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ABSTRACT

This paper proposes an analytical solution of the first order for distant retrograde orbits in the
Circular Restricted Three-Body Problem (CR3BP). To this end, a Maclaurin series expansion
on the equation of motions is performed, obtaining a first-order model. Starting from the
Hamiltonian formulation of the problem, we apply the theory of canonical perturbations, by
addressing the non-perturbed and the perturbed terms separately. The first step is to simplify
the problem through a canonical invertible transformation for the non-perturbing part, the
second step is to apply the Lie transformation to the perturbed part. This procedure allows to
obtain first a mean Hamiltonian that can be analytically solved, then to obtain short-periodic
corrections, that take into consideration the short-term fluctuations neglected during the
averaging process.

The solutions obtained are compared with the numerical solution simulated with the CR3BP,
both in terms of maximum error and in terms of computational speed. Even if the solution shows
to be computationally efficient and accurate, the improvement over the solution of Hill on the
same problem is not noticeable unless one considers very low mass ratios. The modulation of
geometric hypotheses, like the relationship between the size of the orbit and the distance
between the primaries, allows to better approximate the contribution of the primary attractor
and to increase the range of validity of the analytical solution.

Keywords: Distant retrograde orbits, Circular restricted three-body problem, Canonical
perturbation theory, Lie transformation

1 INTRODUCTION

The Distant Retrograde Orbits (DROs) are retrograde orbits that are generated due to the
gravitational interaction of the primary with the secondary. They have been identified and
classified for the first time by Hénon as the family-f [1].

The peculiarity of DROs is that they always remain in the vicinity of the secondary,
consequently they can be exploited for different purposes. In recent years, DROs have been
taken into consideration to exploit them in different approaches. For example, to create
constellations that allow to increase the reaction time in the case of objects that are directed
towards the Earth, [4]. In recent years, DROs have been considered for exploration missions to
both the Mars and Jupiter moons and to asteroids, [5], [6]. This study starting from the work by
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Lara [2], [3] who applied the Canonical perturbation theory to the Hill model to find an
approximate analytic solution for DROs.

In this work, we will continue with Lara's work to try to find a more refined solution to this
problem. applying the Canonical perturbation theory, we will find a first order analytical
solution for DROs in the Circular Restricted Three-Body Problem (CR3BP). An analytical
solution becomes very important in the preliminary phase of the mission design as it allows to
reduce the computational time due to the numerical integration. This is advantageous in the
optimisation process, used to guarantee the requirements of the mission. An analytical solution
allows to better understand the gravitational interactions as well as the dynamics that the
primaries generate. This solution will also enable the problem to be better understood at
different levels (e.g. in the phase space), making it possible to identify more convenient
manoeuvres and station-keeping strategies.

2 DYNAMICAL MODEL

In this context, the Circular Restricted Three-Body Problem describes the motion of a massless
body under the gravitational influence of two massive bodies, called the primaries.

2.1  Circular restricted three-body problem

Under the assumptions that the mass of one of the primaries is much larger than the mass of the
other and the two primaries orbit around their barycentre in a circular orbit, the normalised
equations of motion of the massless body can be derived:

(5= 2ny + n?x — (1) (x+4) _ p(x-(1-p) i

| (Verz+y?) <J(x—(1—u))2+y2)

{ o 3 2 (1-wy wy 2.1)
y=—-2nx+n°y— 5 — 3

l (Ver4y?) <J(x—(1—u))2+y2)

Where x, y represent the cartesian coordinate of the system, n is the non-dimensional mean
motion and u is the mass ration of the system.

