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Abstract

This paper introduces a new empirical procedure for the estimation of hos-

pitals’ technical efficiency in presence of spatial heterogeneity. We propose a

methodology that allows treating the spatial heterogeneity independently of

a predetermined reference to administrative borders. We define geographical

spatial regimes, characterised by spatial proximity and homogeneity of rele-

vant demand characteristics, within which to assess the efficiency of hospitals.

The methodology has then been tested on a large sample of Italian hospitals,

for which their production efficiency has been assessed within homogeneous

demand areas.
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1. Introduction

The measurement of efficiency in healthcare through the estimation of

production and cost frontiers, particularly in the hospital sector, is quite

widespread by now. See Kohl et al. (2019) for a recent survey of DEA studies

on hospital efficiency.

One of the general concerns in the frontiers analysis of efficiency is re-

lated to the heterogeneity within the set of units employed as benchmarks.

A significant portion of this heterogeneity is generally related to what are

generally referred to as “environmental” or “contextual” variables, relative

to health status and to the demand for health care faced by different health-

care units, as well as to characteristics of the market and of the regulatory

context (see, among others, Rosko et al., 2017; Hafidz et al., 2018).

An important dimension of heterogeneity, which is gaining interest in the

healthcare field as well as in other fields, is what can be referred to as spatial

interaction, which allows considering issues that go beyond the mere geo-

graphic characterisation of contextual factors. There are, for instance, stud-

ies on the role of competition in healthcare that develop a theoretical and

empirical analysis of the spatial interactions and feedback mechanisms be-

tween providers (see, among others, Spielman and Yoo, 2009; Gravelle et al.,

2014; Brekke et al., 2011; Longo et al., 2017). Furthermore, the spatial anal-

ysis has developed into the consideration of spatial patterns and dynamics;

in a study on the determinants of hospital admissions, Bech and Lauridsen

(2008) (p. 51) state: “these determinants may, however, not be randomly
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distributed across the geographical units, but may have an underlying spatial

patterns. A non-random underlying spatial pattern may if ignored bias the

significance of the determinants and invalidate conclusions”.

In other terms, the contribution of spatial analysis is in eliciting an hetero-

geneity, related to spatial patterns and interactions, which is not covered by

observable contextual factors. However, it also needs to be considered that

it is well possible that the pattern underlying the spatial “interactions and

feedback mechanisms” cannot be univocally traced back to the (however iden-

tified) administrative clusters. Moreover, spatial patterns may also be the

reflection of unobserved phenomena, which reinforces the lack of correlation

with the administrative patterns relevant for the management of healthcare

services. A recent paper by Amaral-Garcia et al. (2019) provides an example

of spatial dependence, not correlated to observable factors of straightfor-

ward relevance for healthcare. The authors show a correlation between the

geographical pattern of diffusion of the broadband Internet access with an

increase in C-section rates, which is explained by the differential access to

online information of first-time mothers living in areas with a broader Inter-

net coverage.

There are now several works dealing with these latter issues, when analysing

the behaviour of production units as linked to spatial factors, which can go

under the heading of the so called spatial heterogeneity.

In terms of empirical analysis, spatial heterogeneity means that the spatial

process may be not uniform over space implying estimates that present insta-
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bility in (i) the mean, (ii) in the variance or (iii) in both. More specifically,

instability in the mean implies local clustering of the values of a spatial vari-

able. For instance, in the case of parameter instability, regression coefficients

may follow a number of what are sometimes called spatial regimes, such as

North-South or centre-periphery patterns (Brunsdon et al., 1996; Páez et al.,

2002). It should be noted that the term spatial regime should not be under-

stood as a perfect synonym of ”cluster”; more precisely, the term ”regime” is

linked to the production function underlying the spatial process. The iden-

tification of different spatial regimes, in a sense, is equivalent to estimating

different production (functional) regimes.

As Billé et al. (2018) point out, the spatial heterogeneity has been recently ac-

counted for an increasing number of methodological papers (Andreano et al.,

2017; Postiglione et al., 2010, 2013). Interestingly, it emerges that, specif-

ically in the context of stochastic frontier models, distinguishing between

heterogeneity and inefficiency is still an open problem (Amsler et al., 2016;

Kumbhakar et al., 2014).

The objective of this paper is to provide an estimation of the techni-

cal efficiency of Italian hospitals, dealing with their heterogeneity, charac-

terised in terms of spatial pattern. This analysis can be extended to any

type of production units, either oriented to profit making or not. Technical

efficiency is in fact instrumental to a better achievement of whatever goal

pursued by producers. While the hospitals’ technical efficiency is estimated

through Data Envelopment Analysis (DEA), the main novelty of the paper,
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at least in terms of the application of the methodology to the healthcare

sector, lies in the treatment of the spatial heterogeneity. More precisely, we

depart from current approaches that incorporate heterogeneity through the

use of contextual factors (in section 3, we extensively provide analytic details

of these approaches). Differently from the conditional efficiency approach,

we do not evaluate an exact relationship between the combinations of in-

puts and outputs of the different hospitals and a set of contextual factors

connected with each hospital by “predetermined” location criteria (e.g. the

value of the selected factors for the city where the hospital is located). We

carry out a spatial identification of subsets of hospital peers, to perform the

efficiency estimation of hospitals within each subset they belong to. As in

Vidoli and Canello (2016), we adapt the robust order-m models by using a

spatial criterion to identify the local peers for each hospital. Using the Skater

procedure (Spatial K’luster Analysis by TreeEdgeRemoval, Assuncao et al.,

2006), we combine the spatial dependence of the hospitals (in terms of the

contextual factors of the conditional efficiency approach) with the spatial

proximity of peers. We then build up clusters of hospitals using analyti-

cal regionalisation methods (also known as spatially constrained clustering,

Murtagh, 1985; Duque et al., 2007) that are “unlikely to have occurred by

chance”(Knox, 1989). Altogether, we identify 9 spatial regimes, each one of

them including not less than 60 hospitals and we run a conditional order-m

estimate of technical efficiency within each with appropriate sensitivity anal-

yses considering different number and configurations of S, the physical space
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within each unit.

The remainder of the paper is organised as follows. In section 2 we present a

summary of some relevant institutional characteristics of the Italian National

Health Service (NHS) to provide a further motivation of our methodology and

its application to Italian hospitals. In section 3, we describe our empirical

strategy, and in section 4 we present our results. Section 5 is devoted to

concluding remarks on the main contributions of the paper.

