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Abstract—Deep learning (DL) methods have recently
gained popularity and been used in commonplace appli-
cations; voice and face recognition, among the others.
Despite the growing popularity of DL and the asso-
ciated hardware acceleration techniques, GPU-based
systems still have very high costs. Moreover, while the
cloud represents a cost-effective and flexible solution,
in large settings operations costs can be further op-
timized by carefully managing and fostering resource
sharing. This work addresses the online joint problem
of capacity planning of virtual machines (VMs) and
DL training jobs scheduling, and proposes a Mixed
Integer Linear Programming (MILP) formulation. In
particular, DL jobs are assumed to feature a deadline,
while multiple VM types are available from a cloud
provider catalog, and each VM has, possibly, multiple
GPUs. Our solutions optimize the operations costs by
(i) right-sizing the VM capacities; (ii) partitioning the
set of GPUs among multiple concurrent jobs running
on the same VM, and (iii) determining a deadline-aware
job schedule. Our approach is evaluated using an ad-hoc
simulator and a prototype environment, and compared
against first-principle approaches, resulting in a cost
reduction of 45-80%.
Keywords: Cloud, Scheduling, Optimization models,

on-demand GPUs

I. Introduction
Nowadays, deep learning (DL) methods have numerous

applications in many fields like voice and face recog-
nition as well as machine translation and classification
tasks [1]. Self-driving cars, voice-activated assistants, lan-
guage recognition [2], as well as brain cancer detection
are just a small selection of successful application cases.
DL uses common machine learning algorithms as Convolu-
tional Neural Networks (CNNs) or Recursive Neural Net-
works (RNNs) to identify latent knowledge in the training
dataset [3] and to generalize this knowledge through a
black-box approach to new data. CNNs reduce the number
of architecture parameters employing only a few fully
connected layers that, conversely, are broadly adopted in

traditional neural networks (NNs). CNNs are usually able
to achieve good accuracy by also reducing the number of
matrix multiplications required to process massive data
sets [4]. RNNs include fewer features when compared to
CNNs and, unlike feed-forward NNs, can use their internal
memory to process arbitrary sequences of inputs; they are
widely used to process time-series and to implement, e.g.,
speech recognition systems [5] as particularly suitable to
treat sequence-related items. 5, since what a user spoke
last will impact what he/she will speak next [5].
DL application training is computing intensive and for

this reason it is usually backed by GPUs, which can
perform matrix multiplications in parallel and are able to
accelerate the models’ training and evaluation in produc-
tion environments [6]. As a matter of fact, CNN training
is frequently offloaded from CPUs to GPUs [7] achieving
a 5 to 40x performance gain [8]. It should not come as a
surprise then that the GPU market that was already worth
around 200 million USD in 2016 is experiencing an annual
growth rate over 30% that analysts believe will remain
unchanged until 2024 [9].
Despite all of the mentioned advantages for GPUs,

the cost of GPU-based systems is usually high: high-end
GPU based servers like NVIDIA DGX-2 cost up to 500k
USD [10] and in public clouds GPU based virtual machines
(VMs) time unit cost is 5-8x higher than high-end CPU-
only VMs [11]. The efficient use of GPUs is hence an
important aspect that deserves to be addressed.
This paper aims at addressing the joint capacity plan-

ning of multi-nodes GPU-based VMs and DL job schedul-
ing by proposing a Mixed Integer Linear Programming
(MILP) formulation. In particular, we assume that DL
training jobs have a deadline, and that it is possible to
configure multiple shared nodes using VMs of different
types, featuring one or possibly multiple GPUs, taken from
a cloud provider catalog. Our solution: (i) selects the right-
size VM capacity for each node, (ii) partitions multiple
GPUs of a VM among multiple jobs that are running978-1-7281-0875-9/19/$31.00 c©2019 IEEE



concurrently on it, and (iii) determines an optimized job
schedule.

Interestingly, while multi-job scheduling has been stud-
ied in some areas like manufacturing and logistics, to the
best of our knowledge, the joint capacity planning and DL
job scheduling problem has not been addressed yet.

Our approach is evaluated through an ad-hoc simulator
and compared with first principle approaches, namely
First-in-First-out, Earliest Deadline First, and Priority
Scheduling rules. Results are validated by also performing
a test on a real prototype environment. Simulation results
show how our solution allows for reducing costs by 45-80%
when compared against the best heuristic. Moreover, the
gap measured between the real and predicted costs in the
prototype environment is less than 7%. Finally, scalability
analyses demonstrate that the scheduling of 400 jobs on 40
candidate nodes can be computed in less than 12 minutes,
demonstrating that our solution can be used in practice.