(2.2)

2.1.1 Hamiltonian function

To obtain the Hamiltonian function, the variational principle can be used [7], [8]. The equations
are obtained by performing the Legendre transformation of the Lagrangian function, using the
generalised velocities as variables. In this way the phase space variables are introduced, and the
dynamics generated by a Hamiltonian function is described. Consequently, the Hamiltonian
function turns out to be:

H == (p2 +p2) +n(yps —xp,) ——=—£ (2.3)

1 2

where p,, p, represent the conjugate moments and ry, 7, represent the distance of the third body
from the primary and the secondary attractor.
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2.2  First order term of the circular restricted three-body problem

The CR3BP is not an integrable system. To simplify the CR3BP and enhance the dynamics in
the vicinity of the secondary, we assume the mass of the primary is much larger than that of the
secondary (¢ — 0). The previous hypothesis is known as Hill and leads to the homonymous
model. To obtain the new model, used in this study, it is necessary to move the reference system
from the centre of gravity of the system to the secondary attractor normalising the variables by
the coefficient proportional to the u'/3 , as described in [9], [10], to better observe the dynamics
in the vicinity of the secondary. Finally, a series development of Mclaurin is performed on the
variable u of the equations of motion, arrested at the first order. Then we obtain the following
Hamiltonian function:

1 2 3 2 3
H= 5((px +ny)? + (p, —nx) ) —-n’x? - % + n?x (xz - Eyz) (2.4)
1
W13
CR3BP-113.

where p = represent the distance between the primaries. This new model will be called

3 PERTURBATION APPROACH

To apply the Canonical perturbation theory, as done by Lara for the Hill’s problem, we need to
separate the Hamiltonian into a non-perturbed, H, and a perturbed part, H;:

1 1
Ho = 5 (p% +pj) — nxpy + nyp, — n?x? +ny? o
H = HO + €H1 g 2 l
=k (k2 =32
Hy = T2+px(x Zy)
where € is a formal small parameter which is used to manifest that the effect of H;, the

perturbation, is much smaller than H,.

3.1 Canonical transformation

The study of the solutions of a system of differential equations can take place through the search
for a transformation of coordinates under whose action the system assumes a particularly simple
form. First of all, the problem is to find a class of transformations (x, Y, Px» py) =T(¢,q,P,0Q)
invertible such that the system of the Hamilton equations, relative to the Hamiltonian function,
is transformed into the system written in Canonical variables.

3.1.1 Hamilton-Jacobi equation

The method of the generating function allows to find a suitable Canonical transformation
starting from the Hamiltonian function. To determine an appropriate generating function, a
partial differential equation, called (complete) Hamilton-Jacobi equation, [11]-[13] need to be
solved. In our case the Hamilton-Jacobi equation for non-perturbed part only is:

1 [row\2 oW\ 2 ow ow 2.2, 1 2 5
E[(E) +(E) ]+nya—nx5—nx +on%y = K(2,Q) (3.2)

Where @, Q are the Canonical conjugate momenta, so the generating function can be written
as:

nx—20Q

_ nx-20 _ _ 2 _ —1(___mx—2Q0
W=— J2n® — (nx — 2Q)% + y(Q — nx) + @ tan (m) (3.3)
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which allows to generate the following Canonical transformation:

_Q+kv2n®sing
[ x=TEmt

y=2kq+2\/§cos¢ (3.4)

Px=—2knq—V2n® cos ¢
_—Q-2kv2nd sin ¢
Py= 2k

where k = 3/4 is the normalisation term.

3.2 Perturbed solution

The DROs have an elliptical shape and the centre at the following coordinates with respect to
the secondary mass:

-9
{ e = i (3.5)
Ye = 2kq

where g represent the Canonical coordinate, introducing the following auxiliary variables:

X=& y:L B = bn

a and (36)
c=% ag=20p b= |2 .
2b n

where b is the semi-minor axis of the DRO, a is the semi-major axis, in Figure 3.1 the reader
can see what the geometric interpretation of the variables that have just been described is.

Figure 3.1: Geometric interpretation of the auxiliary variables.

hence the Hamiltonian takes the following form:
.7( = :]CO Hill + 8.7(1 (3.7)

with

Ko = n®(1—30?)
(n®)y
Vo2 +x2+0 sin p+2) cos p+A2 (3.8)

(8a(o +singp) —5—12y(x + 2cos¢p) — 7 cos 2¢)

:Kl = b(2o+sin ¢)
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3.2.1 Lie transformation