2. The institutional setting of the Italian National Health Service

The Italian NHS has been characterised, since the early Nineties, by a

significant degree of regional decentralisation. Each Region has the power

of organising the delivery of services to its residents, according to the objec-

tives of the national health plan and ensuring the delivery of a nationally

uniform benefits package (the so-called “Essential levels of medical care”),

through Local Health Authorities (LHAs) and a network of public and pri-

vate accredited providers. At the local level, LHAs are run by managers

who are responsible for planning health care activities and for organising

local supply according to population needs. They also are responsible for

guaranteeing quality, appropriateness and efficiency of the services provided

and are obliged to guarantee equal access, the efficacy of preventive, curative

and rehabilitation interventions and efficiency in the distribution of services;

The Legislative Decrees 446/1997 and 56/2000 imposed the transfer of the
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NHS funds from the central to the regional level. Thus, it reinforced the

autonomy of the regional health departments to align funding and spend-

ing powers. The regional governments became accountable for their health

deficits.

The Italian case is, therefore, quite interesting since the now long-lasting

history of decentralisation has marked a differential evolution of regional

healthcare systems regarding rules, organisation of supply and financial and

health outcomes. These differences, being the outcome of institutional dif-

ferentiation, may well configure what Bech and Lauridsen (2008) refer to as

a non-random spatial pattern that affects the differences in the relevant de-

terminants of the production efficiency of Italian hospitals in each region. In

dealing with spatial heterogeneity, however, it needs to be considered, again

following Bech and Lauridsen (2008), that the organisation of the provision

of services in one region may exert its influence beyond its borders. This is

not far from being true in Italy because of the very different characteristics

of Italian regions in terms of population and territorial size and of economic

conditions, which favour the cross-regional interactions in the demand and

supply of services. Moreover, the principle of free choice of services over all

the national territory allows patients to move to whatever region they deem

appropriate to satisfy their health needs. At the same time, the regional

administrative borders are not always representative of clear-cut different

historical patterns of economic and social development, so that some of the

relevant observable and not observable factors that may affect healthcare
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providers’ efficiency operate within clusters not coincident with these bound-

aries.

A large number of studies have examined healthcare efficiency in Italy

with a variety of objectives, methodologies, and results. One of the earlier

papers, by Cellini et al. (2000), offered a general picture of the technical

efficiency of Italian hospitals and its determinants, in the aftermath of the

crucial reforms of the Italian NHS in the early Nineties (see also Fabbri, 2003

and Barbetta et al., 2007). Unexploited economies of scale are a recurrent

theme (Grassetti et al., 2005; Giancotti and Mauro, 2015), as well as the

analysis of the efficiency of different providers such as private hospitals, public

hospital trusts - Aziende Ospedaliere (AO), public hospitals directly managed

by LHAs - Presidi Ospedalieri (PO), etc. (Barbetta et al., 2007; Daidone

and D’Amico, 2009). In a recent paper, Cavalieri et al. (2018) examine how

the efficiency of Italian hospitals is affected by the regional variations of

the per case payment system. To the best of our knowledge, no effort has

been devoted so far in analysing efficiency in terms of spatial heterogeneity,

apart from a recent work by Cavalieri et al. (2017), which examines the

spatial interdependence of Italian hospitals’ efficiency. The novelty of our

approach is that it provides an estimation of the efficiency of Italian hospitals,

using homogeneous and contiguous territorial spatial regimes, as previously

described.
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3. Empirical strategy

The traditional non-parametric framework for technical efficiency anal-

ysis can be described by considering a production technology characterised

by a set of inputs x ∈ Rp
+ that are used by a Decision Making Unit (DMU )

to produce a set of outputs y ∈ Rq
+. Following the approach originally con-

ceived by Debreu (1951) and Farrell (1957), the efficiency scores for a given

production scenario (x, y) ∈ Ψ, where Ψ is the production set, can be defined

in terms of the minimum amount of inputs potentially usable as follows:

θ(x, y) = inf{θ|(θx, y) ∈ Ψ}. (1)

One of the most problematic aspects concerning the non-parametric specifi-

cation is the extreme sensitivity to outliers; to overcome this problem, Cazals

et al. (2002) and Daraio and Simar (2005) proposed a non-parametric esti-

mator of the most robust frontier to extreme and abnormal values. Given a

sample of m random variables with replacement Sm = {Yi}mi=1 drawn from

the density of Y, the random set Ψ̃m can be defined as:

Ψ̃m =
m⋃
j=1

{(x,y) ∈ RP+Q
+ |X ≤ x,Yj ≥ y}. (2)

This specification limits the effect of outliers and measurement errors, as the

single unit is not compared to the entire domain, but rather to a subset of

peers of size m.
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The treatment of outliers, however, deals with the heterogeneity represen-

tative of (somehow extreme) differences in the volume of inputs and outputs

of the different productive units, but it does not deal with the heterogene-

ity arising from differences in relevant contextual factors not directly con-

nected with their production choices. To overcome this shortcoming, Daraio

and Simar (2007b) proposed an extension to convex non-parametric models,

while Jeong et al. (2010) and Badin et al. (2012) proved the consistency and

the asymptotic properties of different conditional efficiency estimators.

In analogy with the traditional Farrell’s input-oriented efficiency score de-

fined in equation (1), the conditional input efficiency measure can be defined

as:

θ̂(x, y|z) = inf{θ|(θx0, y0|z) ∈ Ψ}

= inf{θ|H(θx, y|z) > 0}.
(3)

where z is the set of exogenous contextual variables - the factors behind the

patterns (Bartelsman and Doms, 2000) - that is assumed to affect firm-level

efficiency, but as stated by Lovell (1993) it is the set “over which the decision

maker has no control during the time period under consideration” as, for

example, the regulatory environment, the quality of the workforce or the

different access to technology.

It should be noted that in equation (3), the unobserved factors Z have

to be identified ex-ante and characterised in terms of a predetermined geo-

graphic location of productive units (e.g the city, the region, the State where

productive units are located). Factors Z are also supposed to be independent
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from the production process: therefore, this strategy does not allow to ac-

count for relevant information related to other potentially important factors,

which left out of the model, since they are truly unobserved or difficult to be

measured.

In an attempt to overcome this issue, Vidoli and Canello (2016) proposed

to incorporate the spatial dependence into a non-parametric efficiency model

by accounting for the spatial proximity of peers rather than evaluating the

exact relationships between X and Y and a set of contextual factors Z: they

propose an algorithm derived by the order-m model by using a spatial crite-

rion to identify the local peers for each unit according to “the dynamics, the

structure and characteristics of the considered market” (Daraio and Simar,

2005).

