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Abstract9

The Spatial Markov Model (SMM) is an upscaled model with a strong10

track record in predicting upscaled behavior of conservative solute transport11

across hydrologic systems. Here we propose an SMM that can account for12

reactive linear adsorption and desorption processes and test it on a simple13

benchmark problem: flow and transport through an idealized periodic wavy14

channel. The methodology is built using trajectories that are obtained from15

a single high resolution random walk simulation of conservative transport16

across one periodic element. Our approach encodes information about where17

a particle starts at the inlet, where it leaves at the outlet, how long it takes18

to cross the domain and one additional piece of information, the number of19

times a particle strikes the boundary, with the objective of predicting large20

scale transport with arbitrary linear adsorption and desorption rates. Our21

benchmark problem demonstrates that predictions made with our proposed22

SMM agree favorably with results from direct numerical simulations, which23

resolve the full transport problem.24
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1. Introduction26

Transport of chemical species through porous media can be complex rela-27

tive to the flow through the medium due to the fact that constituents can sorb28

and desorb to the solid matrix, thus slowing down their movement relative29

to the flow. A common textbook approach to account for this is the inclu-30

sion of a retardation coefficient in an advection dispersion equation (ADE)31

[1]. This is only valid when (i) assumptions required to derive the ADE32

for conservative transport hold and (ii) when one can assume that solute33

in the fluid and solid phases is in an instantaneous well mixed equilibrium.34

For complex porous media where geometries can give rise to heterogeneous35

flows comprised of fast preferential flow channels as well as slower trapping36

regions, such assumptions can be questionable. Even for conservative trans-37

port, where there is no mass exchange between the fluid and the solid phase,38

anomalous (non-Fickian) transport is known to occur, particularly at early39

(preasymptotic) times [e.g. 2, 3]. The problem is further complicated with40

the addition of potentially complex kinetic surface sorption and desorption41

processes, which introduce their own set of potentially vastly different time42

scales [4, 5].43

In many instances, it is not of interest to explicitly describe and resolve44

all details of transport at all scales, but rather model them effectively at45

some scale of particular interest. Representing the transport of a solute in a46

complex flow with a one-dimensional upscaled description can be dated back47

to upscaling transport in cylindrical tubes by GI Taylor and Aris [6, 7]; this48

was later generalized to more complex flow configurations using a variety of49

2



related methods [e.g., 8, 9, 10]. In all cases, longitudinal transport can be50

described with an effective one dimensional ADE with an enhanced Fick-51

ian dispersion coefficient that reflects spreading due to subscale variations52

in velocities. These models have been generalized to include a wide variety53

of reactive processes including surface reactions and mixing processes [e.g.54

11, 12, 13]. Dykaar & Kitanidis [12] calculated effective dispersion, velocity55

and reaction rates in an idealized pore geometry by considering flow and56

transport in a periodic channel with sinusoidal boundaries where solute can57

react and degrade close to the boundaries, a process that is mathematically58

similar to sorption. Levesque et al. [14] generalized Taylor dispersion to59

systems that include adsorption and desorption to and from solid boundaries60

in the flow domain and applied it to benchmark Poiseuille flows in planar61

and cylindrical geometries, both in constant and periodic time varying flows.62

In all cases effective velocities and dispersion coefficients can vary signifi-63

cantly when compared to values obtained for a conservative solute. These64

coefficients may also vary dynamically in time as recently shown in [15].65

The above methods, in their original form, hinge on the assumption that66

sufficient time has passed for the solute to sample the full variability of flow67

velocities under displacements induced by diffusion. This is characterized68

by the Taylor dispersion time scale τD = L2/D, where L is a characteristic69

length scale and D the diffusion coefficient. At times smaller than this, the70

aforementioned models are strictly speaking not valid. In the presence of re-71

actions, the relative magnitude of reaction and transport characteristic time72

scales becomes relevant to the applicability of continuum-scale models, such73

as the standard advection-dispersion-reaction equation [e.g. 16, 17]. Depend-74
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ing on the nature of the problem at hand, this may or may not be important.75

For example, many observations of so called anomalous or non-Fickian trans-76

port [e.g. 18, 19, 20] are situations where all length and velocity scales of the77

system have not yet been sampled and where the largest time scale might be78

tremendously large relative to times of practical interest [e.g. 21, 22].79

It is possible to relax this assumption and develop similar theories that are80

valid at pre-asymptotic times [e.g. 23, 24, 25], but these still come with strong81