Equation 3.7 can be expanded into Maclaurin series for y — 0, assuming also that o = O[y?].
These assumptions are defined in DRO because the abscissa of the centre of the ellipse x,
suffers a small variation, secondly y remains limited and less than 1. In addition, to ensure that
the perturbing term is of a lower order than the non-perturbation one, we introduce the following
assumption y = O[x*]. With these assumptions, we can apply the following replacement,
2
o=y
3.9
{y =&ty (39
like Lara in [2], [3]. In addition, we add a hypothesis concerning the distance between the
primaries, in fact, this must be sufficiently large with respect to the oscillation of the centre of

the orbit. This assumption in normalised terms translates into the form b/p = O[x?]. Now
applying the Lie transformation, the mean Hamiltonian (())) takes the following form:

_ 1.5 o ngs  1nd x5y o 1-2K 0 (14E-11K) [ n® 4 K-4E 5
(¥} =no zQ \’2¢K+4 293 (E K)q + 82 + 128 \/2¢5q +9m/2ncb3Q +

. \/5[40\/§p30(\/%(13671? — 2216E) + 12/®(8Q? — 27n%q?) — 216nVd3) —

4320np*

p? (5\/%1?(2187nq2 — 553799) + 4/® (55552\/271(155' + 405(27n%q* + 180n%q%® —

14n¢>2544Q2<;D))> + 9720+/3pQV@3(36ng? — 5099) + 810VP5(91854nq? —
39191q§)] (3.10)

~ 2)
where K = K(: ), E

E(k? s
= (n ) and where K (k?) and E (k?) represent complete elliptic integrals
of the first and second types, q represent the Canonical coordinate and @, Q are the Canonical
conjugate momenta. Consequently, the equations of motion obtained from this Hamiltonian
turn out to be:

$=Cp—a+Cp-pa°+Cp-cq*+Cp_qQ?
q‘:Cq_a.Q‘l‘E Cq—asQ (3.1 1)
. ~ ¢=0~
Q=Cg-aq+eCo-q:q?

where the 2™ in the 4" equations, which are coupled, can be solved by Lindstedt-Poincaré
technique, [2], [3], obtaining:

{Q(t) = qoo(1+ w1t) +g91(1 + w;t) (3.11)

Q(t) = Qop(1 + wyt) + Qo1 (1 + wyt)
At the end the 1% equation is resolved by quadrature after replacing in the previous ones.

4 MODEL VALIDATION

We will now compare both numerical and analytical models with respect to the numerical
CR3BP model that is taken as a reference in this work. In this analysis we will consider the
family-f of orbits by Hénon [1], also called DRO, in different synodic systems. To better
understand the comparison, the problem is reduced by representing it in a 2-D graph. Each orbit
is represented as a point corresponding to the maximum error, along an orbital period, of the
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analytical model with respect to the numerical one. To do this, we introduce the following error

variables:
e Absolute error: It represents the absolute error obtained in position with respect to the
correct numerical model (CR3BP) over one orbital period:

€absr[0,T] = |70, T] = Ty [0, T]|| (4.1)

e Relative error: It represents the relative error obtained in position with respect to the
correct numerical model over one orbital period:

_ Eabs,r[O'T]
€Erel,r [0; T] - ”z[O,T]—rrrue[O'T]” (42)

e Maximum error: It represents the maximum of the relative error over one orbit:
€rel-max,r = max(erel,r [O' T]) (4.3)

4.1  Results for the model with the assumption 0[x?]

This case represents the solution proposed in the previous section associated with the
assumption b/p = O[x?]. This assumption guarantees a good trade-off between the accuracy
of the solution and the fact that it allows to develop a lot of terms of the Lie series without
encountering problems in the analytical integration, e.g. to determine the mean Hamiltonian or
the generating function. Figure 4.1 represents the trend of the maximum error along one orbital
period. In particular, the blue lines represent the error that the Hill model has with respect to
CR3BP, instead the red ones the error that the CR3BP-1,3 model has, always, to the CR3BP
model. In particular, the dash-dot represent the analytical solution. Consequently, the model is
particularly reliable and usable for low mass ratio systems, so that for further decreasing u the
maximum error related to the CR3BP-113 model (dash-dot red line) is lower than that of Hill
(dash-dot blue line).