The modified optimisation problem can be formally expressed by introduc-

ing in the random set Ψ̃m, defined in equation (2), an additional constraint

associated with spatial proximity to the unit i, as follows:

Ψ̃mi
=

m⋃
j=1

{(x,y) ∈ RP+Q
+ |X ≤ x,Yj ≥ y, j ∈ Si)}. (4)

where Si represents the physical space within which the unit i is compared

with its peers; Vidoli and Canello (2016) proposed to estimate Si according

with a spherical criterion of estimated radius; although this criterion is simple

in its application, it is assumed that (i) the peers’ range of influence remains

the same throughout the whole territory considered - that is homogeneity in
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the spatial point patterns is hypothesised - and (ii) the reference territory is

spherical.

In this paper, we propose to estimate the technical efficiency of Italian

hospitals according to the optimisation problem set in equation (4), but we

build Si in a less rigid way than Vidoli and Canello (2016). More precisely,

we determine Si (the set of local peer units) in the conditional efficiency es-

timate in such a way to define spatial regimes characterised by: (i) spatial

proximity of hospitals, identified not by a uniform radius, but taking into ac-

count their actual spatial distribution. Proximity here can also be regarded

as a proxy of unobservable variables influencing the spatial patterns of hospi-

tals’ efficiency; (ii) spatial similarity of values of selected observable variables

representative of factors potentially relevant for hospitals’ efficiency; (iii) a

minimum number of hospitals assigned to each regime. The actual identifica-

tion of spatial regimes, with these joint characteristics, follows the so-called

Skater algorithm. Assuncao et al. (2006) propose to identify the proximity

of the production units using a connected graph (a tree that contains all the

vertices of the graph and contains only a subset of the arcs, i.e. only those

needed to connect all the vertices with one and only one path) in which each

unit is identified with a point (corresponding, in our case, to a hospital’s

centroid according to a geographical reference) and it is connected to the

centroids of the nearby units via an edge (Figure 1(a)). In more technical

terms, a connectivity graph is used to capture the adjacency relations be-

tween objects. In the graph, each object is associated with a vertex and
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linked by edges to its neighbours. The cost of each edge is proportional to

the dissimilarity between the objects it joins, where we measure dissimilarity

using the values of the attributes of the neighbouring pair. By cutting the

graph at suitable places, we get connected clusters.

A graph designed in such a way is very complex to evaluate since each point is

connected to a plurality of other neighbouring points: to limit this complex-

ity, Assuncao et al. (2006) proposed to use the “Minimum Spanning Tree”

(MST, Pettie and Ramachandran, 2000) algorithm that allows the connection

among all the objects that have a minimum weighted distance eliminating

the very different edges (Figure 1(b)). In this way, the baseline tree is sim-

plified in such a way to eliminate any cycle and to guarantee the minimum

possible total edge weight. It can then be considered, from an economic point

of view, as the backbone of the connections/relations among hospitals. The

Minimum Spanning Tree, therefore, allows us to describe hospital produc-

tion as an interconnected and interdependent set, spatially constraining the

production units, but without imposing ex-ante a specific geography.

<Figure 1>

The second stage of the Skater algorithm provides that, starting from the

MST connected graph, the edges with the greatest dissimilarity in terms of

the selected observable variables are progressively eliminated in order to ob-

tain k spatial clusters (not connected graphs), characterised at the same time

by the maximum internal homogeneity and by the maximum heterogeneity

with respect to the other ones (like a k -means clustering). The number k
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must be such that each regime includes a minimum number of hospitals, so

as to make the subsequent efficiency estimation significant. Once defined the

k regions, we undertake the non-parametric estimation of efficiency within

each regime.

Finally, please note that the proposed two-step approach produces valid

inference assuming that the clustering procedure is independent of ineffi-

ciency (which is the classical assumption of the nonparametric conditional

methods, Witte and Kortelainen, 2008; Vidoli and Canello, 2016) or, in other

terms the spatial structure is linked to a heterogeneous technology adoption

(linked to economic external factors) among the groups. In a non-parametric

framework, therefore, it was not possible to include interactions and/or feed-

back mechanisms among neighbour units as in the parametric ones.

4. Empirical analysis

4.1. Data, production model and environmental factors

The data used in this paper come from different sources. Data for the

assessment of the hospitals’ efficiency within each spatial regime are provided

by the Italian Ministry of Health (specifically, the Department of Health

care) and refer to hospitals’ discharge, personnel and beds records. More

precisely, data refer to an initial sample of 880 public acute hospitals (Aziende

Ospedaliere, hospitals independent of local health authorities - AO; Presidi

Ospedalieri, hospitals managed by local health authorities - PO; teaching,

research and other public hospitals) and private accredited hospitals in 2010.

14



Hospitals have been geocoded via Google Maps API through their name and

their city. A very good geographic approximation has been obtained since

767 hospitals have been identified - in terms of latitude and longitude - at

the level of establishment, 33 at street level, 29 at locality level and only 51

at a higher level. After selecting data referring to hospitals geocoded with

the same coordinates (either because Google provided the same address or

because they are duplicate) and some cleansing of data (see paragraph 4.3),

the sample reduces to 742 hospitals. The data for relevant environmental

factors that potentially affect hospitals’ efficiency refer to the information

available for the year 2010 and are mainly provided by the Italian Institute

of Statistics (ISTAT).

Furthermore, the data set includes information on different inputs and

outputs usually considered in the literature on hospital efficiency (Hollingsworth,

2008; Kohl et al., 2019). Based on the availability of data in our sample of

Italian hospitals, we consider three inputs and one output to describe hospital

production technology.

As in many other papers on the estimation of hospitals’ technical effi-

ciency, we include the number of hospital beds as a proxy measure of capital.

The labour inputs are measured by the number of full-time equivalent physi-

cians and the number of full-time equivalent nurses.

As for the outputs, hospitals are recognised to provide different services, thus

calling for a multiple output approach. However, as common in efficiency

study on Italian hospitals (e.g. Cavalieri et al., 2018), due to the availability
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of data, we restrict our analysis only to inpatients activities (i.e. the number

of discharged patients and the number of inpatient days). It also needs to

be noted that Italian hospitals are compelled to focus on inpatient activities,

since it is deemed appropriate that outpatient visits are carried out by local

health authorities in specific and less costly structures. Furthermore, even

if it is an highly debated issue whether to consider the outcome of health-

care provision in the assessment of technical efficiency, we did not include

it since data for hospitals’ outcomes (e.g., risk adjusted discharge mortality

and readmission rates) were available only for limited hospitals’ subsamples.

