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1. Introduction29

Weak coupling limit-type (WCLT) quantum Markov semigroups (see Ref. 2) are30

semigroups of completely positive maps, closely related with a discrete spectrum31

Hamiltonian HS with remarkable structural properties. Their invariant states sat-32

isfy the local Kubo–Martin–Schwinger (KMS) condition, see Ref. 2, that distin-33

guishes, among the states of the dynamics (i.e. functions of the invariants of motion34

in the commutant of the Hamiltonian {HS}′), those which are functions of the35

Hamiltonian, i.e. in the von Neumann algebra ρ ∈ {HS}′′, the double commutant36

of HS . Generators of these semigroups are written as the sum of other generators,37

one for each Bohr frequency, with completely positive part with multiplicity one (in38
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the zero temperature case) or two (in the positive temperature case). Their struc-1

ture is simple enough to allow explicit computation of their stationary states, but2

rich enough to exhibit detailed balance (equilibrium) as well as nondetailed balance3

(but local equilibrium) invariant states. Moreover, WCLT generators leave invari-4

ant, not only the commutant of the system Hamiltonian, but also a multiplicity of5

operator subspaces of B(h). In Ref. 2, we conjectured that this property charac-6

terizes WCLT generators. This paper is aimed at investigating this conjecture for7

QMSs with nondegenerate Hamiltonian HS .8

With this motivation, as a first step, we characterize QMSs leaving invariant the9

maximal abelian purely atomic algebra D0 generated by the system Hamiltonian10

HS and the operator subspaces Dn (2.7) (Property P in Sec. 2) associated with11

it in a natural way. Theorem 3.1 shows that one can find a Gorini–Kossakowski–12

Sudharshan–Lindblad (GKSL) representation of their generators with all operators13

L� in the completely positive part of the generator belonging to some Dn and all14

the other operators in the maximal (diagonal) algebra D0.15

This shows that the conjecture as stated in Ref. 2, in general, is not true.16

As a matter of fact, one could consider generators with all operators in a GKSL17

representation belonging to D0 which are not of WCLT but leave invariant all the18

operator spaces Dn for all n. However, if we further detail a bit the properties of19

the operators in the GKSL representation as in Theorem 4.1, we can prove the20

conjecture with a slightly different formulation.21

We would like to emphasize here that Property P is very useful in the study22

of several QMSs because, roughly speaking, it allows one to reduce the dimension23

of the space where the semigroup acts, slicing up it into its subspaces Dn. This24

happens, for instance, in the study of the spectral gap (see Refs. 5 and 7) and the25

entropy production rate (see Ref. 6).26

QMSs leaving invariant a maximal abelian algebra have been studied in Ref. 4.27

This property, however, is much weaker than Property P considered here and does28

not allow to draw conclusions on the shape of the operators in a GKSL represen-29

tation of the generator.30

2. Semigroups of WCLT31

Let HS be a positive self-adjoint operator (reference Hamiltonian) acting on a32

separable complex Hilbert space h with discrete spectral decomposition33

HS =
∑

εm∈Sp(H)

εmPεm , (2.1)

where εm, with εm < εn for m < n, are the eigenvalues of HS and Pεm are the corre-34

sponding eigenspaces. We consider WCLT-bounded generators of QMSs, associated35

with the Hamiltonian HS , of the form36

L =
∑

ω∈B+

Lω, (2.2)
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where B+ is the set of all Bohr frequencies (Arveson spectrum)1

B+ := {(εn, εm) : εn − εm > 0}. (2.3)

For every Bohr frequency ω, Lω is a generator with the GKSL structure2

Lω(x) = i[Hω , x] − Γ−ω

2
(D∗

ωDωx − 2D∗
ωxDω + xDωD∗

ω)