The rest of the paper is organized as follows. Section II
reviews the related works. Section III describes the prob-
lem settings while Section IV introduces the MILP formu-
lation. Experimental results are presented in Section V.
At last, Section VI draws some conclusions and outlines
future works.

II. Related Work
GPUs can be shared to perform multiple tasks in par-

allel and, inversely, several GPUs can be assigned to the
same job to achieve a significant performance boost. The
scenario hugely increases in complexity when the Cloud
computing is added to the equation since several types of
Virtual Machines (VMs) featuring different GPUs might
be available [12], entailing decisions about the number and
types of VMs to be used and the sequencing of jobs on the
resources (GPU resource management in job scheduling).

This section reviews the relevant works from the lit-
erature, broadening the scope to include papers of task
scheduling in the High-Performance Computing (HPC)
and Cloud computing fields.

There has been considerable work done in the domain of
GPU scheduling for HPC systems mainly to improve load
balance and performance of both CPU and GPUs [13],
[14], and yet few are the solutions addressing AI applica-
tions. GPU scheduling in HPC is also considered in [15]
where a scheduling algorithm is proposed to improve the
GPU utilization in the scenario where multiple applica-
tions share the same GPU.

When scheduling tasks to resources, it is common to
rely on the idea of a budget. Often published solutions
implement a temporal budget, i.e., a specific resource is
assigned for different time slices to jobs with different
priorities. An example of this policy is presented in [16]
where a GPU is assigned considering both posterior and
a priori enforcement policies. A resource budget is im-
plemented in [17], where the number of GPU processing
cores assigned to a job depends on its priority. Resource

over-allocation and under-allocation techniques, designed
to improve responsiveness and GPU utilization, respec-
tively, are also presented and discussed. Another budget-
constrained scheduler is proposed in [18] to handle large
bags of tasks on clouds characterized by different perfor-
mance and costs. The main objective is the minimization
of the completion time. Bag of tasks scheduling is also
considered in [19], which proposes a greedy method able to
meet the workflow deadline while minimizing the resource
leasing costs.
In [20] the authors explore the scenario where existing

linear dependency between compute-intensive, stochas-
tic, and deadline-constrained multi-stage jobs exists. The
problem is addressed considering three objective functions,
namely the number, the usage, and utilization of rented
VMs.
A scheduling technique for GPU as a service is proposed

in [21] which provides complete management of cloudified
GPUs in the public cloud environment. A new concurrent
applications scheduling is proposed in [22] based on two
states of single node and multi-node jobs.
GPUs virtualization can lead to significant utilization

increase [21]. Furthermore, it is also possible to enhance
GPU virtualization by adding a new feature to it: remote
access. In this way, it is possible to provide GPUs to
applications that are being executed in other cluster nodes.
This technique, also known as resource disaggregation,
allows to transparently share the GPUs of a server among
many applications running in different nodes of the cluster
with a reduced overhead (less than 4% when a high-
performance network fabric is used) [23]. A successful
middleware to implement this approach is rCUDA [24],
which enables the concurrent remote usage of CUDA-
enabled devices in a transparent way. An extensive survey
for GPU virtualization techniques and scheduling methods
is provided in [25]. Although there exist several scheduling
methods to schedule job tasks into GPUs, varying from
priority-based to load-balancing-based approaches, they
perform fine-grained scheduling, being implemented at
hypervisor or OS level.
As regards the DL training, Xiao et al. [26] propose

Gandiva, a scheduling framework able to improve latency
in training DL models on a GPUs cluster by exploiting
heterogeneity and recurrent behaviors of DL jobs while
running mini-batch iterations. Finally, a seminal work on
scheduling multi-GPUs among competing jobs on high-
end servers is [27]. The paper proposes a topology-aware
scheduling policy for DL jobs in cloud environments,
which provides a placement strategy to schedule jobs on a
Power8 machine based on NVLink able to satisfy workload
requirements preventing also application interference.