Consequently, we focus, as a measure of output, on the number of dis-

charged patients. Since discharges can be very different from one another,

in terms of complexity of treatments provided and of the resources used for

these treatments, as it is common in the literature, we use a weighted sum

of discharged patients, where the weights are the ones connected with the

Diagnosis Related Groups (DRG) classification. We use the weights of the

national DRG system, since Regions are allowed to make variations with

respect to this national system. By employing the weights of the national

DRG system (Ministry of Health Decree of December 18, 2008), we are able

to offset both inter- and intra-regional differences in tariffs for the same DRG.

In such a way we provide a reasonable standardisation of inpatients hospital

output across the different units.

Furthermore, in our opinion, the adoption of a single output measure re-

duces the degree of arbitrariness that is somewhat present in any choice of
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multiple output measures and provides a more fair comparison among hos-

pitals. In fact, the only other available variable (i.e. the number of inpatient

days) measures the same hospitals’ activity and as showed by Cavalieri et al.

(2018) does not significantly affect the efficiency assessment. Moreover, be-

cause the Italian regions use different tariff system that provides different

incentives in term of patients’ length of stay, using such a measure of inpa-

tient activity we potentially introduce a bias in the efficiency estimates.

As for the variables used in the Skater procedure - point (ii) (see section

3) - to consider spatial similarity, we employed data on demand characteris-

tics that affect hospital care. As previously mentioned, the data are mainly

provided by the Italian Institute of Statistics (ISTAT) and refer to the infor-

mation available for the year 2010; in particular - to bypass the limits linked

to the provincial boundaries - these environmental variables have been calcu-

lated (for each hospital) as the sum of data of municipalities located at less

than 30 km (or 100 km) from each hospital: this ensures that the demand is

actually linked to the territory of reference, but at the same time does not

represent regional or provincial administrative levels; in this way, the local

demand factors do not correspond to the administrative levels and, therefore,

are not directly linked to the operational choices (budget, levels of care, ...)

that may have generated them.

Please note that the different radius of the contextual variables is due ex-

clusively to the different nature of the demand variables (proximity services

such as births, wide-ranging factors such as population seeking employment);
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moreover, this different construction has been considered for greater preci-

sion and does not impact on the criterion of endogeneity in the construction

of spatial regimes.

In particular, as a proxy for demand characteristics in the hospitals’ catch-

ment area, we employ the population density per square km, the number of

newborns per 1,000 inhabitants, the total number of deaths per 1,000 inhab-

itants and the number of deaths for road accidents per 100,000 inhabitants.

Then, we use the municipal average income (standardised between 0 and 1)

estimated by the Tax Department of the Italian Ministry of Economy and

Finance and the population in search of employment from the ISTAT Labour

force survey that provides official estimates of employment and job seekers.

Altogether, then, we consider variables able to identify spatial regimes with

homogeneous demand characteristics in such a way to “neutralise” the het-

erogeneity of relevant contextual factors that may impact on the estimation

of hospitals’ efficiency. The selection of the variables is in line with the liter-

ature briefly summarised in section 1, while Table 1 presents the descriptive

statistics of the variables used in the specification of the production function.

The latter have been normalised for the population (except for income, for

which we consider its average).

<Table 1>
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4.2. The hospitals’ spatial regimes

The empirical strategy, discussed in section 3, requires a preliminary iden-

tification of hospitals’ spatial regimes by spatial proximity and spatial ho-

mogeneity, the latter in terms of the environmental variables represented in

section 4.1. Hospitals’ spatial regimes are representative of the Si in equa-

tion (4), which is used to condition efficiency estimates, according to Vidoli

and Canello (2016). As already mentioned in section 3, the approach we

employ for getting Si is related to the use of the Skater algorithm, and it is

different from the one originally used by Vidoli and Canello (2016), based

on a fixed and uniform radius. Preliminary to the presentation of the results

of the Skater algorithm, we have evaluated the appropriateness of departing

from Vidoli and Canello (2016) as far as the identification of Si is concerned.

For this reason, we have analysed the real locations (spatial points pattern)

of hospitals on the territory as compared to the homogeneous random ones;

Figure 2 shows two spatial points patterns: the first one (the left one) has

been simulated generating a random points pattern containing independent

uniform random points on the Italian observational window, while the sec-

ond one shows the real spatial location of hospitals. More precisely, the

Italian observational window has been calculated as the α-convex hull of a

given sample of points (α = 0.5) in the plane or as affirmed by Edelsbrunner

et al. (1983) as “subgraphs of the closest point or furthest point Delaunay

triangulation”.

<Figure 2>
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A marked difference between the two spatial points patterns can easily

be noticed since the spatial concentration is much higher in some parts of

the national territory than in other ones. Please see the Electronic Supple-

mentary Material for a more specific discussion on this issue.

Therefore, the homogeneous demand areas using the Skater algorithm to

condition the efficiency estimates have been identified.

We first proceed to the construction of the Minimum Spanning Tree, which

is representative of the spatial proximity across hospitals (Figure 3). Even if

the minimisation of the weighted distance of the MST algorithm needs to be

balanced by close attention to avoid spurious connections, we decided to keep

the hospitals located in Sardinia and their connections within our analysis

set. We are aware that their connections with the mainland hospitals can be

regarded as spurious and that the subsequent construction of spatial regimes

and efficiency estimates may be affected by this issue, but we prefer to have

a complete picture of the country’s hospitals’ efficiency.

<Figure 3>

Spatial proximity, as represented by the Minimum Spanning Tree, is the

basis for the evaluation of spatial homogeneity and the construction of clus-

ters. Within the Skater procedure, the selected environmental factors to

evaluate the homogeneity of spatially neighbouring hospitals are used. We

also impose a minimum size of 60 hospitals for each spatial regime, and a

number of regimes equal to 9, balancing the need to have spatial regimes as
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more homogeneous as possible, in terms of the selected environmental fac-

tors, with the requirement of including, within each regime, an appropriate

number of hospitals. Some robustness checks of our choice are provided in

section 4.5.

The partition of homogeneous and contiguous territorial spatial regimes is

then represented in Figure 4. Please note that the Skater procedure, being

of a hierarchical type, allows to obtain more and more nested parts of the

territory than the hierarchically superior ones; in this way it is possible to

study the spatial regimes according to the desired level of specification.

