Experimental and numerical evidence of
comparable levels of attenuation in periodic and
a-periodic metastructures
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ABSTRACT

“Phononic Crystals” are designed on the basis of a single cell periodically repeated in space along one or more directions. However, this may
result as restrictive in terms of possible optimal solutions found. The present paper shows, numerically and experimentally, that it is possible
to have high levels of attenuation also with a-periodic metastructures. Comparing two “phononic metastructures” externally identical but
internally different, it is demonstrated that perturbing the periodicity inside the structure does not significantly affect its attenuation capabili-

ties. This opens new possibilities in the field.

“Phononic Crystals” (PnCs) are important for their properties in
mechanical wave filtering and control, related to their capability to
show frequency bandgaps."” Their study arose from electromagne-
tism.” * The performance of PnCs was mainly evaluated in terms of
the bandgap width, with an optimization based on the dispersion spec-
trum of the unit cell.” More recently, attention has been devoted to
PnCs which are able to focus waves, exploiting lens or defected mode
behaviors” '* also for energy harvesting purposes.’” In this prospec-
tive, topological metamaterials also seem to be very promising in wave
guiding and confinement,"*'® reducing energy losses. In general,
PnCs exhibit exceptional behaviors due to their periodic spatial
arrangement of the building blocks, which causes, e.g., Bragg interfer-
ence.”” Nevertheless, periodicity can be seen as a restrictive constraint;
it is therefore interesting to discuss the consequences of a partial or
total elimination of periodicity on the main performances of phononic
metamaterials or structures captured by dispersion analysis and/or
transmission properties. Dispersion analysis does not provide infor-
mation about the bandgap dependence on the number and spatial
distribution of unitary cells in a finite structure.'” It could happen
that a bandgap existing in dispersion analysis does not exist in reality
since more cells are needed. Conversely, transmission spectra provide
a realistic structural response that can be directly compared with
experimental results. The intrinsic nature of the bandgap in elastic
metamaterials without a significant impedance mismatch has been

demonstrated to rely on modal separation.'™"” The unit cell is able to
exploit frequency gaps between low and high frequency modes. For
these structures, bandgap maximization through dispersion analysis
led to the definition of structures with a reduced number of modes
(like a spring-mass chain) within a certain frequency range. However,
looking at the transmission spectra, it is found that a-periodic struc-
tures are also able to exhibit high levels of attenuation, even if endowed
with a higher number of modes. From an energetic point of view, this
is associated with the capability of both structures to redistribute
energy internally. The present work collates periodic and a-periodic
metamaterials on the basis of numerical (FEM) and experimental
evidences, mainly focussing on transmission spectra.

The a-periodic structure has been defined by perturbating an
already existing periodic one'® (Fig. 1). Prototypes are built using
Selective Laser Sintering (SLS) Additive Manufacturing (AM) technol-
ogy. Both periodic and a-periodic structures define a slice with
15 x 15cm’ in-plane dimensions. Externally, the two structures are
identical, with semispheres of the same dimensions, while internally,
the a-periodic one is significantly perturbed with respect to the peri-
odic one. The internal random perturbation preserves the same unit
cell concept with four spheres attached on a frame. The details on
geometry are reported in Table I with reference to the unit cell side
length of a =5cm. The adopted material is Nylon PA2200 (Young’s
modulus E = 1.70 GPa, Poisson’s ratio v = 0.4, density p = 925 kg/m’,
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FIG. 1. Analyzed (a) periodic and (b) a-periodic structures obtained through SLS
Additive Manufacturing technology.

TABLE |. Geometric parameters. wfifajn’ﬁ' and wh "

ABLE i Vame  ar€ the in-plane and out-of-
plane frame thicknesses.

Periodic [Fig. 1(a)] A-periodic [Fig. 1(b)]

WP 0.04a 0.04a
frame
WOl 0.05a 0.05a
frame
Tsph 0.33a (1) 0.152a, (2) 0.167a,

(3) 0.279a, (4) 0.265a,

(5) 0.223a, (6) 0.197a,

(7) 0.210a, (8) 0.207a,

(9) 0.311a, (10) 0.208a,
(11) 0.173a, (12) 0.180a

and sound velocity v = y/E/p = 1356 m/s). The two structures have
a different total mass and stiffness, as shown in Table I1.

The dynamic behavior of the periodic structure is described via a
linear elastic dispersion analysis. The numerical band structure is cal-
culated by means of ABAQUS and a proper implemented routine to
apply Bloch-Floquet boundary conditions. The dispersion spectrum of
the periodic structure is reported in Fig. 2, where a very wide bandgap
in the frequency range of 1.57-16.29 kHz can be observed. The peri-
odic and a-periodic structures are compared looking at their linear
elastic numerical transmission spectra between the input and output
points shown in Fig. 1.

Figure 3 shows the transmission plots in the range of 0-20 kHz:
both structures exhibit high attenuation properties in almost the same
frequency range even though the a-periodic structure involves a lot of
moderate peaks due to the presence of many local modes. It is worth
noticing that attenuation gaps appear in the a-periodic structure at low
frequencies (Fig. 4). The associated deformed configurations involve
local movements of internal portions of the structure of both spheres
and frames, with a Locally Resonant (L.R.) behavior. The proposed a-
periodic structure seems to comply with modal separation, with the

TABLE II. Global values of stiffness and mass computed numerically.

