat-
ter observation confirms that the occurrence of the MP
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does not imply optimality, since the principle does not
provide a sufficient condition. Finally, the non-crossing
Lorenz curves relative to the cyclic input state of the val-
idation protocol (Fig.4d), manifesting that p(s) � p(s+1)

at each stage of the evolution, confirm the operation of
the principle along the quantum algorithm.

Discussion — We have reported on the experimental
demonstration of the Majorization Principle for two ef-
ficient quantum algorithms, the quantum Fourier trans-
form and a recently proposed protocol for validating true
many-boson interference. The observation was carried on
an integrated photonic platform, realized by adopting a
novel 3-D architecture fabricated via femtosecond laser
writing technique. Single photon and two-photon mea-
surements on an 8-dimensional Fourier interferometer
have shown the occurrence of the Majorization Principle
all along the two quantum protocols, by exploiting a fast
decomposition of the evolution in discrete steps. The re-
sults obtained provide experimental evidence for the Ma-
jorization Principle, making it a promising guide for de-
vising new quantum algorithms with a speedup over their
corresponding classical counterpart. The good agreement
with the expected distributions highlight the quality of
the 3-D capabilities of femtosecond laser-writing, thus
confirming it as an effective tool for addressing broader
investigations on photonic platforms.
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