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ABSTRACT
Drugs repurposing (i.e., the reuse of existing drugs for new medical
indications) is attracting the interest of pharmaceutical companies,
as it speeds up the drug development process and substantially re-
duces the need for clinical trials. Thus, computational methods for
drug repositioning are gaining increasing interest. In this work, we
propose a drug repositioning algorithm based on the Non-Negative
Matrix Tri-Factorization (NMTF) of integrated association data. We
show how to construct a general-purpose graph encompassing the
most relevant aspects in drug discovery and how to ensure fast con-
vergence of the algorithm. In particular, we study how initialization
and termination may significantly affect the outcome quality for the
drug repurposing application.We also evaluate our computationally
predicted repurposed drugs based on the literature and find confir-
mation for our prediction, proving that our method can successfully
be applied to hypothesis generation for drug repurposing.
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1 INTRODUCTION
Drug discovery, i.e., de novo identification of therapeutic drugs, has
become an expensive task for pharmaceutical companies [8, 19].
The number of approved drugs compared to the investments done
in this field has dramatically decreased over the years. Moreover,
drug discovery takes about 9-12 years, meaning that a new drug
may be placed in the market after several years and billions of
dollars of investments [6]. This is due to the conservative protocols
of drug discovery within the pharmaceutical companies, which
concern the discovery of a new therapeutic target and compounds
that can modulate its activity, followed by a long experimental and
clinical validation process [8]. Drug repositioning or repurposing
(i.e., finding new indications for known drugs) speeds up the drug
development process and substantially reduces the need for clinical
trials; this leads to substantial revenues for pharmaceutical compa-
nies and to important benefits for patients. Thus, computational
methods for drug repositioning are gaining increasing interest.

In this work we propose a drug repositioning algorithm based on
the Non-Negative Matrix Tri-Factorization (NMTF) of integrated as-
sociation data. NMTF is a linear algebra algorithm, firstly proposed
by Ding et al. [7], designed to factorize an input matrix in three
matrices of non-negative elements. NMTF has been used for several
biological applications, such as gene prioritization [33], finding
patient-specific treatments [10], and disease association predictions
[32]. When applied to an association matrix (i.e., a binary matrix
representing associations between the components of two sets),
the NMTF has been proven to be an effective method for simul-
taneously clustering the elements of the two sets and predicting
missing associations. Furthermore, the enhancement of the original
association matrix by associating the elements of the two sets with
elements of external sets boosts the prediction capability of NMTF.

In order to take advantage of these NMTF features, first we cre-
ated an extended graph including a set of approved drugs associated
with their indications, expressed through a controlled vocabulary,
and also associated both with the disease for which they are cur-
rently used and with target proteins, which in turn are associated
with biological pathways. Then, we applied the NMTF to the matrix
representing the drug-indication associations of the graph, so as
to predict missing drug-indication links suggesting novel potential
therapeutic drug usages.
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The focus of this study is both on the construction of a general-
purpose graph, encompassing the most relevant aspects in drug
discovery, and also on how to ensure fast convergence of the algo-
rithm. In particular, we assessed that the method is highly sensible
to how factor matrices are initialized, and we designed and com-
pared several initialization strategies. Moreover, we also understood
that determining the termination conditions is not trivial due to
the possibility that, by having too many iterations, reconstructed
matrices may overfit their inputs. Thus, the major contribution of
this work is to show how initialization and termination may signifi-
cantly affect the quality of outcome when NMTF is used for solving
a link prediction problem, in a way that can find other significant
applications besides drug repurposing. With respect to our main
objective, we biologically evaluated our results using the literature
and found significant drug-indication associations, suggesting that
the method could successfully be applied to hypothesis generation
for drug repurposing.

2 RELATEDWORK
Computational repositioning strategies have been categorized as
drug-based or disease-based, where the former one indicates that a
drug is re-purposed from the chemical or pharmaceutical perspec-
tive and the latter one means that the drug repositioning process
starts from the symptomatology or pathology perspective [8]. Drug-
based strategies may be useful in understanding the whole phar-
macological spectrum of drugs, instead disease-based approaches
are deployed when a disease-specific strategy is needed.

Drug-based computational methods include chemical similarity,
molecular activity similarity and molecular docking approaches.
The chemical similarity method hypothesizes that the structure and
the chemical properties of a drug are associated with its effective-
ness during a treatment [19]. Thus, drugs sharing similar molecular
structure may have analogous therapeutic effects. Moreover, the
increase of publicly available databases of chemical structures made
the implementation of chemical similarity methods straightforward.
Drug chemical similarity is mostly measured by 2D topological fin-
gerprints or 3D conformations, and it is an area currently under
development [19]. Both Keiser et al. [13] and Li et al. [17] integrated
drug structure similarity and drug-target associations in their work.
They both computed pairwise similarity scores using the Tanimoto
coefficient between 2D chemical fingerprints. However, [13] uses
a statistical model to infer significant drug-target associations fol-
lowed by a repurposing assumption. Conversely, [17] uses a linear
combination of chemical and target profile similarities to compute
drug similarity scores for repositioning. Limitations of the chemi-
cal similarity approach for drug repositioning lie in the fact that
many structures contain errors and that drugs go through several
metabolic transformations, making their effects unpredictable using
chemical properties alone [9].

The molecular activity (MOA) of a drug is the perturbation held
by that active drug in a biological system and it can be measured us-
ing gene expression microarrays [8]. This leads to the construction
of molecular activity profiles for each drug, which can be used to
determine drug pairwise similarity. One of the most comprehensive
source of molecular activities of drugs is the Connectivity Map
project [26]; it currently contains information about 6,125 drugs

and their MOA profiles. Limitations of this approach are mainly
due to the quality of the technology and the biological models used
for MOA measurement (i.e., in vitro models vs. in vivo metabolic
transformations).