Structure Kiop. (KN/m) kgzoh, (kN/m) Mgiop. (8)
Periodic 95.5 95.5 316
A-periodic 30.2 28.8 174
A%IOO[lf(a*per./peT.)] 684 698 449
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FIG. 2. Numerical band structure for the periodic structure. Bandgap width com-
puted using the gap-midgap ratio.
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FIG. 3. Numerical transmission spectra in the frequency range of 0-20 kHz.
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FIG. 4. Details of numerical transmission spectra in the frequency range of 0-2 kHz.

addition of L.R. disturbances in the whole frequency range. In the low-
frequency regime, the L.R. behavior entails peaks with nonevanescent
transmission; conversely, in the rest of the spectrum, the L.R. peaks do
not alter significantly the attenuation pattern. Such a behavior can be



interpreted using simple spring-mass chain models, which, even if 1D,
are able to catch the main features of this kind of 3D structure'” for
unidirectional input.

Let us consider a structure with global mass m and global stiff-
ness k subject to a generic force F(). The simplest case is given by a
structure composed of two point masses interconnected with a spring.
The equations of motions for this system are

Ziia(£) + k() = (1)) = F(1),
1)
%ﬁz(t) +k(ua(t) — wi(£)) = 0.

= Fe! in the steady state regime,
it

Applying a harmonic force F(t)
the response also becomes harmonic in the form of u;(t) = ;e
Computing from the second of Eq. (1), the ratio |#,|/|#;], the follow-
ing is obtained:

|k }1
2w+k }

where = w/wy, with wy = /2k/m. N() represents the well-
known magnification factor for an undamped single degree of free-
dom (SDOF) system under a harmonic force. It is clear that the
structure starts to provide attenuation if f > V2, ie.,

WD, = \/Z\/% = 2\/E~ (3)
m m

A finite periodic chain is obtained by repeating (n — 1) times the sim-
ple cell considered so far. If 7 and k denote the mass and stiffness of
each cell, respectively, then the overall mass is m = (n — 1) m and the
overall stiffness is k = k/(n — 1) It is well known'” that, for such a

chain, the bandgap opens for w5 = 2

open

k /m, which is in agreement
with the previous calculation of w,, The addition of cells does not
alter the bandgap but creates other modes that are always located at a
position below f = v/2. Furthermore, whichever is the number of
cells, the Frequency Response Function (FRF) takes the value of one
for B = \/2. It is possible to select the number of cells in order to have
the same overall mass m, stiffness k, and bandgap opening frequency
as the numerically studied structure,

apen
BG m
n=1+ 2" T (4)

Solving Eq. (4), a value of almost 9 cells is obtained, which means 10
masses (with the first and the last being equal to //2) and 9 springs,
with m = 35.1 g and k = 859.5 kN/m. In this way, the structure is
modeled with an equivalent 1D chain (in terms of global mass and
stiffness) able to correctly predict bandgap opening and the associated
level of attenuation.

The most general case is the one in which the masses and stiff-
nesses are randomly distributed along the chain, i.e., without periodic-
ity. Several works have been done for the characterization of
a-periodic chains,””*' mainly based on the Anderson theory of locali-
zation. The global response is generated by the combination of the
responses of structural subelements that can be in the attenuation or

amplification regime. A random spring mass chain is composed of n
different masses and (n — 1) different springs in series. The total mass
k= [Z;;l ki} !, In addition, it
is possible to define the mean values (m) = [1/n] >_1, m; > 0, (k)
=[1/(n—- 1] 'k;>0 and the variances (m?)=[1/n]

Sl (mi— (M>)27 () =[1/(n = D] (k — (k)" Two
random distributions of mass and stiffness are generated, according to
the following criteria: (i) the overall mass is the same as for the a-
periodic structure sketched in Fig. 1(b); (ii) the global stiffness is the
same as in the a-periodic structure, in the x and y directions, respec-
tively; (iii) the highest natural frequency among the cells in the ran-
dom chain is the same as the frequency of the single cell in the
periodic chain. One finds m;, = (23.37, 18.54, 20.72, 21.79, 11.38,
14.74, 7.02, 19.24, 17.30, 19.90) g, m;, = (20.36, 21.15, 17.93, 21.62,
20.50, 14.33, 6.44, 20.59, 12.93, 18.15) g, ij: (242.774, 317.571,
296.781, 253.254, 245.989, 242.612, 313.606, 273.034, 286.678) kN/m,
and kjy = (252.805, 244.330, 310.796, 251.729, 259.326, 259.568, 248.046,
240.959, 278.287) kN/m. The comparison between 3D a-periodic real
structure and 1D models, in terms of global mass and stiffness and rele-
vant standard deviations, is reported in Table III. The periodic and a-
periodic structures exhibit approximately the same position of the atten-
uation band, as shown in Fig. 5. The a-periodic structure starts to attenu-
ate before the periodic one, as also indicated by numerical simulations,
due to the lower global stiffness. The attenuation pattern for the a-
periodic structure begins around 1 kHz: for the sake of comparison, if we
consider the dispersion behavior for a periodic chain that includes the
lowest stiffness and the largest mass, we found that the bandgap

should open for f2C == 2,/242774/0.02337/2n = 1.03kHz and

apeny = 24/240959/0.02162 /21 = 1.06 kHz. In the range between
1kHz and 1.5kHz, the attenuation trend is interrupted by L.R. peaks,
connected to the transmission modes of the random cells.