assumptions that may or may not be met. A strong benefit of these models82

is that they can help yield great physical insight into important processes at83

small scales that dominate large scale behaviors. However, in some instances84

the resulting models can be highly complex integro-differential equations with85

strong memory effects, meaning that solving them can be as burdensome as86

solving the full microscale problem [e.g. 26, 25].87

The Spatial Markov model (SMM), first introduced by [27] provides an al-88

ternative, relatively parsimonious approach that can be applied at preasymp-89

totic times, significantly earlier than Taylor dispersion [28]. The SMM falls90

into the broad family of continuous time random walk (CTRW) models [29].91

In the SMM, a solute plume is represented as a large number of infinitesimal92

particles that transition through space and time. Most often, spatial incre-93

ments are fixed and temporal increments are random, sampled from a mea-94

sured transition time distribution. This is common to many CTRW models.95

What sets the SMM apart is that successive temporal increments can be ex-96

plicitly correlated, reflecting underlying persistence of fast particles to move97

quickly and slow particles to move slowly, which is particularly important98

in systems that are advection dominated [30]. The SMM has had success99
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in upscaling transport across a diverse set of transport settings, including100

highly heterogeneous Darcy scale porous media [27, 31], fracture networks101

[32], pore scale systems [33, 34, 30, 35], unsteady flows through porous media102

[36], and a field scale application to a fractured aquifer [37]. The model has103

recently been extended to incorporate nonlinear features such as mixing and104

reactions [38, 39, 40]. In the above examples, the flows are typically either105

highly heterogeneous with some random structure, or non-uniform, but with106

a periodic unit cell, as commonly used in classical upscaling approaches such107

as volume averaging [9, 41], the method of moments [8] or homogenization108

[10, 42].109

One of the criticisms of the SMM is that it can require extensive parame-110

terization and the most common approach to date is to track Lagrangian par-111

ticle statistics across two spatial increments, measuring particles transition112

times across each and representing the correlation structure via a transition113

matrix. Simplified forms have emerged which assume an idealized structure114

to the transition matrix and have shown success [37, 43], but the assumed115

structure may not be sufficiently general to be universal. More recently, an116

approach was developed that takes successive breakthrough curves and infers117

the transition matrix structure through an inverse modeling approach [44].118

This was later applied to laboratory scale data of transport through zeo-119

lite packed columns [45]. All of these approaches require information about120

travel times across two spatial intervals. Within a domain composed of pe-121

riodic cells, [40] developed an approach that only requires travel statistics122

across one cell by parameterizing the model in terms of trajectories rather123

than just travel times alone. Thus, with one high resolution simulation across124
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one cell (corresponding to one spatial increment in the SMM), they were able125

to efficiently and rapidly predict large scale transport and mixing across much126

greater extents, with the upscaled model running on the order of 1000 times127

faster than a fully resolved one.128

The work of [40] was only performed in the context of conservative trans-129

port. Here we extend this approach to account for (linear) adsorption and130

desorption processes. In particular, our goal is to only use trajectory statis-131

tics from conservative non-sorbing transport across a single periodic cell to132

predict larger scale transport of a solute that can adsorb and desorb to the133

solid matrix with arbitrary adsorption and desorption rates; that is, we only134

need one high resolution simulation across one periodic element with which to135

ultimately predict a broad and extensive range of possible transport scenar-136

ios across large scales. This extension to sorbing solutes opens the pathways137

towards the application of this methods to a broad class of reactive trans-138

port problems, such as contaminant transport in aquifers [46], as well as flow139

through membranes and packed bed reactors [47, 48]. In this work we show-140

case our modeling procedure by relying on a relatively simple flow geometry.141

The simplicity of the geometry allows for a clear understanding of emergent142

behaviors which can then be related to observations in more complex set-143

tings. Thus, we regard it as an ideal starting point for our current extension144

of the SMM. Moreover, a simple geometrical setting can provide critical in-145

formation with which to parameterize pore network models and therefore146

help bridge the gap between pore- and continuum-scale [e.g. 49].147
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2. Model system148

2.1. Pore scale setting149

Figure 1 displays the geometry used in this study, a converging-diverging150

channel filled with fluid, whose solid boundaries are defined by151

h(x) = h̄+ h′ sin

(
2πx

L
− π

2

)
, (1)

where x is the horizontal coordinate, h(x), h̄ and h′ are related to the width152

of the half-aperture (see Figure 1), and L is the length of a single cell. In153

this study, to be consistent with previous ones [e.g. 40, 38], we will focus on154

the specific values of h̄ = L/4 and h′ = 0.8h̄. This setting was first used155

by [12] to upscale effective reaction rates in porous media using the method156

of moments. While this geometry is very simple, the emergent flow displays157

some of the complex features pertinent to understanding flow and transport158

in porous media, including a fast preferential flow path and stagnant trapping159

areas, which are known to strongly impact transport in real porous media160

[e.g. 50]. This, and very similar geometries, have received extensive atten-161

tion in the literature. For example, [51, 52] and [53, 30] studied the effects162

of inertia on flow and transport respectively. Similarly, others have looked163

at how geometry impacts asymptotic [54, 55] and pre-asymptotic transport164

[56, 57], as well as the role of turbulence on large scale dispersion [23]. One of165