<Figure 4>

The statistics by spatial regimes, reported in the Electronic Supplemen-

tary Material, provide a clear picture of the specificity of each regime. As for

the environmental factors used for clustering the neighbouring hospitals in

terms of spatial homogeneity, the noticeable difference in their mean values

reflects a good heterogeneity among the hospitals of different spatial regimes

while the standard deviation within each regime tends to be generally lower

than the corresponding value for the entire sample, which is a signal that our

procedure has clustered together hospitals with a reasonable degree of homo-

geneity. The statistics for the inputs and the output of hospitals show a clear

partition of the country between the Northern and the Southern regimes.
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4.3. Spatial conditional estimation of efficiency vs unconditional order-m and

two stage conditional approaches

As mentioned at the end of section 3, once the spatial regimes have been

identified, we carry out the assessment of technical efficiency of hospitals

within each of the nine regimes. The proposed procedure starts with the

estimation of the unconditional non-parametric technical efficiency, which

provides the tool for identifying outlier observations.

The unconditional estimates is repeated twice to overcome the presence of

strong out-of-scale data. In a first step, DEA and order-m measures are

compared by means of a quantile regression, with q = 0.95, to select out-

liers, while, in a second step, after excluding the outliers, the relationship is

estimated again and it proves to be more stable. The identified outliers are

then excluded in the conditional efficiency estimation. Figure 5 shows the

relationship between the two efficiency measures before and after the outliers

selection.

<Figure 5>

Technical efficiency estimation for the hospital sector is, therefore, per-

formed using the spatial conditional method proposed in equation (4) with Si

corresponding to the estimated spatial regimes. The results of the estimates

are provided in Electronic Supplementary Material (Table 3 and 4) where

estimates have been normalised [0,1] to make them directly comparable.

As a way to highlight the contribution of our methodology and results, we
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also measured the technical efficiency of the hospitals in our sample with

other two methodologies. First of all, we used the unconditional order-m ap-

proach (over the entire sample), so as to have a benchmark dealing only with

the heterogeneity arising from the existence of potential outliers. Secondly,

we employed the Simar and Wilson (2007) two stage procedure, which is

representative of the approach generally used to deal with the heterogeneity

arising from environmental factors and, therefore, can be regarded as one

of the nearest alternatives to our approach. Please note that the fully non-

parametric conditional order-m method has been tested too, but the relative

estimates have not been satisfactory because of their low variability. Results

are available upon request from the authors.

Simar and Wilson (2007) suggest to use a double bootstrap procedure in order

to improve the statistical efficiency in the second-stage truncated regression

since ”bootstrap methods provide the only feasible means for inference in the

second stage” (Simar and Wilson, 2011). This approach has quickly become

a standard in the empirical efficiency analysis with very many applications

(see e.g. Fragkiadakis et al., 2016; Perez-Urdiales et al., 2015) and it allows to

evaluate the contribution of the single conditional variables to the efficiency

estimation.

Table 2 shows the estimated coefficients in the truncated regression of

the reciprocal of DEA scores on the exogenous conditional variables. The R

rDEA package (Simm and Besstremyannaya, 2016) has been used to estimate

the conditional 2-stages model; in this package the second level estimates are
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expressed as the relation between the reciprocal of the DEA scores (distance

function with the range from one to infinity) and the exogenous variables

Z: this means that the sign of the coefficients is to be understood as inverse

with respect to the DEA standard scores.

The results show both the difference between the first and the second stage

β and the statistical significance of the variables Income and Road deaths

mainly linked to the economic gap between the Northern and the Southern

regions.

<Table 2>

Table 3 (Electronic Supplementary Material) shows the results of the

application of the unconditional order-m and of the two-stage conditional

methodologies, together with the results of our spatial conditional approach.

Even if the efficiency scores of the unconditional order-m and of the two-stage

conditional applications are computed on the overall sample, they are rep-

resented for each of our clusters. As for the comparison between our spatial

conditional measures and the unconditional ones, Table 4 (Electronic Supple-

mentary Material) and Figure 6 (displaying the geographical distributions of

the two measures) clearly show that the two distributions look indeed quite

dissimilar. The main statistics of our estimates are generally lower than the

corresponding ones for the unconditional estimation: this is especially true

for the hospitals belonging to the third quartile. Moreover, this differen-

tial effect of our estimation with respect to the unconditional one is quite

relevant when we consider the hospitals located in those geographical areas
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whose average is the highest in the unconditional estimation (i.e. spatial

regimes 5, 6 and 7). In other words, it looks like our methodology tends to

reduce the efficiency scores of the best performers with an effect also on the

ranking of the different geographical clusters in terms of average efficiency of

their hospitals, as well as on the relative distance between the best and the

worst average scores. The difference between the results of the unconditional

order-m and the spatial conditional estimations is not completely surprising,

when one considers that the former methodology builds up the frontier over

the entire sample and, therefore, tends to emphasise the evaluation of the

best performers, while our approach considers different frontiers for spatially

proximate and homogeneous hospitals. In such a way the best performers in

the overall sample need not to be so good when benchmarked with a subset

of the sample made up of other efficient hospitals. This effect can be clearly

observed in Figure 7, where we consider the efficiency scores of the two ap-

proaches for the hospitals of the Lombardy region, that is the hospitals that

are among the best performers over the all country.

<Figure 6>

<Figure 7>

As for the comparison between the results of our approach and the ones

of the application of the two-stage conditional methodology (please refer to

Tables 5 and 6 (Electronic Supplementary Material) where QZ , the ratio of

conditional on unconditional efficiency score (Daraio and Simar, 2007a) is
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reported), first of all it can be noted that the latter tend to ”magnify” the

efficiency scores for all the hospitals, as expected. Again, our scores tend

to be lower above all for the best performers in each spatial regime and for

the hospitals located in the best regimes. Our approach avoids to compare

hospitals similar in terms of environmental conditions but located in spatially

different areas, confirming that spatial proximity is not a mere geographical

issue, but it tends to represent ”hidden” patterns that tend to affect the

providers’ production behaviour.

4.4. Spatial patterns and regional administrative borders

One of the main motivations of our work and, consequently, of our pro-

posed efficiency estimation methodology, is that the spatial patterns of hos-

pitals’ efficiency need not be univocally linked to the administrative borders

(in the Italian case, the regional ones). The spatial constraint on the ef-

ficiency estimation is, therefore, based on clusters, defined with respect to

spatial proximity and homogeneity of hospitals. We then checked whether

the differences across the spatial conditional efficiency scores are still linked

with the regional location of hospitals, that is whether the specific institu-

tional and socio-economic characteristics of each region are strong drivers of

hospitals’ efficiency even when it is estimated with respect to different ter-

ritorial subsets. To answer this question, the regional average distribution

has been compared with the spatial position of the individual units, respec-

tively, with the non-conditional and conditional distribution efficiency using
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the Syrjala test, “based upon a generalisation [for the spatial setting] of the

two-sample Cramer-von Mises test for a difference between two univariate

probability distributions” (Syrjala, 1996, p. 75). In this test, the null hypoth-

esis provides that the two empirical spatial distributions are drawn from the

same unknown distribution; with a certain degree of approximation, there-

fore, if the p − value is greater than 0.05 then the two distributions cannot

be said to be as different between them; the more the p−value tends to zero

the more the two distributions tend to be different in space.