III. Problem Statement
This section aims at introducing the design assumptions

and system models used as a reference throughout the
paper. Notably, we envision a system where multiple jobs



Figure 1: Scheduling problem.

are submitted and run concurrently and where no infor-
mation about the upcoming jobs is available. A deadline
is associated with each job, and a penalty is incurred in
case of delay. Multiple nodes can be set up on-demand in
the cloud and configured with different VM instance types;
each VM features, possibly, multiple GPUs. We have three
main goals: (i) determining the best VM type for each
node among the ones available in the provider catalog;
(ii) partitioning the GPUs among multiple jobs running
on the same VM instance; (iii) determining an optimized
job schedule.

The joint capacity allocation and jobs scheduling prob-
lem is considered in an online setting, and it is solved every
time a new job arrives or one of the jobs in execution
ends. In substance, when a job terminates, the resources
associated are freed and the system should be able to
reassign efficiently. Moreover, since training jobs are long-
running batch applications, when a job ends or a new one
enters the system, the running jobs:

• can continue their execution with the same (or a
different) number of GPUs on the same (or on a
different) VM type.

• can be preempted and pushed back in a waiting
queue.

The system is shown in Figure 1; it can manage up to
N nodes that can be individually configured with the VM
type v from the cloud provider catalog (denoted by V ).
Each VM type v ∈ V features different characteristics
such as the number of GPUs sv, and time unit cost cv.
At a certain point in time the system needs to run a
collection of jobs J already submitted and each job j ∈ J is
characterized by a deadline dj . Jobs are never rejected and
can possibly be delayed: the job tardiness is denoted by
τj . To assign a priority to different training applications,
a tardiness weight ωj is associated with each job j.
Job execution times across different VM types and with

a different number of GPUs g can be estimated by relying

on our previous work [28], which proposed machine learn-
ing models to predict the training time of DL applications.
The proposed models are based on linear regression and
are able to learn the required execution time for each
GPU-based job from a training set of experimental runs of
the target DL network rather accurately (with an average
percentage error of about 10%). In the following tjvg

denotes the predicted execution time of job j when it is
running on VM type v with g GPUs.
Finally, in order to cope with performance prediction

errors, the problem is solved not only every time an
event occurs (a job that ends or is submitted) but also
periodically, every H units of time.
Figure 1 shows an example with three jobs (j1, j2,

and j3). Their deadlines and tardiness weights are (3, 7, 4)
hours and (1.1, 0.3, 0.9), respectively. The N nodes (n1
to nN ) can be configured with three VM types. Two
of them (v1 and v2) have four GPUs while v3 features
eight GPUs. Each VM type has its own time unit cost
(0.2, 0.3, 0.5) $/h. Execution time estimates are reported
in the box prediction of execution time; they are obtained
by relying on the approach presented in [28]. The figure
shows that only j1 and j3 are accepted and run while j2
is not scheduled in the current time interval and is sent to
the waiting queue. Furthermore, only the first node (n1)
is chosen to run the jobs while the others are not started.

IV. Problem Formulation
In this section, we present a Mixed Integer Linear

Programming (MILP) formulation for the problem of as-
signing DL jobs in the cloud considering deployments on
heterogeneous nodes, under soft deadline constraints with
tardiness costs.
We introduce four input sets: the set of candidate jobs

J , the set of nodes N , the set of VM types V , and the set
of the possible numbers of available GPUs on each VM v,
which is denoted with Gv. In particular, ∀v ∈ V, Gv =
{1, . . . , sv}, where sv is the number of GPUs available on



Table I: Notation
Problem parameters
J set of submitted jobs
N set of nodes
V set of VM types
Gv set of available GPUs number on type v VM
sv number of GPUs for a type v VM
cv time unit cost of a type v VM
dj deadline of job j
ωj tardiness weight of job j
ω̂j tardiness weight for job j in case it is postponed
Mj maximum execution time of job j
tjvg execution time of job j when running on type v VM

with g GPUs
Mj maximum execution time for job j
H scheduling time interval
µ a penalty coefficient for unused GPUs

Problem variables
wn 1 if node n is chosen and 0 otherwise
ynv 1 if type v VM is chosen on node n and 0 otherwise
zj 1 if job j is executed and 0 otherwise
xjnvg 1 if job j is running on VM of type v on node n with

g GPUs, and 0 otherwise
τj tardiness of job j
τ̂j worst case tardiness of job j if it is postponed

VM type v. For each job j, Mj denotes its maximum
execution time, i.e., Mj = max

v,g
tjvg. H is a constant

parameter which denotes the periodic re-scheduling time
interval. The adopted notation is summarized in Table I.