the reasons we choose this geometry is that under the assumption of Stokes166

flow, i.e. Reynolds number less than O(1), a semi-analytical solution exists167

[58, 12]. The solution uses a perturbation method to solve the biharmonic168

equation, which governs the streamline structure. Details of the solution, as169
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Figure 1: A schematic of the flow domain and the unit pore cell used in this study.
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well as its validation are available in various papers [58, 12, 59, 55] and so are170

not elaborated on here. The geometry defined above is chosen because of the171

interesting flow patterns, including the emergence of a recirculation region172

and a fast central preferential flow channel. While the geometry is highly173

idealized, these specific features mimic features of interest in real porous me-174

dia, making this model potentially appealing. Due to the natural symmetry175

of the system throughout this entire work we only ever simulate the top half176

of the domain (y > 0).177

2.2. Simulation of transport at the microscale178

Solute transport with sorption and desorption is modeled by [60, 15]179

∂C(x, t)

∂t
+ ∇ ·

[
u(x)C(x, t)

]
= ∇ ·

[
D∇C(x, t)

]
∀ x ∈ Γfluid

∂S(x, t)

∂t
= −λS(x, t) + αC(x, t) = D

∂C(x, t)

∂n
∀ x ∈ Σsurface (2)

where C(x, t) [ML−3] is the concentration of the solute in the fluid, u(x) is180

the velocity in the fluid phase ,D [L2T−1] is the molecular diffusion coeffi-181

cient, taken to be constant in the fluid, S(x, t) [ML−2] is the concentration182

on the surface, λ [T−1] is the rate of desorption, α [LT−1] is the rate of183

adsorption and n is the unit normal to the boundary. Note that the first184

equation in (2) describes transport in the main channel, which is governed185

by the advection diffusion equation. The second equation is the boundary186

condition, describing exchange between the fluid and solid phase: the rate187

of change of surface concentration is given by the rate at which solute con-188

centration attaches to the boundary (αC) minus the rate which solid phase189

concentration is detaching (λS); for mass balance reasons this must be equal190
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to the diffusive flux of solute concentration at the boundary (D ∂C(x,t)
∂n

). In191

all cases we consider an initial condition of an instantaneous line source, flux192

weighted along the pore throat, i.e. C(x, t = 0) ∝ u(x)δ(x). This choice of193

initial condition is common as it is believed to mimic real experiments [e.g.194

61, 62] and also represents the asymptotic distribution to which Lagrangian195

particles are expected to converge [e.g. 63, 64, 65]196

To solve this system we implement a numerical Lagrangian particle based197

random walk method [66], where the solute plume is discretized into a finite198

number of N particles. We incorporate the sorption-desorption boundaries199

following the work of [67]. During each step each particle is moved according200

to Langevin equation201

xn+1
i = xni + ui∆t+ ξi

√
2D∆t

yn+1
i = yni + vi∆t+ ηi

√
2D∆t

tn+1
i = tni + ∆t+ τi

i = 1, ..., N , (3)

where xni and yni are the horizontal and vertical position of particle i re-202

spectively at simulation step n, ui and vi are the x and y components of203

the velocity respectively, ξ and η are independent and identically distributed204

(iid) Gaussian variables with zero mean and unit variance, ∆t is a fixed time205

step, tni is the time for particle i at simulation step n, and τi is a random206

waiting time207

τi =

Ti : P > Ui

0 : P ≤ Ui

, (4)
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where the Ti are iid exponential, with density ψ(τ) = λ exp[−λτ ], P is the208

probabilty of sorption and Ui are iid U(0, 1) (uniformly distributed between 0209

and 1). The solid boundaries in the domain are modeled as elastic reflection210

boundaries. Any time a particle reflects off a solid boundary it either sorbs211

with probability P , resulting in selecting τ randomly from ψ(τ), or does not212

sorb, resulting in τ = 0. To leading order, this probability can be computed213

as214

P = α

√
π∆t

D
. (5)

For further details on this as well as higher order approximations please see215

[67]. This number P is compared to a random number U , drawn from a216

standard uniform distribution. If U ≥ P no sorption occurs and if U < P217

the particle sorbs.218

Our choice of solving this system using this Lagrangian random walk219

method is based on the following: (i) it naturally aligns with building an220

SMM, which relies on Lagrangian statistics, (ii) for a periodic system like221

this one, it is possible to simulate very extensive domains as a particle’s222

velocity at any given time depends only on its local position relative to the223

periodic cell, meaning that we do not need a prohibitively large Eulerian224

mesh and (iii) for a sufficiently smooth velocity field, such as this one, it is225

known not to suffer from numerical dispersion, which could be problematic226

since diffusion and adsorption processes are closely linked. For all of the227

results that we present in this paper we used one million particles and a time228

step of ∆t = 10−3, consistent with previous experience in the same domain229

[55].230

11



2.3. Dimensionless numbers231

The system described in section 2.2 is characterized by the following di-232

mensionless numbers233

Re =
h̄ū

ν
Pe =

h̄ū

D
Daa =

h̄α
√
π

D
Dad =

h̄2λ

D
. (6)