It should be noted that we assume to observe the whole population and not

a sample, namely the sample error is equal to zero. In addition, we also as-

sume non-sampling error, which leads to have no problems of over or under

coverage of the population. In other terms, we do not infer from finite popu-

lations, but from a superpopulation of which we have observed a realisation

y.

The basic assumption is that while the non-conditional measures may be

still dependent on regional factors (i.e. the two distributions in space are not

so different), our spatial conditional measures should be independent.

The Syrjala tests confirm this assumption. While the spatial distributions of

conditional order-m efficiency and the relative average ones are independent

(test equal to ψ : 0.005805537, p− value : 0.004 based on 1000 simulations),

the same cannot equally be affirmed for the spatial distributions of the order-

m efficiency and the relative average ones (ψ : 0.008226907, p − value :

0.090 based on 1000 simulations). As a consequence, our methodology of
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conditioning the efficiency estimates on spatial regimes based on hospitals

spatial proximity and spatial homogeneity of relevant demand characteristics,

is able to grasp all the regional differentials.

4.5. Sensitivity analysis

When point-based measures of spatial phenomena are combined into

higher level aggregations, a source of statistical bias may arise from the ag-

gregation criteria themselves. This source of bias, called Modifiable Areal

Unit Problem (MAUP), may have a major impact on the conditional results,

given that the chosen number k of spatial regimes substantially modifies the

homogeneous territorial areas.

It is, therefore, mandatory to evaluate how our results change with a vari-

ation in the clustering parameter k. As suggested by Saisana et al. (2005,

p. 308), we have focused “on how uncertainty in the input factors propagates

through the structure of the composite indicator and affects the values of the

composite indicator”.

Different distributions of conditioned efficiency have been estimated. These

distributions (Figure 8) are both strongly correlated and the percentage dif-

ferences with respect to the chosen number of clusters (k = 9) are really

small (in about ±5%).

This result can be due to a plurality of causes: the most important is certainly

the hierarchical nature of the clustering algorithm, but other more economic

ones can be found in the expenditure constraints (and therefore indirectly on
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labour and capital resources) that differently impact on the Italian regions.

<Figure 8>

5. Concluding remarks

As emphasised in the Introduction to this paper, a crucial issue for the

precision and reliability of information about efficiency, is the ability of the

different methodologies for assessing efficiency to deal with the heterogene-

ity across the different providers, especially when arising from factors out of

their control. Even if this may appear like a sort of ”narrow” methodological

issue, its policy relevance is evident if one considers the possibility of using

the results of the efficiency assessment for devising actions aiming at reduc-

ing the eventual inefficiency of (some) providers.

The policy relevance of the methodological issue of dealing with heterogene-

ity is even stronger for those health systems that are decentralised. A wide

heterogeneity has emerged in these systems, with several unsolved issues, as

far as their capacity to deal with efficiency, as well as with equity, is con-

cerned (Figueras et al., 2006). In Italy, the national level regulation jointly

with the decentralised organisation of hospital provision did not result in an

increasing pattern of efficiency nor allowed for a process of convergence in

efficiency among regions. While convergence is a sensible policy objective, at

the same time heterogeneity across regions needs to be carefully considered

to avoid that it is regarded as merely due to the behaviour of providers.

In this paper, therefore, we have emphasised the notion and the role of spatial
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heterogeneity, which goes beyond the identification of environmental factors

used to condition the assessment of efficiency of providers. The assessment of

efficiency through the benchmarking method of frontiers, in a context char-

acterised by spatial heterogeneity of providers, therefore requires to compare

like with like. We believe that the approach to assess efficiency we propose in

this paper is more consistent with the nature of spatial heterogeneity char-

acterising hospitals more than other approaches. At least as far as Italy is

concerned, restricting benchmarking to each spatial regime avoids to com-

pare hospitals operating in very different geographic areas and, consequently,

to overlook the sort of ”hidden” spatial patterns that may influence the be-

haviour of providers. Ignoring these patterns, as discussed in section 4.3,

leads to an overestimation of the efficiency of the best performers in the en-

tire sample, above all when it happens, as it is the case of Italy, that they

are ”clustered” in some areas (see the case of Lombardy region).

A specific result for the Italian case is that our methodology confirms that

the Southern part of the country lags behind the other geographic areas.

However, our results clearly show that there is enough room for gains in ef-

ficiency also for hospitals located in the Northern area of the country.

Furthermore, our results confirm the hypothesis that the presence of dif-

ferent spatial production regimes is related to the existence of a variety of

latent unobserved factors, which are closely related to the spatial location

of the observed hospital more than to the administrative boundaries. This

is not to say that the institutional factors are irrelevant and we are aware
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there are studies emphasising this issue (see, for instance, Atella et al., 2014).

However, we checked whether the regional location of hospitals was still a

driver of our efficiency results and we showed, in section 4.4, that condition-

ing the estimation of efficiency on our spatial regimes seems able to grasp all

the regional differentials. This result seems to confirm the existence of spa-

tial patterns, based on geographic proximity and on demand characteristics,

which influence the behaviour of providers in a homogeneous way. Moreover,

these patterns look to be stronger than the institutional influence, generally

connected with the incentives and the constraints arising from regional poli-

cies, thus revealing some weaknesses of the decentralisation process in Italy.

The “young” age of Italian regions joined, for a few regions, with their really

small dimension (both in terms of space and population) can be considered as

the likely reasons for the incomplete development of an effective government

capability, above all when compared to the strength of some demographic,

social and economic factors (observed and unobserved), which cannot be con-

strained within administrative borders. This asymmetry between the spatial

and the institutional homogeneity surely poses a policy problem about the

future role of regions in the government of the Italian health care system.

Leaving aside any consideration about decentralisation itself (even if the po-

litical and institutional debate has recently witnessed an increasing number

of sceptical voices about the benefits of decentralisation), are the current re-

gions the right jurisdictions for an effective government of the Italian health

care system?
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(a) Connected graph. (b) MST reduced graph.

Figure 1: Connected graph and Minimum Spanning Tree algorithm

(a) Simulated homogeneous pattern. (b) Real pattern.