Molecular docking methods are based on the evaluation of new
physical interactions between drugs and targets using the 3Dmolec-
ular structure of both. If a drug is predicted to physically interact
with a new target, known to be important in a particular disease,
then that drug can be considered as a repositioning candidate for
the disease. Molecular docking limitations include the lacking of
3D complete structures for proteins and the great amount of false-
positive interactions found [8].

Disease-based approaches leverage on drug indications about
diseases to repurpose the drugs. For example, Chiang et al. [2] used
a ’guilt by association’ approach in which diseases sharing a signifi-
cant number of therapies are considered to be similar; consequently,
the drugs used for a disease may be repositioned for other similar
diseases. Another strategy is to search for disease similarity at the
molecular level as done in [12]. Campillos et al. [1], instead, used
a side effect similarity approach for drug repositioning. Limita-
tions of disease-based approaches include the ability to measure
disease molecular profiles and to collect comprehensive side-effect
information [8].

With the increase of drug related data and the development of
open source platforms, new approaches for drug repositioning in-
tegrating heterogeneous data types, such as chemical, clinical or
MOA data, have been considered [19]. For example, Napolitano et
al. [24] proposed a Support Vector Machine classification method
to predict drug therapeutic class using chemical structure similarity,
molecular target similarity and drug gene expression similarity. Ad-
ditionally, with the aim of identifying new indications for existing
drugs, Li et al. [18] developed a causal network (CauseNet) made of
5 layers: drugs, protein targets, pathways, genes and diseases, and
integrating 4 different open databases. More recently, Luo et al. [21]
developed a computational framework to predict novel drug-target
interactions from drug-related heterogeneous information, assum-
ing that novel drug-target associations lead to drug repositioning.
These examples are more successful than methods that use drug-
based and disease-based approaches individually, showing better
perfomance in both sensitivity and specificity [8, 19].

3 METHODS
In this Section we first describe the considered datasets and how we
combined them (3.1); then, we illustrate the Non-Negative Matrix
Tri-Factorization method. About the latter one, after a brief intro-
duction to the method (3.2), we illustrate how it is adapted to the
drug repositioning problem, both in terms of model (3.3) and update
rules for driving the method’s iterations (3.4); we also discuss the
inclusion of intra-data type relations (3.5) and an evaluation metric
for validation (3.6). We then focus on the three most innovative
aspects of our contribution from a computational perspective: how
we initialize the matrices (3.7), howwe perform the hyperparameter
tuning (3.8) and how we define stopping criteria (3.9).



3.1 Datasets and their Use
For drug repositioning predictions, besides considering a drug-
indication dataset, we enriched it with three additional datasets in
order to provide as much information as possible as input to the
NMTF prediction. In particular, we associated the drugs with the
diseases for which they are commonly used as treatment, and we as-
sociated each drug with its targeted proteins, and each protein with
the biological pathways it contributes to. As depicted in Figure 1,
the elements of these five data types (indications, drugs, diseases,
proteins and pathways) are connected by four bipartite graphs. We
represent each bipartite graph as a binary association matrix. In
particular, R12 associates therapeutical indications with drugs, R23
associates drugs with proteins, R25 associates drugs with diseases
and R34 associates proteins with biological pathways. Moreover,
for the proteins and pathways sets we also considered self intra-
connections; in the former case the links represent protein-protein
interactions, in the latter case they represent the hierarchical struc-
ture of pathway ontology.

Figure 1: Network illustration of integrated association data.
R12, R23, R34 and R25 are binary association matrices between
indications and drugs, drugs andproteins, proteins andpath-
ways, and drugs and diseases, respectively.

For constructing the network presented in Figure 1, we extracted
approved drugs, their targets and current indications from Drug-
Bank [30], pathways of the involved targets from Reactome [4] and
drug-treated diseases from Therapeutic Target Database (TTD) [20].
We added protein-protein interanctions from UniProt [3] and path-
way hierarchical relationships from Reactome. The used datasets
include 141 indications, 3261 drugs, 3691 proteins, 1914 pathways
and 841 diseases; R12, R23, R34 and R25 contain 23517, 13432, 28345
and 2417 links, respectively.

3.2 Non-Negative Matrix Tri-Factorization
Consider a matrix R ∈ R(N×M ) and let us define R+ = {x : x ∈
R∧x ≥ 0} the set of non-negative real numbers. The NMTFmethod
factorizes R in three componentsG1 ∈ R

(N×k1)
+ , S12 ∈ R

(k1×k2)
+ and

G2 ∈ R
(M×k2)
+ , such that:

R ≈ G1S12G
T
2

and the three matricesG1, S12 andG2 minimize the cost function J ,
in this case simply defined as the Frobenius norm:

J (G1, S12,G2) = ∥R −G1S12G
T
2 ∥

2.

The additional constraint on the orthogonality of both G1 and G2
(i.e., G1GT

1 = I and G2GT
2 = I ) guarantees the uniqueness of the

solution.
Although the NMTF is clearly applicable to any matrix, for the

sake of simplicity in this paper we consider the input matrix to be
the association matrix of a bipartite graph between elements of two
distinct sets. This being stated, the NMTF method is easily exten-
sible to more complex graph topology. For instance, consider two
association matrices RAB and RBC , where the former one connects
elements of the set A to elements of the set B and the latter one
connects elements of the set B to elements of a third setC . One can
use the NMTF to compute a set of non-negative matrices GA, GB ,
GC , SAB and SBC that minimizes

∥RAB −GASABG
T
B ∥

2 + ∥RBC −GBSBCG
T
C ∥

2

In such cases, the factorization of each matrix influences the fac-
torization of the other one. This feature, combined with the fact
that we only factorize association matrices regardless of the actual
type of the elements within the connected sets, makes the NMTF
a valuable tool for data integration in the context of many data
analysis tasks, such as clustering, co-clustering, link prediction and
anomaly detection.