ū is the mean velocity and ν is the viscosity of the fluid. Re is the Reynolds234

number, which we have already assumed to be small Re < O(1) in using the235

prescribed flow field; Pe is the Péclet number, which reflects the competition236

between advection and diffusion processes and typically lies in the range237

0.1 < Pe < 103 [12]. We will focus on the higher range of these values,238

as it is known that advection-dominated systems are more likely to violate239

assumptions inherent to Taylor dispersion and classical advection-disperison240

upscaling. Daa and Dad are adsorptive and desorptive Damköhler numbers,241

which respectively compare the time scales associated with adsorptive and242

desorptive processes to diffusive ones. In a batch system, large values of these243

would correspond to systems close to equilibrium between surface and fluid244

concentrations. In the following any reported dimensionless parameters are245

obtained by setting ū = 1, 2h̄ = 1 (in arbitrary units) and tuning D, α and246

λ to obtain specified values of Pe, Daa and Dad.247

2.4. Inputs for Spatial Markov Model - trajectories, travel times and number248

of hits249

Here we define the inputs that must be obtained from the microscale250

domain in order to build the macroscale effective SMM, described in the251

following section. In all cases we obtain these inputs by running a random252
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walk with a flux weighted pulse initial condition at the throat of a pore (see253

figure 1) and simulate transport across one periodic unit cell. This calibration254

simulation is for a conservative random walk that does not include sorption.255

The periodic unit cell corresponds to the blown up region in figure 1. Sund256

et al’s [40] SMM is different from others in that it samples trajectories rather257

than travel times. These trajectories are obtained by simulating transport258

across a single unit cell, using259

xn+1
i = xni + ui∆t+ ξi

√
2D∆t

yn+1
i = yni + vi∆t+ ηi

√
2D∆t

i = 1, ..., N . (7)

This is a standard random walk framework (note these equations are the260

same as (3), but without the random waiting times associated with model-261

ing sorption). Using this we store specific information about each particle’s262

trajectory. In Sund’s approach each trajectory is defined by three parame-263

ters: (i) its vertical position at the inlet of the periodic element yin, (ii) the264

time, T , it takes to travel from the inlet to the outlet and (iii) its vertical265

position at the outlet when it leaves the periodic element yout. In addition266

to these three inputs, our method will account for adsorption-desorption by267

storing one additional piece of information (iv) Nhits, the number of times268

a particle strikes a solid boundary when crossing a single cell. We propose269

that by running one high resolution simulation of conservative transport over270

one periodic element, we can obtain all of the required information needed271

to upscale and describe transport with adsorption and desorption efficiently272

over much larger scales. However, it must be noted that for each different273
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value of Pe, a different calibration simulation is required.274

2.5. Effective transport model - The Spatial Markov Model275

Here we propose an SMM, which is an effective upscaled transport model276

that describes transport in one dimension aligned with the direction of flow.277

The SMM is a time domain random walk model and again the solute is278

represented by discrete particles, whose motion in time and space is governed279

by:280

x̃k+1
i = x̃ki + L

t̃k+1
i = t̃ki + T ki +

Nk
hits∑
j=1

τj. (8)

Tildes refer to upscaled quantities. x̃ki is the horizontal location of particle281

i at the beginning of step k, t̃ki is the time associated with particle i at the282

beginning of step k, Nk
hits is the number of times the sampled trajectory283

strikes the boundary during step k. During each step a particle transitions284

a constant longitudinal distance L, the length of our periodic cell, and it285

does so in a random time T , which is sampled from a measured travel time286

distribution, the discrete distribution obtained from the single pore calibra-287

tion simulation in (7). T reflects the range of velocities that particles sample288

in traversing the unit cell. The feature that makes the SMM unique rel-289

ative to other random walk models is that successive temporal increments290

are not independent of one another. Correlation arises when a particle that291

traverses one periodic unit quickly is also likely to traverse the next one292
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quickly and likewise for a slow one. In the absence of diffusion, particles per-293

sist on the same streamline always and so successive jumps would have the294

same transition time. Due to diffusion, particles can leave streamlines and295

sample various flow streamlines. However, when advective effects are strong296

relative to diffusive ones, memory effects persist and must be accounted for297

through correlation. In most applications, correlations are applied using a298

transition matrix [27]. We apply here instead the trajectory based approach299

recently proposed in [40], because the trajectory based method can account300

for the number of times each trajectory interacts with the boundary in a way301

that the original transition matrix approach cannot. This approach naturally302

provides a framework that more readily characterizes interactions of particles303