We introduce the following decision variables:
• wn is a binary variable that is set to 1 if node n is

selected, and is 0 otherwise.
• ynv is a binary variable that is set to 1 if VM type v

is selected on node n, and is set to 0 otherwise.
• zj is a binary variable that is set to 1 if the job j

is executed and 0 otherwise, i.e., the job j is pushed
back to the queue.

• xjnvg is a binary variable that set to 1 if job j is
run on VM type v of node n with g GPUs, and to 0
otherwise.

• τj is a non-negative variable denoting the tardiness of
the job j.

• τ̂j is a non-negative variable that corresponds to the
worst case tardiness of job j, in case job j is pushed
back to the queue and reconsidered at the next re-
scheduling event.

The joint capacity planning and DL jobs scheduling
problem can be formulated as:

min
∑
j∈J

ωjτj +
∑
j∈J

ω̂j τ̂j + µ
∑
n∈N

∑
v∈V

(
sv ynv −

∑
j∈J

∑
g∈Gv

g xjnvg

)
+
∑
j∈J

∑
n∈N

∑
v∈V

∑
g∈Gv

g

sv
cv tjvg xjnvg

subject to: ∑
v∈V

ynv = wn ∀n ∈ N (1)

xjnvg ≤ ynv ∀j ∈ J, ∀n ∈ N,
∀v ∈ V, ∀g ∈ Gv (2)

xjnvg ≤ zj ∀j ∈ J, ∀n ∈ N,

∀v ∈ V,∀g ∈ Gv (3)∑
v∈V

∑
g∈Gv

xjnvg ≤ wn ∀j ∈ J, ∀n ∈ N (4)∑
n∈N

∑
v∈V

∑
g∈Gv

xjnvg = zj ∀j ∈ J (5)∑
j∈J

∑
g∈Gv

g xjnvg ≤ sv ∀n ∈ N, ∀v ∈ V (6)∑
n∈N

∑
v∈V

∑
g∈Gv

tjvg xjnvg ≤ dj + τj ∀j ∈ J (7)

(H +Mj)(1− zj) ≤ τ̂j + dj ∀j ∈ J (8)∑
n∈N

wn = min{|N |, |J |} (9)

ynv ∈ {0, 1} ∀n ∈ N, ∀v ∈ V (10)
zj ∈ {0, 1} ∀j ∈ J (11)

xjnvg ∈ {0, 1} ∀j ∈ J, ∀n ∈ N,
∀v ∈ V,∀g ∈ Gv (12)

τj ≥ 0 ∀j ∈ J (13)
τ̂j ≥ 0 ∀j ∈ J (14)

Constraints (1) enforce that, for each selected node n,
exactly one VM type is chosen. Constraints (2) ensure
that only deployments on the chosen VM type are feasible
while Constraints (3) ensure that only deployments for
the executed jobs are feasible. Constraints (4) bound the
allocation of jobs to the active nodes. Moreover, Con-
straints (5) serve the purpose of associating exactly one
deployment choice to each executed job. Constraints (6)
bound the number of allocated GPUs to the available
capacity of the selected VM. g is the number of GPUs
that are selected by variable xjnvg for each job and it
must not exceed the number of available GPUs sv of
the selected VM type. Constraints (7) try to meet the
job deadlines by introducing the tardiness τj in case of
violation. Constraints (8) define the worst case tardiness
τ̂j for jobs whose execution is postponed (characterized by
zj = 0). The worst case tardiness will be equal to zero for
the jobs selected for execution (with zj = 1) and equal to
(H +Mj − dj) for waiting jobs.
Constraints (9) ensure that the number of selected nodes

is equal to the minimum between the number of available
nodes and of available jobs so as to force the execution of
all available jobs. Notice that, in presence of idle resources,
the decision of postponing some jobs to the next time slot
cannot reduce their execution costs. Indeed, since jobs can
be preempted, postponing their execution will only make
their deadlines more strict, possibly requiring additional
resources and imposing higher costs to the system. Thus,
it is always better to run all available jobs if resources
are available. Constraints (10)-(14) define the decision
variables’ domain.
Finally, concerning the objective function, the first term∑
j ωj τj corresponds to the weighted tardiness of all

running jobs, and the second term
∑

j ω̂j τ̂j to the worst-
case weighted tardiness of the jobs that are postponed (ω̂j



is the tardiness weight associated with jobs that are not
executed and we set ω̂j > ωj to favor jobs execution and
to penalize their deferral). The third term of the objective
function