Figure 2: Simulated homogeneous and real spatial point patterns



Figure 3: Minimum Spanning Tree for the Italian hospitals



Figure 4: Skater spatial regimes, k = 9



(a) Before selection. (b) After selection.

Figure 5: Out-of-scale data: outliers selection

(a) Unconditional order-m efficiency. (b) Spatial Conditional order-m effi-
ciency.

Figure 6: Unconditional and spatial conditional order-m efficiency



(a) Unconditional order-m efficiency. (b) Spatial Conditional order-m effi-
ciency.

Figure 7: Unconditional and spatial conditional order-m efficiency - Lombardy Region

(a) Correlations. (b) Percentage differences boxplot.

Figure 8: Uncertainty analysis for different k



Variable Measurement Radius (km) Mean SD

Input variables
Bed Total hospital beds - 199.605 235.217
Phys Total hospital physicians - 124.955 145.550
Nurs Total hospital nurses - 270.942 367.694

Output variable
Ric pond Weighted discharges - 6,948.023 8,979.749

Environmental variables
Population density per km2 30 521.235 587.274
New born (*1000) 30 8.571 0.952
Deaths (*1000) 30 1.604 1.918
Income (min=0, max=1) 30 0.334 0.062
Road deaths (*100000) 100 5.902 1.261
Pop. search of employment (%) 100 5.601 2.208

Table 1: Descriptive statistics (year 2010)

Environmental variables
1st loop 2nd loop

β β CI Lower bound CI Upper bound

Intercept −32.473 −43.906 −70.658 −27.302
Population density per km2 0.002 0.003 −0.002 0.010
New born (∗1000) −18.901 −23.306 −116.156 80.103
Deaths (∗1000) 1.587 −0.545 −48.223 45.100
Income (min=0, max=1) −37.125 −41.500 −81.342 −11.205
Road deaths (∗100000) −18.421 −20.227 −31.489 −15.713
Pop. search of employment (∗100000) 28.115 31.018 −11.167 62.735

Table 2: Conditional efficiency (Second stage truncated regression, 95% confidence inter-
vals)



Electronic Supplementary Material

Spatial points patterns:
Difference between real and simulated points patterns

Introduction

The difference between the real and simulated points patterns may be more
rigorously evaluated through two specific measures (Baddeley et al., 2015):
Ripley’s reduced second moment function K(r) - as a global measure (Figure
1, first row) - and the nearest neighbour distance distribution function G(r)
- as a local measure (Figure 1, second row) - for the simulated and the real
points pattern.

Figure 1 (first row) shows Ripley K for the real case (left) and the simulated
homogeneous distribution (right), showing a discrete inter-point dependence
in the distribution of hospitals on the territory.
A more informative statistic, in this specific case, is the nearest neighbour
distance distribution function G(r). Figure 1 (second row) shows that for
small radius (in other terms, locally) the cumulative distribution of the real
case is very different from the homogeneous one; namely, there are very high
concentrations of units for small distances and low concentrations for medium
to large distances among hospitals, which does not make appropriate the use
of Vidoli and Canello (2016) estimation method that assumes homogeneous
points patterns.
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Figure 1: Ripley K and NN G for homogeneous and real spatial point patterns
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Ric Pond Bed Doctors Nurses
Cluster N Mean SD Mean SD Mean SD Mean SD

1 North 60 9096.8 7620.6 263.1 207.4 156.8 125.4 377.5 338.4
2 South 167 4026.1 4536.8 122.9 119.7 87.5 114.2 157.2 211.5
3 Center 87 5873.2 8725.8 165.2 218.5 112.8 136.7 225.6 301.1
4 South Lazio Abruzzo 64 5050.9 6082.4 153.5 172.0 88.8 91.6 205.2 223.3
5 North East Veneto 103 10302.3 10736.3 286.9 281.0 158.9 155.8 413.0 449.0
6 North Milan 59 13295.4 12718.9 371.3 319.4 227.0 185.9 508.9 548.6
7 North Emilia Liguria 80 11023.7 13033.0 306.7 344.9 196.8 213.0 432.8 542.3
8 South Calabria 63 2762.7 3507.0 94.4 111.2 68.0 91.2 96.6 131.2
9 South Apulia 59 6086.7 6285.0 170.2 154.2 104.3 92.1 218.2 203.6

All 742 7160.4 9098.8 205.5 238.1 128.7 147.2 280.1 372.2

Table 1: Input/output variables

Density Born Death Income Road accidents Looking for a job
Cluster N Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 North 60 238.2196 143.4767 8.4934 0.9156 3.1062 2.1402 0.4053 0.0169 6.3016 0.8405 33.3165 4.6975
2 South 167 940.4476 931.9493 8.7372 1.1101 1.2435 2.0272 0.2692 0.0246 4.3682 0.7516 82.5680 3.2985
3 Center 87 400.9530 352.6115 8.7069 1.1227 1.3561 1.7233 0.3359 0.0423 6.6771 0.5628 45.3184 9.4536
4 South Lazio Abruzzo 64 118.4937 81.0612 8.0413 0.8671 3.7693 3.1126 0.2972 0.0187 5.8708 0.8189 64.3385 12.2901
5 North East Veneto 103 294.7979 120.0573 8.4762 0.7671 1.3436 1.0250 0.3809 0.0314 7.4108 0.5015 34.6371 6.3432
6 North Milan 59 1101.2886 362.3168 9.2099 0.1936 0.8887 0.4549 0.3969 0.0185 5.5325 0.1948 32.3508 0.6055
7 North Emilia Liguria 80 327.7079 138.9684 8.2446 0.9436 1.2782 1.4062 0.4116 0.0275 6.9383 0.8147 34.8077 7.0642
8 South Calabria 63 543.4967 439.2886 8.9032 0.9124 1.3685 1.0692 0.2875 0.0231 5.0813 0.4315 81.4067 4.0312
9 South Apulia 59 324.0679 165.1869 8.2645 0.4386 1.0032 1.0236 0.2804 0.0111 6.2200 0.8165 68.8121 2.8335

All 742 523.8970 588.8025 8.5787 0.9549 1.6061 1.9293 0.3339 0.0621 5.9247 1.2548 55.6573 22.0163

Table 2: Conditional variables



Order-m Spatial conditional efficiency 2-stage conditional efficiency
Cluster N 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD

1 North 60 0.838 1.051 1.107 1.267 0.284 0.747 0.878 1.003 1.066 0.316 0.554 0.677 0.728 0.804 0.179
2 South 167 0.846 0.954 0.987 1.137 0.276 0.667 0.862 0.876 1.000 0.299 0.512 0.625 0.635 0.748 0.167
3 Center 87 0.891 1.020 1.001 1.144 0.257 0.881 0.965 1.000 1.076 0.291 0.556 0.660 0.673 0.750 0.152
4 South Lazio Abruzzo 64 0.868 0.988 0.997 1.178 0.274 0.821 0.907 0.968 1.023 0.292 0.570 0.646 0.656 0.752 0.150
5 North East Veneto 103 0.949 1.113 1.173 1.273 0.299 0.852 0.963 1.021 1.112 0.262 0.633 0.716 0.762 0.841 0.174
6 North Milan 59 1.013 1.166 1.192 1.362 0.325 0.950 0.964 1.003 1.073 0.212 0.603 0.699 0.726 0.861 0.196
7 North Emilia Liguria 80 0.939 1.109 1.150 1.296 0.303 0.675 0.848 1.000 1.090 0.360 0.604 0.704 0.759 0.837 0.185
8 South Calabria 63 0.699 0.858 0.910 1.020 0.294 0.691 0.830 0.807 1.002 0.287 0.475 0.550 0.564 0.646 0.157
9 South Apulia 59 0.922 1.061 1.087 1.200 0.265 0.793 0.872 0.982 1.022 0.293 0.587 0.681 0.691 0.801 0.159

All 742 0.869 1.029 1.034 1.217 0.296 0.747 0.898 0.990 1.054 0.297 0.550 0.660 0.680 0.797 0.174

Table 3: Unconditional, Spatial conditional and 2-stage conditional efficiency - summary

Order-m Spatial conditional efficiency 2-stage conditional efficiency
Cluster N 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD

1 North 60 0.392 0.492 0.519 0.594 0.134 0.353 0.417 0.478 0.509 0.154 0.512 0.654 0.713 0.801 0.208
2 South 167 0.395 0.447 0.462 0.533 0.129 0.314 0.409 0.416 0.477 0.146 0.462 0.594 0.606 0.737 0.193
3 Center 87 0.417 0.478 0.469 0.536 0.121 0.419 0.460 0.477 0.514 0.142 0.514 0.634 0.649 0.739 0.177
4 South Lazio Abruzzo 64 0.406 0.463 0.467 0.552 0.128 0.390 0.431 0.461 0.488 0.142 0.530 0.618 0.630 0.741 0.174
5 North East Veneto 103 0.444 0.522 0.550 0.597 0.141 0.404 0.459 0.487 0.531 0.128 0.603 0.699 0.753 0.844 0.202
6 North Milan 59 0.474 0.547 0.559 0.639 0.153 0.453 0.459 0.478 0.513 0.104 0.568 0.679 0.711 0.867 0.228
7 North Emilia Liguria 80 0.440 0.519 0.539 0.608 0.143 0.318 0.402 0.477 0.521 0.176 0.569 0.685 0.749 0.839 0.214
8 South Calabria 63 0.326 0.402 0.426 0.478 0.137 0.326 0.394 0.383 0.478 0.140 0.420 0.507 0.523 0.618 0.182
9 South Apulia 59 0.432 0.497 0.509 0.563 0.125 0.376 0.414 0.468 0.487 0.143 0.549 0.659 0.670 0.798 0.184

All 742 0.407 0.482 0.484 0.570 0.139 0.353 0.427 0.472 0.503 0.145 0.506 0.635 0.658 0.794 0.202

Table 4: Unconditional, Spatial conditional and 2-stage conditional efficiency - Normalised estimate summary



Spatial conditional QZ 2-stage conditional QZ

Cluster N 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD

1 North 60 0.7448 0.8314 0.8281 0.9660 0.2798 0.6126 0.6461 0.6433 0.6854 0.0621
2 South 167 0.6448 1.1883 0.9110 1.1156 1.7653 0.6088 1.9654 0.6526 0.6927 10.3600
3 Center 87 0.8095 0.9907 0.9629 1.1218 0.3764 0.6160 0.6520 0.6551 0.6875 0.0756
4 South Lazio Abruzzo 64 0.7569 0.9898 0.9150 1.0907 0.4562 0.6302 1.2054 0.6564 0.6823 4.4562
5 North East Veneto 103 0.7692 0.9129 0.8672 0.9892 0.4551 0.6186 0.6488 0.6550 0.6782 0.0649
6 North Milan 59 0.7200 0.8972 0.8113 0.9181 0.3886 0.5608 0.6022 0.6052 0.6369 0.0721
7 North Emilia Liguria 80 0.6666 0.7707 0.7967 0.9115 0.3765 0.5986 0.6387 0.6530 0.6843 0.0780
8 South Calabria 63 0.7765 1.2836 0.9622 1.2574 1.5159 0.5809 2.0612 0.6359 0.6729 8.7080
9 South Apulia 59 0.7017 0.8455 0.8545 0.9318 0.3447 0.6239 0.6491 0.6522 0.6773 0.0795

All 742 0.7363 0.9936 0.8736 1.0421 1.0110 0.6059 1.1085 0.6498 0.6817 5.6970

Table 5: Ratio QZ for Spatial and 2-stage conditional efficiency - summary

Spatial conditional QZ 2-stage conditional QZ

Cluster N 1 Quartile Mean Median 3 Quartile SD 1 Quartile Mean Median 3 Quartile SD

1 North 60 0.753 0.841 0.843 0.983 0.295 1.221 1.300 1.333 1.426 0.220
2 South 167 0.651 1.013 0.924 1.139 0.533 1.200 1.808 1.319 1.414 4.079
3 Center 87 0.822 1.009 0.980 1.145 0.391 1.217 1.322 1.346 1.425 0.194
4 South Lazio Abruzzo 64 0.767 0.977 0.926 1.092 0.412 1.201 1.907 1.339 1.408 4.801
5 North East Veneto 103 0.780 0.928 0.883 1.004 0.478 1.266 1.324 1.352 1.429 0.211
6 North Milan 59 0.732 0.912 0.827 0.935 0.402 1.088 1.212 1.221 1.351 0.246
7 North Emilia Liguria 80 0.673 0.779 0.812 0.930 0.395 1.175 1.298 1.332 1.443 0.236
8 South Calabria 63 0.777 1.116 0.981 1.280 0.571 1.049 2.284 1.255 1.375 6.113
9 South Apulia 59 0.711 0.857 0.870 0.949 0.359 1.274 1.324 1.321 1.403 0.188

All 742 0.746 0.947 0.888 1.065 0.458 1.197 1.551 1.322 1.420 2.992

Table 6: Ratio QZ for Spatial and 2-stage conditional efficiency - Normalised estimate summary
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