with the reactive boundary, using the information stored as inputs for the304

SMM described in §2.4. It should be noted that the periodic nature of the305

domain is important in accomplishing this, although some other recent stud-306

ies suggest that trajectory based methods may also work for heterogeneous307

systems characterized by a stationary heterogeneity distribution [68, 69].308

In this implementation of the model, each step of length L is associated309

with a specific particle trajectory. We summarize our algorithm in the fol-310

lowing steps:311

1. Each particle starts with a given yin reflecting the desired initial condi-312

tion. This sets a specific trajectory that has an associated travel time,313

which is used as the time increment T ki in (8), and an assigned number314

of hits Nk
hits.315

2. Adsorption is accounted for by the term
∑Nk

hits
j=1 τj, where each strike316

with the boundary adds a possible waiting time, which is sampled from317
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the same distribution ψ(τ) as used in (3) with probability P from (5).318

3. The model then samples the next trajectory randomly, using yout as a319

conditioning criterion for picking the next trajectory by making sure320

that its yin is close to the previous yout. This is done by discretizing321

the inlet into Nbins equi-sized bins (we used cases with Nbins = 10,322

100 and 1000 in this study with no notable difference in results). A323

particle’s vertical y location determines which bin it is in. Thus ykout324

determines the bin from which the next trajectory is sampled. A tra-325

jectory with yk+1
in is randomly and uniformly sampled from the same326

bin that ykout ends in. This binning procedure ensures correlation effects327

are accurately imposed.328

2.6. Observables to test model329

We will test the proposed SMM by comparing its ability to predict down-330

stream transport as measured by breakthrough curves (BTCs) measured at331

multiple downstream locations. These are x = 5L, 10L, 25L and 50L. Test-332

ing the upscaled model against BTCs at multiple downstream locations pro-333

vides a more robust test of the model compared with focusing on only one334

location; sometimes a model can match a single BTC due to overparameter-335

ization, but when the same model can consistently match observations over336

multiple scales, it suggests that the underlying physics is being more faith-337

fully captured. Thus, to produce benchmark data against which to test the338

SMM, we run a series of high resolution random walk simulations using the339

fully resolved transport equations (3) that account for advection, diffusion,340

adsorption and desorption. In all cases we use a flux weighted pulse ini-341

tial condition and run single realization simulations with N = 106 particles.342
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Figure 2: (Left) Travel Times Distributions across single periodic elements (Middle); Fre-
quency scatter plot of number of times each trajectory hit the boundary; (Right) Scatter
plot for each simulated particle’s starting yin vs the number of times a particle hits the
boundary during one travel time. The top row shows results for Pe = 100 and the bottom
row for Pe = 1000.

These results are the reference solution against which the upscaled model is343

tested.344

3. Results345

3.1. Travel Time Distributions and Number of Hits346

Figure 2 displays the empirical travel time distributions, measured from347

simulations, across a single periodic element for two cases, Pe = 100 and348

Pe = 1000. The data used to plot these travel time distributions is from349

where temporal increments are sampled. These two Péclet numbers are cho-350

sen because, in the case of purely conservative transport, it has been shown351
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Figure 3: Transition probabilities of yout given yin for Pe = 100 (left) and Pe = 1000
(right). In this figure yin and yout are discretized into 10 bins of equal size.

that for Pe = 100 incorporating correlation effects is unimportant, while for352

Pe = 1000 it is [30]. These distributions were obtained by creating a his-353

togram of arrival times and normalizing. The bin size of the histogram grew354

logarithmically with larger τ .355

Also shown are the number of times a particle (trajectory) strikes the356

boundary during a given transition across a single cell. Most notably, for357

both Péclet numbers the vast majority (approximately 99%) of trajectories358

never actually strike the boundary and pass through the pore with no possi-359

bility of adsorption taking place. However, some trajectories can strike the360

boundary anywhere up to 200 times, meaning that the likelihood of adsorp-361

tion can be significant depending on the adsorption rate, or the probability362

of attachment P . For the lower Péclet number case more trajectories strike363

the boundary than in the Pe = 1000 case, which intuitively makes sense364

given that the surface reaction is diffusion-driven. The expected delay for a365

reactive particle that strikes the boundary Nhits times is 〈τ〉 = NhitsP
λ

, where366
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the angled brackets denote the expected value.367

Finally, figure 2 shows a scatter plot of each simulated trajectory’s start-368

ing location at the inlet against the number of interactions with the boundary.369