∑
n

∑
v(svynv −

∑
j

∑
g gxjnvg) corresponds to

the difference between the number of used GPUs and the
number of available GPUs from each selected node and µ is
a penalty coefficient for unused GPUs. Since the objective
function is minimized, the system tends to exploits all
available resources for each a node (in this way multi-GPU
nodes do not have idle resources). The fourth term of the
objective function

∑
j,n,v,g

g
sv
cv tjvg xjnvg corresponds to the

sum of the execution cost associated with each job, which
is given by the time unit cost of the selected VM type v
(cv) times the execution time of the job evenly sharing the
cost of multiple GPUs ( gtjvg

sv
) (e.g., if a node includes four

GPUs and two are allocated to j1, one is allocated to j2
and one to j3, the time unit cost allocated to j1 is half of
the VM cost and is twice the one of j2 and j3). As a final
consideration, note that we are neglecting overhead costs
due to re-configuration costs of running VMs, since this
would typically require a time that is orders of magnitude
shorter than DL training jobs.

V. Experimental Results
To demonstrate the effectiveness of our optimization

model, we evaluated it in a variety of system and applica-
tion configurations by simulating and performing tests on
a large set of randomly generated instances representative
of realistic scenarios (presented in Section V-A). In order
to evaluate the benefits achievable, our solution is com-
pared in Section V-B with first principle methods such as
First-in-First-out (FIFO), Earliest Deadline First (EDF),
and Priority Scheduling (PS). Furthermore, we consider
the scenario, presented in Section V-C, of implementing
the produced solution in a prototype production environ-
ment to verify how our approach can be actually exploited
in a real system. Finally, the results of a scalability analysis
are presented in Section V-D.

A. Experimental setup
As representatives of long-running GPU applications

we selected the training of heterogeneous neural net-
works (i.e., Alexnet, Resnet, VGG, and DeepSpeech) im-
plemented into different deep learning frameworks (i.e.,
PyTorch and Tensorflow). They are a good representative
of the possible applications candidate to be executed in the
considered scenarios since they are time-consuming, their
execution time significantly benefits from the availability
of GPUs, and they can be easily interrupted and moved
to other GPUs/VMs by exploiting checkpoints. Moreover,
despite belonging to the same class of applications, they
present different types of workload. Alexnet is mainly
disk-intensive whereas VGG is essentially computational-
intensive, and the performance of DeepSpeech is heavily
determined by the GPU memory size and speed. Finally,
Resnet is characterized by a balanced type of workload.

Table II: Characteristic of the Target Nodes
VM type GPU type # GPU Cost($/hour)
Standard NC6 K80 1 0.56
Standard NC12 K80 2 1.13
Standard NC24 K80 4 2.25
Standard NV6 M60 1 0.62
Standard NV12 M60 2 1.24
Standard NV24 M60 4 2.48
In-house server 1 Quadro P600 2 0.11
In-house server 2 GTX 1080Ti 8 1.13
In-house server 3 Quadro P600 8 0.44

Different instances of such applications have been gener-
ated varying the batch size and the number of epochs of
the training.
The target executions platforms are six different types of

Microsoft Azure VMs and three in-house servers. Table II
summarizes the type and number of GPUs available and
their hourly costs. The costs of in-house servers have been
estimated by considering energy and cooling costs. It is
worth noting that the costs of machines with the same type
of GPUs are linear in their number: at this granularity
(small numbers of GPUs belonging to a large cluster),
the economy of scale does not provide any real benefit,
so basically, the user pays for GPU usage. This type of
economic model contributes to the motivation of adopting
the objective function described in Section IV.
To verify the effectiveness and generality of the proposed

approach, several random problem instances have been
generated. We consider instances with the number of nodes
from 1 to 40. The number of submitted jobs in each
instance is set equal to 10 times the number of available
nodes.
As in other literature proposals, the job inter-arrival

times have been generated according to Poisson Distribu-
tions [27]. Two classes of instances have been generated,
which differ in the mean of the distribution: 30s for the
first class and 45s for the second class. Both the means are
smaller than the execution time of shortest jobs: in this
way, multiple jobs are loaded in the system in each time
slot. For each combination of the number of nodes and
of the inter-arrival average time, five different instances
are built. The other parameters are set as follows. The re-
scheduling time interval (H) is set to one hour. The dead-
line dj for each job is randomly generated according to a
uniform distribution in the range [min(tjvg), 2·max(tjvg)].
The tardiness weights ωj are randomly generated in the
interval [0.36, 1.08] $/hour with a uniform distribution.
Finally, the worst case tardiness weight ω̂j is set equal
to 100 · ωj and the µ parameter is set equal to 1 (given
the objective function set in the problem formulation, any
positive value forces the use of all available GPUs).
The proposed methodology, the generator of the random