− Γ+ω

2
(DωD∗

ωx − 2DωxD∗
ω + xDωD∗

ω) (2.4)

for all x ∈ B(h), with Kraus operators Dω defined by3

Dω =
∑

(εn,εm)∈B+,ω

PεmDPεn , (2.5)

where B+,ω = {(εn, εm) : εn − εm = ω}, D belongs to B(h), the von Neumann4

algebra of all bounded operators on h, Γ−ω, Γ+ω are nonnegative real constants5

with Γ−ω + Γ+ω > 0 and Hω is a bounded self-adjoint operator on h commuting6

with HS .7

In the case when the set of Bohr frequencies is infinite, for L to be the generator8

of a norm continuous QMS, the series9 ∑
ω∈B+

(Γ−ωD∗
ωDω + Γ+ωDωD∗

ω) (2.6)

must be strongly convergent in B(h), see Corollary 30.13 on p. 268 and Theo-10

rem 30.16 on p. 271 of Ref. 10.11

The class of WCLT generators leaves invariant the commutant {HS}′ of the12

Hamiltonian as well as several subspaces of off-diagonal operators, see Corollary 3.213

in Ref. 2 where it was conjectured that this property characterizes the WCLT14

generators.15

In this paper, we suppose that the Hamiltonian HS is also nondegenerate,16

namely, in the spectral representation (2.1), spectral projections Pεm are one-17

dimensional.18

In order to introduce our framework, we denote by (em)m≥0 an orthonormal19

basis of h of eigenvectors of HS , i.e. HSem = εmem for all m ≥ 0. Consider the20

operator subspaces Dn with n ∈ Z defined by21

Dn =




∑
i≥max(0,−n)

zi|ei〉〈ei+n|
∣∣∣∣∣ zi ∈ C, sup

i≥max(0,−n)

|zi| < ∞

. (2.7)

Clearly, D0 is the maximal abelian von Neumann subalgebra of B(h) generated by22

one-dimensional projections |ei〉〈ei|.23

Under the above assumptions, WCLT generators enjoy the following.24

Property P. For every n ∈ Z and for every Bohr frequency ω, the operator subspace25

Dn is invariant under the action of Lω.26
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Proof. Indeed, if z ∈ Dn, denoting by e±ω
i the eigenvector of the eigenvalue εi±ω,1

an easy computation yields2

DωzD∗
ω =

∑
i≥max(0,−n)

zi〈ei, De+ω
i 〉〈e+ω

i+n, D∗ei+n〉|ei〉〈ei+n|,

D∗
ωzDω =

∑
i≥max(0,−n)

zi〈ei, D
∗e−ω

i 〉〈e−ω
i+n, Dei+n〉|ei〉〈ei+n|,

D∗
ωDωz =

∑
i≥max(0,−n)

zi〈ei, De+ω
i 〉〈e+ω

i , D∗ei〉|ei〉〈ei+n|,

DωD∗
ωz =

∑
i≥max(0,−n)

zi〈ei, D
∗e−ω

i 〉〈e−ω
i , Dei〉|ei〉〈ei+n|

and, taking the adjoint, similar formulae hold for zD∗
ωDω, zDωD∗

ω. As a conse-3

quence, all the above operators belong to Dn for all ω.4

The family of subspaces Dn has a rich structure. One can easily verify that each5

Dn is a pre-Hilbert D0-module with the inner product defined for z, w ∈ Dn as6

〈z, w〉 = z∗w ∈ D0.

Moreover we have the following.7

Lemma 2.1. (i) Every element X ∈ B(h) can be represented as X =
∑

n∈Z
Xn8

with Xn ∈ Dn, the series being strongly convergent,9

(ii) If W =
∑

m∈Z
Wm and V =

∑
m∈Z

Vm are two bounded operators, then10

W ∗
mDnVm′ ⊂ Dn

if and only if m = m′.11

Proof. (i) It suffices to note that 1 =
∑

m≥0 Pεm and the series is strongly con-12

vergent. Since the product (AnBn)n of two strongly convergent sequences (An)n,13

(Bn)n in B(h) is a strongly convergent sequence because, for all u ∈ h,14

‖AnBnu − ABu‖ ≤ ‖An(Bn − B)u‖ + ‖(An − A)Bu‖,

and (Bn)n is uniformly bounded in norm by the uniform boundedness principle, we15

have16

X =
∑

m,m′
Pεm′ XPεm =

∑
ω

∑
{(εm′ ,εm) | εm−εm′=ω}

Pεm′ XPεm ,

where the sum on ω is on all differences εm − εm′ of eigenvalues of HS (not only17

strictly positive Bohr frequencies).18

1950008-4
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(ii) Now, for every k, k′, we have that1