This figure clearly highlights that for the Pe = 1000 case a particle has to370

start near the boundary in order to have any chance of interacting with it.371

A particle that starts on the centerline y = 0 has nearly zero likelihood of372

interacting with the boundary and thus adsorbing. For the Pe = 100 the373

number of hits per trajectory is relatively independent of yin. This suggests374

that accounting for correlation effects (i.e. knowing a particle’s starting loca-375

tion as it transitions through each pore) may be less important for Pe = 100376

than for Pe = 1000, as found in the conservative case [30].377

Figure 3 displays the discrete transition probabilities that a particle has378

for a yout given a particular yin, which is a measure of correlation. Note379

that this figure is an approximation of the copula density function defining380

correlation between travel times in consecutive steps [70]. As has been seen381

in previous studies for Pe = 100, this matrix is relatively uniform, while382

there is a stronger diagonal dominance for the Pe = 1000 case reflecting the383

fact that correlation effects become stronger as Péclet number increases [30].384

3.2. Comparison between DNS and SMM predicted breakthrough curves385

3.2.1. Limit of no sorption (P = 0)386

To begin, we demonstrate the proposed SMM’s ability to upscale trans-387

port in the absence of any sorption at all. Plots comparing breakthrough388

curves at multiple downstream locations measured by DNS and predicted389

with the SMM are shown in Figure 4. As in previous studies, the agreement390

is excellent demonstrating the veracity of our proposed approach.391
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Figure 4: Breakthrough Curves for Pe = 100 (left) and Pe = 1000 (right) at distances of
5L, 10L, 25L and 50L with no sorption at all. Blue dots are DNS results and black lines
are SMM predictions.

3.3. Limit of unit probability392

Next we focus on another limiting case, where the probability of sorption393

each time a particle strikes the boundary is unity (P = 1), meaning that394

every strike results in an adsorption event. While this may not be an en-395

tirely physical condition, by considering this extreme case we are testing our396

proposed procedure across a wide range of possible Daa. For Pe = 100 and397

Pe = 1000 the respective values are Daa = 316 and Daa = 103. The consid-398

ered values of λ = 0.1 and 1 correspond to Dad = 10, 102 and Dad = 102, 103
399

respectively.400

Results comparing DNS measured breakthrough curves as well as SMM401

predicted ones are shown in figure 5. Additionally, for context and to ex-402

plicitly demonstrate the role of sorption, breakthrough curves for the case of403

zero sorption, as discussed in the previous section, are also included. Again,404

the agreement between DNS and SMM is excellent, with the SMM capturing405

all essential features displayed by the fully resolved simulations.406
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For the Pe = 100 case the rising limb of the two earlier breakthrough407

curves is similar for the cases with and without sorption. This corresponds408

to fast moving particles following trajectories that never interact with the409

boundary. The late time behavior and the further downstream breakthrough410

curves are very distinct with a strong separation between the case with and411

without sorption, reflecting strong delays due to sorption. For the Pe = 1000412

case more particles persist at moving quickly and do not interact with the413

boundary; thus the early arrivals are similar between cases with and without414

sorption. Again, at late times there is a deviation between the cases with415

strong delays in the tails emerging for the cases with sorption.416

3.4. Intermediate sorption417

Results corresponding to a sorbing probability that is one order of mag-418

nitude smaller than in the previous section, P = 0.1, are shown in figure 6,419

which correspond to Daa = 31.6 and 100. The results demonstrate that the420

SMM provides reliable results across the parameter space.421

The resulting breakthrough curves reflect very similar behavior to the422

previous case; however the tails are not as delayed, reflecting the fact that423

only 10% of particles that sorbed in the P = 1 case actually do so here. For424

the Pe = 1000 and Dad = 1000 case (λ = 1, Figure 6 top right), it is visually425

next to impossible to see differences at late times, while for the longer waiting426

time Dad = 100 (λ = 0.1, Figure 6 bottom right) a more distinct delayed427

tailing behavior emerges for the cases with sorption. Note that breakthrough428

curves obtained with P = 0.1, λ = 0.1 (bottom row in figure 5) are identical429

to the ones for P = 1, λ = 1 case (top row in figure 4) because their expected430

delay times are equivalent. This is because, on average, multiplying both P431
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Figure 5: Breakthrough Curves for Pe = 100 (left) and Pe = 1000 (right) at distances of
5L, 10L, 25L and 50L with sorption given by P = 1. Blue dots are DNS results and red
lines are SMM predictions. Black dash-dot lines are BTCs for the case without sorption.
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Figure 6: Breakthrough Curves for Pe = 100 (left) and Pe = 1000 (right) at distances of
5L, 10L, 25L and 50L with sorption given by P = 0.1. Blue dots are DNS results and red
lines are SMM predictions. Black dash-dot lines are BTCs for the case without sorption.

and λ by a constant has no effect on average travel times.432

3.5. The role of correlation433

In this section, we test how important including correlation in the SMM is434

for accurately predicting downstream reactive transport behavior. To do so,435

an uncorrelated one-dimensional time domain random walk (TDRW) model436

is built by simply sampling random trajectories without considering the inlet437

and outlet locations, which are the quantities by which we enforce correlation438

in our model. The trajectories are sampled uniformly from the calibration439
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simulation data.440