This kind of model, even if extremely simplified, is able to cor-
rectly predict the bandgap opening and shows clearly that it is possible
to define a-periodic distributions with attenuation properties compa-
rable to those of the periodic ones. This is quite important since it pro-
vides more freedom in the design of this kind of metastructure with
respect to just considering the periodic ones. To further verify this
interpretation, other configurations are considered, with slight changes
in the random geometry of some cells (see Fig. 6 and Table IV). The

and stiffness read as m = Y .| m;
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FIG. 5. Analytical transmission spectra of periodic and a-periodic spring-mass
chains with a similar attenuation band position.



TABLE IIl. Comparison between the real structure and the 1D model (in terms of
mass and stiffness).

Real structure 1D-x 1D-y
Mglob, (2) 174.0 174.0 174.0
(m?) (g) 3.167 5.033 4.840
k;lob. (kN/m) 30.20 30.20
kyyop. (KN/m) 28.80 28.80
v/ (k%) (kN/m) 46.61 30.25
2 33.33 21.75
(k3)(kN/m)
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FIG. 6. Numerical transmission spectra (x-direction) when small perturbations are
introduced in the a-periodic structure.

TABLE IV. Global values of stiffness and mass when small perturbations are intro-
duced in the a-periodic structure.

Structure k;,o 5. (KN/m) Moy, (8)
1 30.0 170
2 34.2 177
3 29.3 170
Reference 30.2 174

analyses confirm that these randomly modified a-periodic structures
provide attenuation in the same band as for the previous case (Fig. 6).

Experimental tests were carried out in order to validate numerical
results. Prototypes were built using SLS Additive Manufacturing tech-
nology. The experimental setup is composed of an inertial shaker LDS
v406 connected to a PA 100E Power Amplifier and two PCB
Piezotronics 353B15 accelerometers, with a sensitivity of 10 mV/g and
a resonance frequency of 70 kHz. A white noise excitation with a fre-
quency range of 20 Hz-9 kHz is imposed to the shaker. The input
acceleration is measured using an accelerometer glued between the
prototype and the shaker connection, while the output acceleration is
measured at the opposite face of the periodic/a-periodic structure. The
structure is placed on a very soft rubber foam, to avoid disturbances
between input and output (Fig. 7).

Data acquisition is performed using NiMax Measurement
Automatic explorer and postprocessed by means of a user Matlab

FIG. 7. Experimental setup and details of the accelerometers glued at the center of
the top and bottom faces.
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FIG. 8. Numerical and experimental transmission spectra of the periodic structure.
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FIG. 9. Numerical and experimental transmission spectra of the a-periodic structure
(x-direction).

routine. In Figs. 8, 9, and 10, numerical and experimental results are
compared. Experimental results are in good agreement with numerical
simulations, confirming the high attenuation capabilities of both peri-
odic and a-periodic structures. Differences in attenuation are related
to the accelerometer sensitivity, which provides a cut-off level of atten-
uation at around —60dB. In Fig. 11, numerical and experimental
transmission spectra are compared in the frequency range of 0-2 kHz,
as previously done for numerical results only (Fig. 4). The examination
of the results in the low-frequency regime confirms that the periodic
structure shows an almost continuous transmission until the abrupt
reduction in correspondence with the bandgap opening. On the other
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FIG. 10. Numerical and experimental transmission spectra of the a-periodic struc-

ture (y-direction).
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FIG. 11. Details of numerical and experimental transmission spectra.

hand, the a-periodic structure starts to attenuate earlier, as expected in
view of the small overall stiffness, but several peaks are experimentally
denoted, especially for the y direction. This is in agreement with the
numerical results and with the theoretical prediction for random
spring-mass chains.

In this work, periodic and a-periodic metastructures have been
shown to offer high levels of attenuation in the transmission spectrum
when a proper separation of masses and stiffnesses is introduced inside
the structure, which allows us to redistribute internally the total energy
given to the system. Important parameters have been identified in the
mass and stiffness of the finite structure and the dynamics of the single
cells, which govern the main attenuation-band opening; it is important
to remark that the proposed a-periodic structure provides the same
level of attenuation of the periodic one with a lower global stiffness.
Other attenuation bands can be created if different masses are intro-
duced, due to L.R. phenomena. This interpretation can be used to
design new metastructures able to show enhanced multifunctional
behaviors. Such metastructures could be used for vibration insulation
or noise suppression, with layouts that can be easily manufactured
because of robustness with respect to imperfections and the lack of
periodicity.
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