Typically, the NMTF problem is solved by randomly initializing
the elements of the matrices and then iterating a set of matrix
updating rules until convergence. Hereafter, we describe how we
make use of the NMTF output to predict novel drug indications.

3.3 Using NMTF for Drug Repositioning
In the network scenario described in Figure 1, predicting novel
potential indications for the set of considered drugs means to infer
new links between the indication and the drug sets (i.e., within the
R12 matrix). In order to do so, we apply the NMTF simultaneously
on the four input matrices (R12, R23, R34, R25); thus, we factorize
them all in such a way that the final result is influenced by the
information in all the four matrices. More formally, we adopt the
NMTF method in order to jointly factorize all the four association
matrices of the graph in Figure 1.

We first select a set of parameters k1,k2,k3,k4,k5 ∈ N that
allows us to compute the matrices G1, G2, G3, G4, G5, S12, S23,
S34 and S25, which respect non-negativeness and orthogonality
constraints and minimize the sum of the Frobenius norm distances.
In particular, the matrix R12 is factorized in the three matrices
G1, S12 and G2. We multiply the three factor matrices to build a
non-negative matrix R̂12 that approximates R12:

R̂12 = G1S12G2 ≈ R12



Then, we binarize the R̂12 by setting a threshold δ ∈ [0, 1] and
producing a third matrix R̂(δ )12 such that R̂(δ )12 [i, j] = 1 if R̂12 > (δ ),
and R̂(δ )12 [i, j] = 0 otherwise. Thus, given a drug d and an indication
i , four disjoint events may occur:

• R12[i,d] = R̂
(δ )
12 [i,d] = 0: In this case, d is not associated

with i , either in the input graph or in the predicted one;
• R12[i,d] = R̂

(δ )
12 [i,d] = 1: In this case, the drugd is associated

with the indication i in both graphs, in other words the
prediction method confirms the association;
• R12[i,d] = 1 and R̂

(δ )
12 [i,d] = 0: In this case, in the input

matrix an association is present between d and i that the
method was not able to recall; this can be interpreted as an
hint to revise such association, which may also be due to an
incorrect annotation in the analyzed data;
• R12[i,d] = 0 and R̂(δ )12 [i,d] = 1: This is the most interesting
case, as in the reconstructed association matrix there is a
new d-i link that was not present in the input; it predicts
that the drug d may be used for the indication i .

3.4 Update Rules
Considering all inter-data type links in Figure 1 (i.e., between indi-
cations and drugs, diseases and drugs, drugs and proteins, proteins
and pathways), the NMTF objective function is defined as:

J (G1,G2,G3,G4,G5, S12, S23, S34, S25) = ∥R12 −G1S12G
T
2 ∥

2

+∥R23 −G2S23G
T
3 ∥

2 + ∥R34 −G3S34G
T
4 ∥

2 + ∥R25 −G2S25G
T
5 ∥

2

where ∥∥ is the Frobenius norm. As explained in Section 3.2, this
objective function needs to be minimized under the constraints:

G1 ≥ 0,G2 ≥ 0,G3 ≥ 0,G4 ≥ 0,G5 ≥ 0

GT
1 G1 = I,GT

2 G2 = I,GT
3 G3 = I,GT

4 G4 = I,GT
5 G5 = I

S12 ≥ 0, S23 ≥ 0, S34 ≥ 0, S25 ≥ 0

which means that G1,G2,G3,G4 and G5 must be non-negative and
orthogonal matrices, and S12, S23, S34, S25 must be non-negative ma-
trices. Let G = diag(G1,G2,G3,G4,G5), S = diag(S12, S23, S34, S25);
thus, the former constraints can be summarized as: G ≥ 0,GTG =
I, S ≥ 0. Then, considering (λ, µG , µS ) the Lagrangian multiplier
matrices, the Lagrangian L associated with the problem is:

L(G, S, λ, µG , µS ) = J (G, S)+ tr(λ(GTG− I))− tr(µGGT )− tr(µSST )

with tr the trace function. From the Karush-Kuhn-Tucker (KKT)
theorem applied to this Lagrangian it is possible to verify that the
solution of our problem follows the so-called KKT conditions:

• Stationarity: ∇GL = 0 and ∇SL = 0
• Primal admissibility: G ≥ 0, S ≥ 0 and GTG = I
• Dual admissibility: µG ≥ 0 and µS ≥ 0
• Complementary slackness: µGi jGi j = 0, µSi j Si j = 0,∀(i, j)

As explained and proved in [7] and [11], it is possible to find update
rules for (G1,G2,G3,G4,G5) and (S12, S23, S34, S25) that make them
converging toward a solution that verifies those KKT conditions.
For our drug repositioning task, as such update rules we used the

following ones:

G1(i, j ) ← G1(i, j )

√√
(R12G2ST12)i, j

(G11R12G2ST12)i, j

G2(i, j ) ← G2(i, j )

√√
(RT12G1S12 + R23G3ST23 + R25G5ST25)i, j

(G22RT12G1S12 +G22R23G3ST23 +G22R25G5ST25)i, j

G3(i, j ) ← G3(i, j )

√√
(RT23G2S23 + R34G4ST34)i, j

(G33RT23G3S23 +G33R34G4ST34)i, j

G4(i, j ) ← G4(i, j )