Figure 7 shows the comparisons for all parameter choices considered so441

far, but focusing only the furthest downstream BTC (x = 50L). As expected,442

the importance of correlation effects is stronger for the Pe = 1000 cases than443

for Pe = 100. However, even for Pe = 100 distinguishable errors are visible444

where successive travel times are sampled independently. This suggests that,445

while correlation effects are seemingly unimportant for the Pe = 100 case for446

conservative transport [30], as sorption at the boundary occurs, correlation447

begins to play some role, similar to what has been observed for reactions [38].448

Notably, when correlation is not accounted for, predicted breakthrough449

curves fail to capture the full rising limbs and also display greater delays than450

the actual measured ones. This reflects the fact that too many particles are451

interacting with the boundary. The uncorrelated model cannot account for452

the fact that fast particles have a tendency to persist at staying fast, as well453

as the fact that the fastest particles have virtually no probability of getting454

sorbed, as shown in figure 2.455

While well known that correlation plays an ever more important role as456

the Péclet number of a system increases, the effect of boundary reactions on457

the importance of correlations between successive jumps has not been previ-458

ously explored. Figure 8 quantifies this effect based on the approximation of459

particle arrival times. More specifically, we consider the recovered mass at460

time t461

M(t) =

ˆ t

0

C(x = 50L, t′)dt′ (9)

which is the cumulative distribution function of solute arrival times at x =462

50L. We compute the mean absolute error (MAE =
∑Nt

i=1 |MDNS(ti) −463
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Msimulated(ti)|) between the results obtained via DNS and the upscaled sim-464

ulation with uncorrelated steps at location 50L. Our results, in agreement465

with previous studies, show that the uncorrelated model can yield accurate466

arrival times of a nonreactive solute (Daa = 0) for Pe = 100 as the MAE467

attains a value of ∼ 5 × 10−5. The occurrence of adsorption induces an in-468

crease of the MAE by approximately two orders of magnitude, irrespective of469

the probability with which reaction occurs. This is likely because only slower470

particles ever interact with the boundary and, while weak, some correlation471

does occur. This does not mean that the model is not sensitive to P ; indeed472

it must be since larger values of P result in larger delays. It is only saying473

that correlation effects may be more important to include in the upscaled474

model when sorption occurs. Note that when correlation is included the475

MAE is approximately constant for all adsorption probabilities (including476

the conservative case, P = 0) and attains a value of approximately 10−5 (not477

shown).478

Additionally, to provide another basis for comparison, Table 1 shows the479

arrival times when 1%, 50% and 99% of the mass has arrived for all of the480

cases shown in Figure 7. We show the dimensionless time for DNS and the481

relative difference R∆ between DNS and the two models, computed as482

R∆(MOD) =
tpc(MOD)− tpc(DNS)

tpc(DNS)
(10)

where MOD stands for UNC (uncorrelated TDRW) or SMM and tpc indi-483

cates the time corresponding to arrivals of percentile pc of total mass (i.e.,484

pc equals 1%, 50% and 99% here). These results clearly and quantitatively485

highlight the good agreement between the DNS and SMM as well as the afore-486
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Figure 7: Breakthrough curves at a distance of 50L for Pe = 100 (black) and Pe = 1000
(magenta). Solid lines are the SMM with correlation effects included, while dashed lines do
not include correlation effects. Dots are results from the DNS simulations (note that these
are hard to see as they coincide so closely with the SMM results). Damköhler numbers in
parentheses are for Pe = 100 and 1000 respectively.
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mentioned discrepancies between the DNS and uncorrelated TDRW model.487

Differences between DNS and SMM are always within 1%, showing the ro-488

bustness of the method. On the other hand, when correlations are neglected,489

the errors increase sharply with Pe, i.e. relative differences between uncor-490

related model and DNS are up to 10-15% for Pe = 100 and up to 90% for491

Pe = 1000. In general, the uncorrelated TDRW overestimates early arrivals492

and underestimates late arrivals. Correlation effects also appear to have dif-493

ferent influence depending on Daa and Dad. These differences emerge in494

the 1% and 50% arrival times (early arrivals and median time), although495

with relatively smaller variations than the ones observed for Pe. For early496

arrivals and median time, the uncorrelated model errors tend to increase for497

increasing Daa and decrease with increasing Dad, i.e. the error may change498

up to a factor 2 when the two Damköhler numbers change by one order of499

magnitude.500

Table 1: Arrival times for 1, 50, and 99% of the solute plume to cross 50L in the DNS
and relative difference R∆ related to the upscaled SMM, and uncorrelated TRDW (UNC).
Cases correspond to different combinations of adsorptive and desorptive Damköhler num-
bers.