instances, and an ad-hoc event-based simulator have been
implemented in a Python library which relies on Gurobi
Optimizer 8.0. We set the relative mixed integer program-
ming gap (the difference between the current upper and
lower bounds of the MILP solver) to 5%. All the results



0 5 10 15 20
Number of nodes

50

60

70

80

90
Co

st
 im

pr
ov

em
en

t %

inter arr. time = 30,000 sec.
inter arr. time = 45,000 sec.

Figure 2: Improvement of the proposed model against best
heuristic

have been collected by running the implementation on an
Intel Xeon Silver 4114 server exploiting 12 cores and 32
GB of memory.

B. Comparison with First Principle Models
In this section, we compare the results achieved by

our method against First-in-First-out (FIFO), Earliest
Deadline First (EDF), and Priority Scheduling (PS) (this
last based on the tardiness weights ωj). All first principle
methods rely on our model to right-sizing the VMs: the
configuration is obtained by exploiting the model with the
number of nodes |N | and number of candidate jobs |J |
set to 1. For the sake of brevity, we report the average
results across the different instances generated for each
scenario. Figure 2 reports the average savings that can
be achieved by the proposed model against the best first
principle result, which is computed as:

costbest heuristic − costproposed model

costbest heuristic
· 100 (15)

As shown in Figure 2, the model has about 45% im-
provement against the best heuristic in the |N | = 1
scenario, which grows to about 65% in the |N | = 2 scenario
and then to about [70, 80] for |N | > 2 with a peak of more
than 90% when N is between 12 and 15.

Figure 3 presents the results regarding the costs for time
slots on two representative examples. Figure 3a reports
the results for a small size problem with 1 node, 4 jobs
and 600s inter-arrival time while Figure 3b reports the
results for a large size problem with 3 nodes, 30 jobs, and
45s inter-arrival time. The results show how the proposed
model has always a smaller cost than the others. The
reported cost in each time slot is the sum of the per job
cost of the used VM (weighted on the number of used
GPUs) in the time slot plus the tardiness cost (of any
ending job) computed as follows:

costj = cvtslot ·
g xjnvg

nv
+ ωj τj (16)

Table III: Total cost of the proposed model and heuristics
total cost [$]

Instance Proposed FIFO EDF PS
Small size problem 3.26 14.06 10.19 18.25
Large size problem 18.37 20.73 94.37 21.51
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(a) Small size problem: 1 node and 3 jobs
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(b) Large size problem: 3 nodes and 30 jobs

Figure 3: Cost per time slot of the Proposed Model against
first principle heuristics.

where tslot denotes the time slot duration. To better
compare the results obtained on the examples of Figure 3,
the cost of the complete schedule is shown in Table III. The
results show how the total cost of the proposed model is
always lower than that of the other first principle models
both in the small size and in the large size problem.

C. Experiment on the real system
The effectiveness of our optimization model is also

evaluated on a real prototype environment deployed on
Microsoft Azure. In this scenario, we consider four ap-
plication (listed in Table IV), one node with six VM
types (NC6, NC12, NC24, NV6, NV12, and NV24), which
include two different types of GPUs,
Jobs are submitted every 300 seconds, their tardiness

weights and deadlines are randomly selected in the ranges
described in Section V-A. The overall schedule computed
in the different time slots with the proposed model is
depicted in Figure 4. The first time slot starts when JJ1



Table IV: Applications of the real system
Job Application Images Epochs Batchsize
JJ1 VGG19 (PyTorch) 130,000 1 32
JJ2 VGG19 (TensorFlow) 130,000 1 32
JJ3 Alexnet (PyTorch) 130,000 12 256
JJ4 Resnet50 (PyTorch) 130,000 3 64

0 0.5 1 1.5 2

JJ3

JJ2

JJ1

JJ0

Standard_NV12
Standard_NV24
Standard_NV6

time (h)