√√
(RT34G3S34)i, j

(G44RT34G4S34)i, j

G5(i, j ) ← G5(i, j )

√√
(RT25G2S25)i, j

(G55RT25G2S25)i, j

S12(i, j ) ← S12(i, j )

√√
(GT

1 R12G2)i, j

(GT
1 G1S12GT

2 G2)i, j

S23(i, j ) ← S23(i, j )

√√
(GT

2 R23G3)i, j

(GT
2 G2S23GT

3 G3)i, j

S34(i, j ) ← S34(i, j )

√√
(GT

3 R34G4)i, j

(GT
3 G3S34GT

4 G4)i, j

S25(i, j ) ← S25(i, j )

√√
(GT

2 R25G5)i, j

(GT
2 G2S25GT

5 G5)i, j

where G11 = G1GT
1 , G22 = G2GT

2 , G33 = G3GT
3 , G44 = G4GT

4 and
G55 = G5GT

5 within the update rules. It is necessary to note that
using multiplicative rules, if an element of any matrix equals zero,
it will always remain equal to zero over iterations. Thus, the choice
of the initialization is crucial.

3.5 Intra-Data Type Relations
We also considered intra-data type relations, specifically between
proteins and between pathways, which can be described through
two adjacency matricesW3 andW4, respectively. Given these two
matrices, it is easy to compute the Laplacian matrices L3 and L4
such that:

L3 = D3 −W3

L4 = D4 −W4

where D3 and D4 are the degree matrices associated withW3 and
W4, respectively. The degree matrix associated with a graph is a
diagonal matrix in which the i-th coefficient corresponds to the
degree of the node i in the graph. In other words, the i-th coefficient
of D is the sum of the i-th row elements of the associatedW matrix.
In order consider the intra-data type relations between proteins
(and between pathways), our objective function needs to take into
account that proteins (and pathways) that are linked together are
more likely to share the same behavior with regards to drugs (and
to proteins, respectively). Thus, we added two new terms in the



objective function:

J (G, S) = ∥R12 −G1S12G
T
2 ∥

2 + ∥R23 −G2S23G
T
3 ∥

2

+∥R34 −G3S34G
T
4 ∥

2 + ∥R25 −G2S25G
T
5 ∥

2

+tr(GT
3 L3G3) + tr(GT

4 L4G4)

with tr the trace function. From this refined objective function,
update rules were extended as explained in Section 3.4.

3.6 Evaluation Metric
We anticipate here a discussion of the evaluation metric we use
to computationally validate our method, as it is necessary for ex-
plaining and justifying how we selected the initialization strategy,
hyperparameters and stop criterion. Specifically, to validate our
model, we build a mask M of the same dimension of R12; such mask
is a binary matrix where only 10% of the elements are ones and
their position is selected randomly. We create a matrix R′12 such
that:

R′12 [i, j] =

{
R12 [i, j] , ifM [i, j] = 0
0, otherwise

Then, in the global graph we substitute R12 with the masked matrix
R′12, apply the method and construct the matrix R̂′12. Finally, to
assess the goodness of the method and the configuration used, we
evaluate how well R̂′12 resembles R12, by focusing only on those
elements that were masked (i.e., pairs of a drug d and an indication
i such that M[d, i] = 1). In order to do that, we set a threshold
0 ≤ δ ≤ 1 and create the binary matrix R̂′(δ )12 . For the elements of
such matrix that overlap the elements equal to one in the mask, we
can distinguish the classical four classes:

• (TP) true positives, equal to one in both R12 and R̂′
(δ )
12 ;

• (FP) false positives, equal to one only in R̂′
(δ )
12 ;

• (TN) true negatives, equal to zero in both R12 and R̂′
(δ )
12 ;

• (FN) false negatives, equal to one only in R12.
Depending on the chosen value of the threshold δ , we can compute
the recall:

Recallδ =
TP

TP + FN

as well as the precision:

Precisionδ =
TP

TP + FP
.

From these two measures, letting the threshold δ span between 0
and 1, we can draw precision-recall (PR) curves, which capture the
dependency between the twometrics and provide an intuitive visual
representation of it. Comparing such curves is not trivial; thus, we
consider the Average Precision Score (APS), which summarizes in a
single number the information contained in a PR curve. It can be
defined as:

APS =
∑

δ1,δ2, ...,δn

(Recallδi − Recallδi−1 )Precisionδi

and can be interpreted as an approximation of the area under the
PR curve. Higher values of APS correspond to better performance
of the model.

3.7 Initialization
The first step of the NMTF algorithm is the initialization of the
factor matrices. Although [7] highlighted that the NMTF algorithm
converges to a minimum for the loss function, it is fundamental to
understand that this minimum does not necessarily correspond to
the maximum Average Precision Score (APS) that can be obtained.
For instance, in an hypothetical scenariowhere the NMTF algorithm
perfectly fits the initial matrices, it would be impossible to find
new links between indications and drugs, resulting in a method not
useful for the task of drug repositioning. Therefore, the initialization
is crucial and the performance of our prediction method deeply
relies on it.

In this Section we describe several alternatives for the initializa-
tion task, starting from the most trivial ones to the more sophisti-
cated ones. In general, we are required to initialize all nine factor
matrices G1, G2, G3, G4, G5, S12, S23, S34 and S25. The most trivial
initialization consists of drawing random values for the elements
of the factor matricesG1,G2,G3,G4,G5, S12, S23, S34 and S25 from a
uniform distribution in the range [0, 1]. This task can be simplified
by initializing solely the five G1, G2, G3, G4 and G5 matrices, and
then computing the values of the S12, S23, S34 and S25 matrices as
follows:

S12 = G
T
1 R12G2

S23 = G
T
2 R23G3

S34 = G
T
3 R34G4

S25 = G
T
2 R25G5

However, using this initialization, the final results vary a lot, as
shown in Figure 2 where we present the results obtained on 10
different runs of the algorithm for different initialization methods.