Pe = 100

Case 1% Arrival Time 50% Arrival Time 99% Arrival time

DNS R∆(SMM) R∆(UNC) DNS R∆(SMM) R∆(UNC) DNS R∆(SMM) R∆(UNC)

Daa = 31.6, Dad = 10 208.5 0.58% 11.68% 478.5 0.31% 0.71% 888.4 -0.14% -3.82%

Daa = 31.6, Dad = 100 85.9 0.23% 5.34% 130.9 0.15% 0.46% 198.9 -0.30% -2.72%

Daa = 316, Dad = 10 1416.8 0.77% 15.09% 3953.1 0.40% 0.73% 7800.7 0.21% 0.73%

Daa = 316, Dad = 100 208.6 0.48% 11.78% 478.7 0.21% 0.73% 886.6 0.00% -3.46%

Pe = 1000

Daa = 100, Dad = 100 52.3 0.19% 42.94% 139.8 0.50% 52.46% 635.1 0.60% -13.35%

Daa = 100, Dad = 1000 52.3 0.19% 34.73% 84.4 0.36% 23,26% 219.7 0.59% -10.18%

Daa = 1000, Dad = 100 52.3 0.00% 76.77% 675.2 1.13% 89.84% 4911.7 1.09% -12.92%

Daa = 1000, Dad = 1000 52.3 0.00% 42.83% 139.9 0.43% 52.60% 635.1 0.60% -13.35%
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4. Discussion and conclusions501

We have extended the Spatial Markov Model for periodic flow domains502

proposed in [40] to account for linear adsorption to and desorption from solid503

boundaries. In particular, we have built the framework based on a trajectory504

based SMM, where high resolution trajectories simulated by an advective-505

diffusive random walk over a single periodic flow element are stitched to-506

gether sequentially to predict transport over much larger scales. In this507

novel approach we merely store one additional piece of information about508

each trajectory, that is the number of times that it strikes a solid boundary.509

This information reflects the solute flux close to the boundary surface that510

corresponds to the adsorption reaction rate. Coupling this with a proba-511

bilistic representation of sorption [67], we can effectively upscale transport512

to represent arbitrary adsorption and desorption rates. Thus from a sin-513

gle high resolution random walk simulation of conservative transport across514

one periodic element we can model an extremely diverse range of adsorp-515

tion/desorption behaviors without the need to run further high resolution,516

computationally intensive, small scale simulations for each desired case. Of517

course this current application is strictly restricted to the example of an ide-518

alized periodic setting and it remains to be shown how generalizable it is to519

more complex and realistic settings.520

As in previous studies of conservative transport, the need for the upscaled521

model to account for correlation between successive jumps depends on the522

Péclet number of the system, with correlation being more important as ad-523

vection begins to dominate more and more. Similarly, it appears that the524

Damköhler numbers play a role in determining this, meaning that merely525
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delineating regions where correlation is important or unimportant for con-526

servative transport does not provide a sufficient condition for the case when527

reaction occurs. This is particularly relevant for the accurate representation528

of early and late particle arrivals with the upscaled model, because these are529

most sensitive to correlation effects (fast particles tend to persist as fast and530

slow as slow). For the conditions explored, we have numerically verified that531

the correlation between subsequent travel times plays a relevant role across532

the full range of investigated adsorption rates. As expected, the relevance533

of correlation is sharply influenced by Pe, but also increases with Daa (fast534

adsorption) and decreases with Dad (fast desorption). This trend is particu-535

larly striking for early arrivals, which could be of practial relevance, e.g., in536

assessment of membranes life-cycle or of risk with contaminant breakthrough537

in aquifers. Notably, our approach conserves the same accuracy with respect538

to fully resolved simulations for both conservative and reactive transport.539

Our model can accurately upscale kinetic sorption and desorption pro-540

cesses, i.e. it does not assume equilibrium between sorbed and dissolved541

solute mass, as would be the case if modeling adsorption/desorption with542

a retardation coefficient. We emphasize that the traditional use of a retar-543

dation factor to account for the delays in transport induced by adsorption544

and desorption will not work to reproduce the cases that we simulate here.545

The main effect of a retardation coefficient would simply be a rescaling in546

time of a conservative concentration profile or breakthrough curve. However,547

the breakthrough curves obtained in this study, in many cases, have a fun-548

damentally different shape from those without adsorption and desorption.549

The use of a retardation coefficient assumes an instantaneous equilibrium550
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between mobile and immobile parts of the domain and clearly that is not the551

case here, particularly for the higher Péclet number case. The persistence552

of correlation effects is very much inline with the fact that highly mobile553

particles traveling on fast trajectories have virtually no interaction with the554

boundaries while slower ones can have many, reflecting a lack of equilibrium.555

As with upscaling of other transport processes, at late times as systems begin556

to homogenize (i.e. greater than Taylor time scales) conditions for such an557

equilibrium can arise, but this may or may not be useful depending on the558

scales that one is interested in.559
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