For Figure 4.1, the error reaches a minimum of about 0.003 for A, = 7, the error has a zone
between A, = 7 and A, = 11 where it remains constant and then increases again, in the first
part (on the left) the red line, for the analytical solution, remain equal to the blue one.
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Figure 4.1: Trend of the maximum error as the size of the orbit for Sun-Alauda system
increases with the assumption b/p = O[x?].

4.2  Comparison between different assumptions

Several models were produced in this study. In addition to the one proposed in the previous
paragraph, models with the hypothesis b/p = O[x°] the b/p = 0[x3] and b/p = O[] were
considered. These hypotheses were tested by observing the validity limits. The verification
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phase consisted in simulating the different models obtained for various systems, i.e. when the
mass parameter y varies, in particular the values corresponding to the Sun system (Earth-Moon)
(about 107°), Mars-Deimos (about 10™%) and finally to Sun-Alauda (x = 107'2?). To better
understand the validity of these hypotheses, observe the comparison between the parameters in
Figure 4.2. These images represent the trend of the assumption b/p = O[x’], previously
reported, when the size of the orbit (4, ) increases and the mass parameter m varies. The plots
show the trend and above all the intensity of the Big-O hypothesis (b/p = O[x’]) when the
orbit increases in size i.e. approaches the primary attractor. The colors are associated with the
order, j, based on the hypothesis used. From these figures we can deduce that the more j is
small, the more the O[y’] assumption is verified. This can be explained by the fact that the
more the orbit increases in size, the closer it gets to the primary attractor and consequently the
dynamics brings the deviation of the centre of the orbit to be more and more comparable with
the distance between the primaries and no longer a fraction of the latter.

1020
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Figure 4.2: Trend of the assumption b/p = O[x’] for Sun-Alauda system as the size of the
orbit (A, ) increases (from left to right Earth-Moon, Mars-Deimos and Sun-Alauda).
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5 CONCLUSION

The mathematical model used here is the planar CR3BP in a simplified version. This new
model, little discussed in the literature, is very interesting as it allows to improve the Hill
problem and can be exploited even in regions closer to the primary attractor.

The work produced a series of analytical solutions for the first term of the CR3BP using various
assumptions. In particular, the hypothesis that produces an improvement is that involving
b/p = O[x?]. This occurs because the contribution of the primary attractor, even if
approximated, must be considered predominant with respect to the influence of the secondary.
Through the assumption, the Canonical perturbation theory allows, first of all, to consider the
contribution of the primary in a more incisive way with respect to the secondary. Secondly, the
assumption guarantees to avoid the coupling between the elliptical integrals allowing to solve
analytically the problem by considering different terms of the canonical perturbation theory.
However, the analytical solution, proposed by Lara, for the Hill model compared to the new
solution proposed in this study turns out to be very similar, in particular, in the vicinity of the
secondary attractor. This happens because, getting closer to the secondary, the contribution of
the primary can be considered as a disturbance. On the other hand, in the Hill model, the
contribution of the primary attractor is correctly solved, according to the well-known Clohessy-
Wiltshire equations [15]. Unfortunately, this does not appear to be true in the new model
CR3BP-113, where the additional terms relating to the primary attractor are considered as
deductions of the perturbations. Therefore, the closer the third body to the primary attractor, the
less these terms can be considered as perturbations. From the previous considerations, the most
restrictive hypothesis is certainly that on b/p. This assumption involves several couplings that
make the use of the Lie transformation complicated, even at a low level of the theory. As already
mentioned above, the terms of the Lie transform (which are a function of incomplete elliptic
integrals of the first and second type) are already coupled at low orders of the perturbative
theory. This coupling makes the analytical integration of these elliptical integrals not feasible,
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reducing the strength of the theory itself. However, the model obtained in this study is more
advantageous from the point of view of computational time. However, it is slowed down by the
calculation of elliptic integrals, in particular, the incomplete ones, which need iterative
algorithms to be solved. In any case, the errors that the analytical model produces with respect
to the numerical one, are acceptable with respect to the numerical one. Moreover, the more the
mass ratio decreases, the more the range of validity of the new model CR3BP-113 increases.
This improvement depends on the fact that the distance between the primaries is no longer
infinite (as considered in the Hill model) but finite and therefore applicable to more realistic
cases.
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