Also another method, named randomACOL, firstly introduced by
[16], uses some randomization to initialize the matrices, but besides
it takes into account the original data held in R12, R23, R34 and R25.
For instance, to initializeG1, the columns of R12 are partitioned into
k1 random groups and each column ofG1 is initialized by averaging
the columns in one of such groups. Despite being computationally
inexpensive, the random ACOL initialization provides better results
than the uniform distribution. However, the initialization can be
improved to reach a better Average Precision Score.

Another initialization method, suggested by [7], [28] and [31],
performs a k-means clustering on the columns (or rows) of the
association matrices and initializes G1, G2, G3, G4 and G5 with the
centroids of the clusters.

A last and more promising algorithm, namely the spherical k-
means initialization [29], consists of an improvement of the previous
one. In this case, before the clustering is performed, all elements are
projected on a unity radius multidimensional sphere and therefore
considered as a high-dimensional unit-length vector. The k-means
clustering is then performed, but considering the cosine rather than
the euclidean distance as measure of similarity between any pair of
elements. As a result, the centroid of each cluster is a unit-length
vector that maximizes the cosine similarity with respect to the
members of the cluster. Each of these centroids is then used to
initialize the Gx matrices. This method, which only takes into ac-
count angles and not distances, is relevant for our problem. Indeed,



Figure 2: Average Precision Score (APS) over iterations for
four different initialization methods. Each initialization is
repeated 10 times; so, each curve shows the mean and the
standard deviation of the correspondingmethod. The spher-
ical k-means initialization has the smallest standard devi-
ation and the highest Average Precision Score, which is
reached in less iterations.

for example, it gives the same weight to all drugs, no matter the
number of indications they are associated with.

In Figure 2 we compare the four types of initialization that we
tested. As it can be seen, the trivial random initialization scores
worst than all the others, since it takes much more iterations to
get to the peak of APS, and also has more variability in the results.
The random ACOL is as good as the random initialization in term of
APS, but it reaches the maximum score in a fourth of the iterations.
Finally, the two initializations based on k-means score better APSs in
very few iterations, with the spherical k-means being slightly better.
Moreover, the NMTF initialized with any of the last two methods
shows to be robust with respect to the number of iterations. Thus,
we used the spherical k-means initialization for our tests.

3.8 Hyperparameter Tuning
For our application, we need to select a set of hyperparameters
k1,k2,k3,k4 and k5 ∈ N. We select the best value for every hy-
perparameter based on the associated dispersion coefficient ρ [14].
The dispersion coefficients ρ1, ρ2, ρ3, ρ4 and ρ5 for k1,k2,k3,k4
and k5 are respectively computed on the matrix R̂12, R̂12, R̂23, R̂34
or R̂25; such coefficients range between 0 and 1, with higher values
indicating more stable solutions.

The relationship between the dispersion coefficient and the as-
sociated hyperparameter is similar in all situations; after a strong
increase for small values of the hyperparameter, the dispersion
coefficient seems to converge slowly towards a value close to 1 (Fig-
ure 3). This behavior means that the higher is the hyperparameter,
the more stable are the results given by the algorithm. Therefore,
we fix each hyperparameter to the value at which the associated dis-
persion coefficient stabilizes, as a satisfying compromise between

Figure 3: Evolution of the dispersion coefficient ρ4 for
the matrix R̂34, computed by our NMTF algorithm for dif-
ferent k4 values. The other hyperparameters are fixed as
(k1,k2,k3,k5) = (500, 141, 500, 300).

robustness of our method and computational costs. As an example,
Figure 3 shows the dispersion coefficient ρ4 for the hyperparameter
k4. This dispersion coefficient stabilizes when k4 is higher than 500,
which leads us to choose this value for the hyperparameter k4.

Notice that, using the spherical k-means initialization, the hyper-
parameter values correspond to the number of clusters in which the
data are partitioned. Therefore, these hyperparameters cannot have
values higher than the number of items in the associated dataset.
For instance, with our used dataset, k2 have to be smaller or equal
than 141, the number of indications in the dataset. According to
the dispersion coefficients of all obtained results, we chose k1, k2,
k3, k4 and k5 equal to 500, 141, 500, 500 and 300, respectively. For
such hyperparameter values, ρ1 = 0.990, ρ2 = 0.990, ρ3 = 0.981,
ρ4 = 0.983 and ρ5 = 0.999.

3.9 Stop Criterion
Update rules guarantee that the objective function J , also named loss
function, is monotonically decreasing over iterations [7]. Thus, the
NMTF algorithm keeps improving the approximation of the given
matrices over the iterations. However, the capability of our model to
predict missing links between drugs and indications could decrease
as the differences between the initial drug-indication matrix and
the reconstructed one reduce, since we are overfitting to the input.
Therefore, finding a proper stop criterion for the training phase of
our model is paramount and not trivial.

Several methods are worth considering to solve this problem.
The easiest would be to define a maximum number of iterations.
However, this technique is not appealing as it does not give any
semantic to the stop criterion.