Jo
bs

Figure 4: Job-Node Gantt representing the execution in
the real system

is submitted and, for the only available node n1, Standard
NV6 is selected. After 300s JJ2 is submitted: according to
the computed solution, Standard NV6 is shut down and an
instance of Standard NV12 is power up where JJ2 starts
its execution using 1 GPU while the other is used by JJ1
After other 300s JJ3 is submitted: again the currently
used VM is shut down and a Standard NV24 is booted.
Two of its four GPUs are assigned to JJ1, while JJ2 and
JJ3 take one each. 900s after the submission of the first
job, the last one is submitted. Differently from the previous
time slots, the only running VM (Standard NV24) is not
stopped. Nevertheless, JJ3 is preempted and its execution
is suspended assigning its GPU to JJ4. Since no new job
is submitted, the current slot ends when a job (JJ1) ter-
minates. According to the solution identified for the next
slot, Standard NV24 is powered off and Standard NV12 is
started again. JJ2 and JJ4 continue their execution while
JJ3 remains suspended. At the end of execution of JJ2
a new slot starts: in the next slot Standard NV12 execute
JJ3 and JJ4. Finally, after the end of JJ4, the last slot
starts where the only remaining job (JJ3) is executed
on an instance of Standard NV6. What it has been just
described is the simulated scenario built by combining
the solutions computed by the proposed model at each
time slot based on the available information. When the
described scenario is actually implemented and run on
the real system, while the submission of the jobs and the
configurations of the different slots remain the same, the
starting times of slot 5 and of the followings change. This
time depends on the ending time of JJ1 which is estimated
by the proposed model on the basis of a performance
model. The real end of JJ1 is postponed with respect
to the estimated one because of the overhead required to
boot the initial VM (Standard NV 6) and to move the

Table V: Real/predicted cost per slot in the real system
Slot Predicted cost Real cost
1 0.21 0.21
2 0.21 0.21
3 0.43 0.43
4 1.66 2.47
5 4.70 4.25
6 3.61 3.70
7 1.65 2.03

sum 12.47 13.30
Overall Difference 6.61%
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Figure 5: Proposed model vs FIFO: scalability results

application from one VM instance to another (from NV6
to NV12 and then from NV12 to NV24). This overhead
mainly includes the time required to boot the different
VMs and to re-execute the training of the Neural Network
from the last checkpoint. For this reason, the length of the
slots starting from slot 4 and, consequently, of their costs
in the simulated scenario and in the real vary. Cost details
are presented in Table V: as expected, while costs for the
first three time slots are the same, the other differ. For
example, JJ1 terminates later than expected, resulting
in a longer time slot 4 and, therefore, in higher costs.
However, not all slots are longer: for example, a larger
length of time slot 4 provokes a shorter time slot 5.
As shown in Table V, the predicted and real costs

of the system are quite close to each other, and the
proposed model can complete the scheduling process with
a computed cost near to the real cost. The deviation
between the predicted and real cost is less than 7% which is
small in fact. As observed above, the deviations are mainly
due to the fact that the optimization model neglects the
VM setup time and switch. Since this is an accelerated
experiment running less than 3 hours, this type of inaccu-
racies in real (longer) runs is less significant resulting in
smaller error. This shows that our approach can be applied
in practice.

D. Scalability analysis
This section presents the scalability results to show how

the model scales with an increasing number of nodes and
jobs. In such type of analysis, all the jobs are submitted
simultaneously at time 0 and only the solution for the
first slot is computed. In this campaign, we systematically
explore scenarios with the number of nodes between 1



to 40 while the number of jobs is set to 10 times the
number of nodes. The obtained results are summarized
in Figure 5: even if the proposed model requires more
time than heuristics like FIFO to find a solution, it still
scales linearly and it takes in the worst considered scenario
(40 nodes and 400 jobs) less than 12 minutes to find the
optimal solution, making the proposed method feasible
also for large systems.

VI. Conclusions and future work
In this paper, we have proposed a MILP formulation

for the online joint capacity planning of on-demand VMs
and DL training job scheduling in cloud deployments.
The effectiveness of the proposed model has been as-
sessed by performing simulations and experiments in a real
prototype environment. The results have shown how our
solution allows obtaining savings in 45-80% range with
respect to first principle scheduling methods, while the
deviation of the expected costs in real systems is below
7%. The solution is effective even for large-size problem
instances that can be optimally solved within 12 minutes.
Future work will focus on further improving the scalability
of the approach in order to manage very large scale data
center clusters and disaggregated hardware resources.
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