W ∗
m|ek〉〈ek′ |Vm′ =

∑
j,j′≥0

〈Wej+m, ej〉〈ej′ , V ej′+m′〉δj,kδj′,k′ |ej+m〉〈ej′+m′ |

= 〈Wek+m, ek〉〈V ek′+m′ , ek′〉|ek+m〉〈ek′+m′ | ∈ Dk′−k

if and only if m = m′. This proves the lemma.2

3. Characterization of QMSs Leaving all Dns Invariant3

In this section, we prove that invariance of the operator spaces Dn for the generator4

L implies that it can be decomposed as the sum of other generators, each one of5

them with completely positive part with multiplicity one and leaving all operator6

spaces Dn invariant with a special GKSL representation. More precisely, we prove7

the following.8

Theorem 3.1. Let L be the generator of a norm continuous QMS on B(h) such9

that L(Dn) ⊆ Dn for all n and operator spaces Dn as above determined by a given10

orthonormal basis (en)n≥0. Then there exists a GKSL representation of the gener-11

ator L12

L(x) = i[H, x] − 1
2

∑
�≥1

(L∗
�L�x − 2L∗

�xL� + xL∗
�L�) (3.1)

with L� ∈ Dn�
for all � and some n�, the series

∑
�≥1 L∗

�L� strongly convergent and13

H = H∗ ∈ D0.14

The first step in the proof is the following.15

Lemma 3.1. Under the assumptions of Theorem 3.1, there exists a decomposition16

L(x) = G∗x + Φ(x) + xG (3.2)

with G ∈ D0 and Φ a completely positive map on B(h) such that Φω(1) = −G−G∗
17

and Φ(Dn) ⊆ Dn for all n ∈ Z.18

Proof. It suffices to recall (see, e.g., Theorem 3.14 and Eq. (3.11) of Ref. 9) that19

we can find a GKSL decomposition of the generator by fixing a unit vector e and20

taking as operator G the adjoint of the operator G∗ defined by21

G∗u = L(|u〉〈e|)e − 1
2
〈e,L(|e〉〈e|)e〉u

for all u ∈ h. Therefore, if we choose e = e0, then, putting 2c0 = 〈e0,L(|e0〉〈e0|)e0〉,22

G∗ei = L(|ei〉〈e0|)e0 − c0ei

=
∑
j≥0

zij |ei+j〉〈ej |e0 − c0ei

= (zii − c0)ei

for all i. In other words, each vector ei is an eigenvector for G.23
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Now, we consider the completely positive part of the generator.1

Theorem 3.2. Let Φ be a completely positive map on B(h) such that Φ(Dn) ⊆ Dn2

for all n. Then there exists a Kraus representation Φ(x) =
∑

�≥1 L∗
�xL� in which3

each L� belongs to some Dm.4

Proof. Let Φ(x) =
∑

�≥1 V�xV ∗
� be a minimal (i.e. with the minimum number of5

operators V�) Kraus representation of Φ with operators V� ∈ B(h) such that the6

series
∑

�≥1 V�V
∗
� = Φ(1) is strongly convergent.

7
For all j, k, define v�(j, k) = 〈ej , V�ek〉. Collections of complex numbers v(j, k) =8

(v�(j, k))�≥1 can be viewed as vectors in the multiplicity space k of the Kraus9

representation of Φ, indeed,10

‖v(j, k)‖2 =
∑
�≥1

|v�(j, k)|2 =
∑
�≥1

〈ek, V ∗
� ej〉〈V ∗

� ej , ek〉 = 〈ek, Φ(|ej〉〈ej |)ek〉 < ∞.