Instead, we implemented a stop criterion based on the evolution
of the loss function. Since this function is strictly decreasing under
the update rules we use, we stop the iterations of the NMTF training
when the change of the function value between two consecutive



Figure 4: Application of the stop criterion on the loss
(objective function) for ϵ = 0.02. In this situation, with
(k1,k2,k3,k4,k5) = (500, 141, 500, 500, 300) the algorithm would
stop after 9 iterations, as represented by the black dashed
vertical line, which also corresponds to themaximum of the
Average Precision Score (APS).

iterations is smaller than a given threshold ϵ , i.e,:

J (G(n)) − J (G(n+1))
J (G(n+1))

< ϵ .

Experimentally, this method proved particularly relevant: Indeed,
for a proper ϵ , the algorithm stops when the Average Precision
Score is maximum on the validation set. It means that this stop
criterion is able to stop the algorithm when the model performs
best at finding the missing links. Moreover, this characteristic of ϵ
proves its effectiveness independently from the parameters’ choice.
Figure 4 shows that in our case this stop criterion permits to reach
the higher APS score after 9 iterations (with ϵ = 0.02).

4 RESULTS
In this Section we highlight the most relevant considerations de-
rived from the results that we obtained in the experiments per-
formed on the considered data with our method and in comparison
with a state of the art method. We also report about the results of
the scientific evaluation performed on the new drug-indication and
drug-disease associations predicted by our method.

4.1 Benefits of Adding more Data Types
Adding data types and intra-data type relationships (protein-protein
similarities and pathway hierarchical relationships) improves the
prediction performance. Table 1 shows that the APS scored by our
NMTF method slowly, but steadily, increases as data types and
intra-data type associations are added.

4.2 Benefits of Optimizing the Model
Taking into account all available data, we optimized the initial
model in order to get the best APS value. In Figure 5, we report

Figure 5: Precision-Recall curves of four progressively im-
proved versions (models 1 to 4) of the NMTF method.

the Precision-Recall curve of four different models increasingly
optimized; the Figure illustrates the relevant contribution of our
work to optimizing the NMTF method for drug repositioning. The
four models present successive improvements to the method:
• Model 1 is our baseline; it uses random initialization and
uniformed hyperparameters, and stops after 500 iterations;
• Model 2 adds spherical k-means initialization to Model 1,
as discussed in Section 3.7;
• Model 3 adds tuned hyperparameters to Model 2, as dis-
cussed in Section 3.8;
• Model 4 adds the new stop criterion to Model 3, as discussed
in Section 3.9 (while Models 1 to 3 use 500 iterations).

4.3 Comparative Study
We compared our results with the state of the art method pro-
posed in [21]. The computational pipeline developed in [21], called
DTINet, integrates multiple information about drugs from different
sources to construct a heterogeneous network. DTINet uses drug-
target, drug chemical similarity, side effect and drug-disease data
from DrugBank, UniProt and CTD [5] databases. It first extracts
significant features for each drug and protein by means of a com-
pact feature learning algorithm. Then, it projects feature vectors of
drugs onto the feature vector space of proteins, selecting as best
projection the one corresponding to when drugs are geometrically
close to the feature vectors of their known interacting proteins [21].

Table 1: Data integration benefits on the APS

Matrices APS Improvement
R12 0.698 ——
R12, R23 0.707 1.23%
R12, R23, R34 0.709 1.57%
R12, R23, R34,W3,W4 0.711 1.86%
R12, R23, R34,W3,W4, R25 0.714 2.30%



Finally, it extracts new significant drug-target interactions accord-
ing to the geometric distance of the feature vectors: specifically,
if the feature vector of a drug is close to the feature vector of a
protein in the projected space, then that protein is a new candidate
target for the drug.

We used predicted drug-target interactions from DTINet to infer
new indications for drugs by their target profile similarity, i.e., if
two drugs have similar predicted targets, they can share their uses
(or indications). For the comparative study, we limited the analy-
sis to the 546 drugs with available drug-related information used
by DTINet, and we computed the APS values for the DTINet and
NMTF methods on this set of drugs (Figure 6); the NMTF method
has a greater score compared to DTINet, meaning that NMTF can
retrieve missing indications of drugs with higher precision and re-
call. Furthermore, our NMTF method can compute drug-indication
associations even when data about the drug chemical structure is
not available.

Figure 6: Comparison of Average Precision Scores for
DTINet [21] and NMTF methods: 0.51 vs. 0.72, respectively.
The scores are computed considering the 546 drugs evalu-
ated in [21].

4.4 NMTF Predictions
We further evaluated the effectiveness of our new drug-indication
and drug-disease predictions by searching the predicted pairs against
the scientific literature and databases available.

Enoxacin and Pefloxacin are antibacterial agents that in the TTD
database were not assigned to the treatment of bacterial infections,
but our method associated with this disease. In other words, our
method provides information that was absent in the TTD database
used as input data source, despite being confirmed by the literature.
Moreover, Enoxacin and Pefloxacin have been linked to the mod-
erate risk QTc-Prolonging agents indication by our NMTF method;
conversely, DrugBank reported these drugs only as potential QTc-
Prolonging agents. Prolongation of the QT interval, i.e., the time
between the first contraction of cardiac ventricles and the relaxation
of the ventricles, may be useful for short QT syndrome, that is a
genetic disease causing abnormal heart rhythms and sudden cardiac
death [23]. Thus, Enoxacin and Pefloxacin could be repositioned
for this syndrome.

Similarly, our NMTF method linked Aripiprazole lauroxil to
schizophrenia; this drug is well-known for its use in the treatment
of schizophrenia, but this information was not in the input TTD
database. From a pharmacological perspective, Aripiprazole is the
only approved antipsychotic that reduces dopaminergic neurotrans-
mission through partial agonism, not antagonism [22]. Thus, it can
be considered as a neurotransmitter agent, and the NMTF method
correctly classified it. In other words, the NMTF method associates
Aripiprazole lauroxil to schizophrenia and to the neurotransmitter
agent indication.

Likewise, we discovered a link between Azidocillin and bac-
terial infection disease; this is another annotation that was not
present in TTD, although Azidocillin is a penicillin antibiotic with
antibacterial properties. Moreover, it has been indicated as an anti-
infective agent according to the NMTF method, meaning that its
anti-infection characteristics are particularly relevant.

One of the highest scored drug-indication associations is the one
between Acamprosate and central nervous system depressants cate-
gory. Acamprosate is a drug used for treating alcohol dependence,
whose side effects include depression according to the SIDER data-
base [15]. Other high ranked drug-disease associations predicted
(e.g., Tiapride - Schizophrenia, Perospirone - Schizophrenia, Cilaza-
pril - Hypertension, Olmesartan - Hypertension, Ceftibuten - Bacte-
rial infections, Mezlocillin - Bacterial infections, Nafcillin - Bacterial
infections, Candesartan cilexetil - Hypertension, Cefapirin - Bacte-
rial infections, Cefotiam - Bacterial infections) can be found in the
literature [30], but they are not provided by the TTD database.

Furthermore, our method was able to find interesting novel drug-
disease associations; for example, Isoflurane was suggested to be
repositioned for the treatment of human epilepsy. This finding is
corroborated by [27], where an initial study in done on rat model.
Another novel drug-disease association is the one between Vo-
fopitant (currently under investigation) and nausea; this is also
considered in [25] during the development of Phase II of this drug.

All these manually curated studies corroborate the use of our
NMTF approach for drug repositioning, allowing correct identifica-
tion of both drug indications and drug mappings to diseases.

4.5 Implementation Details
The entire framework for the analyses and the predictions pre-
sented in this manuscript has been developed in Python. The most
computationally intensive tasks of the software have been paral-
lelized to speed up the execution. Using 10 threads, the full predic-
tion pipeline takes 3 minutes and 10 seconds on a Dell PowerEdge
R730xd workstation equipped with two Intel Xeon E-2660 CPUs
and requires less than 1.5 GB of RAM. The source code is available
at https://github.com/DEIB-GECO/NMTF-DrugRepositioning under
Apache2 license.

5 CONCLUSIONS
Drug repositioning has become an important task to reduce the
costs and timing of drug discovery. Thus, the number of compu-
tational methods addressing this task, mainly taking advantage
of public heterogeneous databases increasingly available, has in-
creased over the years. In this study, we discussed the applicabil-
ity, adaptation and extension of the NMTF to drug repositioning,



both in terms of model and computational aspects influencing the
method performance. Starting from indication-drug, drug-target,
drug-disease, and target-pathway associations, and leveraging the
NMTF method, we can reliably predict novel potential drug indica-
tions or drug treatment usages.

We showed that the NMTF-based method we propose can ef-
fectively support multiple heterogeneous inputs, and we provided
several optimizations, which improve the quality of the results w.r.t.
standard method application. Such optimizations are innovative
aspects of our contribution to the computational method, ranging
from initialization and hyperparameter tuning, to update rules and
stopping criteria.

Our NMTF model effectively finds novel indications and usages
for drugs, and performs comparatively better than the DTINet state
of the art approach in terms of Average Precision Score. We also
validated some predicted new drug-indication and drug-disease as-
sociations based on the literature, demonstrating that our approach
can correctly complete missing information in DrugBank and TTD
databases.

ACKNOWLEDGMENTS
This research is funded by the ERC Advanced Grant project 693174
“GeCo” (Data-Driven Genomic Computing), 2016-2021.

REFERENCES
[1] M Campillos, M Kuhn, and AC Gavin. 2008. Drug target identification using

side-effect similarity. Science 321 (2008), 263–266.
[2] AP Chiang and Atul J Butte. 2009. Systematic evaluation of drug–disease relation-

ships to identify leads for novel drug uses. Clinical Pharmacology & Therapeutics
86, 5 (2009), 507–510.

[3] UniProt Consortium. 2016. UniProt: the universal protein knowledgebase. Nucleic
acids research 45, D1 (2016), D158–D169.

[4] D Croft, G OâĂŹkelly, G Wu, R Haw, M Gillespie, L Matthews, M Caudy, P
Garapati, G Gopinath, B Jassal, et al. 2010. Reactome: a database of reactions,
pathways and biological processes. Nucleic acids research 39, Suppl1 (2010),
D691–D697.

[5] AP Davis, CJ Grondin, RJ Johnson, D Sciaky, R McMorran, J Wiegers, et al. 2018.
The comparative toxicogenomics database: Update 2019. Nucleic acids research
47, D1 (2018), D948–D954.

[6] MDickson and JP Gagnon. 2004. The cost of new drug discovery and development.
Discov Med. 4, 22 (2004), 172–179.

[7] C Ding, T Li, W Peng, and H Park. 2006. Orthogonal nonnegative matrix t-
factorizations for clustering. In Proc SIGKDD. ACM, NY, USA, 126–135.

[8] JT Dudley, T Deshpande, and AJ Butte. 2011. Exploiting drug-disease relationships
for computational drug repositioning. Brief Bioinform 12, 4 (2011), 303–311.

[9] D Fourches, E Muratov, and A Tropsha. 2010. Trust but verify: on the importance
of chemical structure curation in cheminformatics ans QSAR modeling research.
J Chem Inf Model 50 (2010), 1189–1204.

[10] V GLIGORIJEVIĆ, N Malod-Dognin, and N PRŽULJ. 2016. Patient-specific data
fusion for cancer stratification and personalised treatment. In Biocomputing 2016:
Proceedings of the Pacific Symposium. World Scientific, Pac Symp Biocomput,
Fairmont Orchid, Hawaii(US), 321–332.

[11] Q Gu and J Zhou. 2009. Co-clustering on manifolds. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, Paris, France, 359–368.
[12] G Hu and P Agarwal. 2009. Human disease-drug network based on genomic

expression profiles. PLoS One 4 (2009), 43–46.
[13] MJ Keiser, V Setola, and JJ Irwin. 2009. Predicting new molecular targets for

known drugs. Nature 462 (2009), 175–181.
[14] H Kim and H Park. 2007. Sparse non-negative matrix factorizations via alter-

nating non-negativity-constrained least squares for microarray data analysis.
Bioinformatics 23, 12 (2007), 1495–1502.

[15] M Kuhn, I Letunic, LJ Jensen, and P Bork. 2015. The SIDER database of drugs
and side effects. Nucleic acids research 44, D1 (2015), D1075–D1079.

[16] AN Langville, CD Meyer, R Albright, J Cox, and D Duling. 2014. Algorithms,
initializations, and convergence for the nonnegative matrix factorization. arXiv
preprint arXiv 1407, 7299 (2014), 1–18.

[17] J Li and Z Lu. 2012. A new method for computational drug repositioning using
drug pairwise similarity. In Proc Int Conf Bioinformatics Biomed, Vol. 2012. IEEE,
PA, USA, 1119–1126.

[18] J Li and Z Lu. 2013. Pathway-based drug repositioning using causal inference.
BMC Bioinformatics 14, Suppl16 (2013), S3.

[19] J Li, S Zheng, B Chen, AJ Butte, SJ Swamidass, and Z Lu. 2015. A survey of
current trends in computational drug repositioning. Brief Bioinform 17, 1 (2015),
2–12.

[20] YH Li, CY Yu, XX Li, P Zhang, J Tang, Q Yang, T Fu, X Zhang, X Cui, G Tu, et al.
2017. Therapeutic target database update 2018: enriched resource for facilitating
bench-to-clinic research of targeted therapeutics. Nucleic acids research 46, D1
(2017), D1121–D1127.

[21] Y Luo, X Zhao, J Zhou, J Yang, Y Zhang, W Kuang, J Peng, L Chen, and J Zeng.
2017. A network integration approach for drug-target interaction prediction
and computational drug repositioning from heterogeneous information. Nature
communications 8, 1 (2017), 573.

[22] RB Mailman and V Murthy. 2010. Third generation antipsychotic drugs: partial
agonism or receptor functional selectivity? Current pharmaceutical design 16, 5
(2010), 488–501.

[23] A Mazzanti, A Kanthan, N Monteforte, M Memmi, R Bloise, V Novelli, C Miceli, S
O’Rourke, G Borio, A Zienciuk-Krajka, et al. 2014. Novel insight into the natural
history of short QT syndrome. Journal of the American College of Cardiology 63,
13 (2014), 1300–1308.

[24] F Napolitano, Y Zhao, and VM Moreira. 2013. Drug repositioning: a macine-
learning approach trough data integration. J Cheminform 5 (2013), 30.

[25] Howard S, Eric J, and Benjamin R. 2012. Postoperative nausea and vomiting.
Annals of Palliative Medicine 1, 2 (2012), 1–9.

[26] A Subramanian et al. 2017. A Next Generation Connectivity Map: L1000 Platform
And The First 1,000,000 Profiles. Cell 171, 6 (2017), 1437–1452.

[27] MC Veronesi, DJ Kubek, and MJ Kubek. 2008. Isoflurane exacerbates electrically
evoked seizures in amygdala-kindled rats during recovery. Epilepsy research 82,
1 (2008), 15–20.

[28] S Wild, J Curry, and A Dougherty. 2004. Improving non-negative matrix fac-
torizations through structured initialization. Pattern recognition 37, 11 (2004),
2217–2232.

[29] S Wild, WS Wild, J Curry, A Dougherty, and M Betterton. 2003. Seeding non-
negative matrix factorizations with the spherical k-means clustering. Ph.D. Disser-
tation. University of Colorado.

[30] DS Wishart, C Knox, AC Guo, D Cheng, S Shrivastava, D Tzur, B Gautam, and M
Hassanali. 2008. DrugBank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Res 36, Database (2008), D901–D906.

[31] Y Xue, CS Tong, Y Chen, and W-S Chen. 2008. Clustering-based initialization for
non-negative matrix factorization. Appl. Math. Comput. 205, 2 (2008), 525–536.

[32] M Žitnik, V Janjić, C Larminie, B Zupan, and N Pržulj. 2013. Discovering disease-
disease associations by fusing systems-level molecular data. Scientific reports 3
(2013), 3202.

[33] M Žitnik, EA Nam, C Dinh, A Kuspa, G Shaulsky, and B Zupan. 2015. Gene
prioritization by compressive data fusion and chaining. PLoS computational
biology 11, 10 (2015), e1004552.


	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Datasets and their Use
	3.2 Non-Negative Matrix Tri-Factorization
	3.3 Using NMTF for Drug Repositioning
	3.4 Update Rules
	3.5 Intra-Data Type Relations
	3.6 Evaluation Metric
	3.7 Initialization
	3.8 Hyperparameter Tuning
	3.9 Stop Criterion

	4 Results
	4.1 Benefits of Adding more Data Types
	4.2 Benefits of Optimizing the Model
	4.3 Comparative Study
	4.4 NMTF Predictions
	4.5 Implementation Details

	5 Conclusions
	Acknowledgments
	References