Writing V�ei =
∑

k v�(k, i)ek, a straightforward computation yields11

Φ(|ei〉〈ej |) =
∑

�,k,m

v�(k, i)v�(m, j)|ek〉〈em|, (3.3)

so that Φ-invariance of Dn implies12

〈v(k, i), v(m, j)〉k =
∑

�

v�(k, i)v�(m, j) = 0,

whenever j − i 
= m − k, i.e. j − m 
= i − k.

In other words, vectors v(k, i), v(m, j) in k are orthogonal if j − m 
= i − k.13

It follows that one can find a new basis of k and a family of disjoint (possibly14

infinite) subsets I(k− i) of the set of indices (each difference is associated with one15

and only one subset!) such that, denoting by U the unitary operator of the change16

of basis, the following property holds:17

for each � and differences k′ − i′ 
= k − i,

either (Uv(k, i))� = 0 or (Uv(k′, i′))� = 0.
(3.4)

Clearly, coordinates of vectors v(k, i) in the new basis are given by18

(Uv(k, i))� =
∑
�′

U��′v�′(k, i).

For all � ≥ 1, let19

L∗
� =

∑
k′,i′

(Uv(k′, i′))�|ek′〉〈ei′ |. (3.5)

1950008-6
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Since L∗
� =

∑
�′ U��′V�′ , the operator

∑
� L∗

�xL� is given by1 ∑
k′,i′,k′′,i′′,�′,m′,�

U��′v�′(k′, i′)U�m′vm′(k′′, i′′)|ek′〉〈ei′ |x|ei′′〉〈ek′′ |

=
∑

k′,i′,k′′,i′′,�′,m′

(∑
�

U��′U �m′

)
v�′(k′, i′)vm′(k′′, i′′)|ek′〉〈ei′ |x|ei′′〉〈ek′′ |

=
∑

�′,k′,i′,k′′,i′′
v�′(k′, i′)v�′(k′′, i′′)|ek′〉〈ei′ |x|ei′′〉〈ek′′ |

=
∑

�′,i′,i′′
|V�′ei′〉〈ei′ |x|ei′′〉〈V�′ei′′ |

=
∑

�,i′,i′′
V�|ei′〉〈ei′ |x|ei′′〉〈ei′′ |V ∗

�

=
∑

�

V�xV ∗
� .

Moreover, L� belongs to some Dm because, by (3.4), there is one and only one2

difference m = k′ − i′ (but possibly infinitely many pairs (i′, k′) with k′ − i′ = m)3

for which (Uv(k′, i′))� may be nonzero.4

We denote by S the right shift operator Sen = en+1. The following corollary5

immediately follows.6

Corollary 3.1. Let Φ be a completely positive map on B(h) such that Φ(Dn) ⊆ Dn7

for all n. Then there exists a Kraus representation Φ(x) =
∑

�≥1 L∗
�xL� in which8

each L� can be written in one of the following forms :9

SnM or S∗nM

for some n ≥ 0 and some multiplication operator M .10

Proof. Clear from the definition of Dn. Indeed, if Z =
∑

i≥max(0,−n) zi|ei〉〈ei+n|
11

and n ≥ 0, say, so that Z =
∑

j≥0 zj |ej〉〈ej+n|, considering the multiplication
12

operator M =
∑

j≥0 zj|ej+n〉〈ej+n|, we have Z = S∗nM . In a similar way, if n <
13

0, Z =
∑

j≥0 zj−n|ej−n〉〈ej | and so, defining M =
∑

j≥0 zj−n|ej〉〈ej |, we have
14

Z = S−nM .15

Proof of Theorem 3.1. Consider a representation of L as in (3.2), Lemma 3.1,16

and a Kraus representation of the completely positive map Φ as in Theorem 3.2 with17

all L� in some Dn. Since G ∈ D0, we have also G∗ ∈ D0 so that its anti-self-adjoint18

part H = (G∗ − G)/(2i) belongs to D0.19

1950008-7
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4. Characterization of QMSs of WCLT1

The following result gives our characterization of QMSs of WCLT.2

Theorem 4.1. Let L be the generator of a norm continuous QMS on B(h) such3

that L(Dn) ⊆ Dn for all n and operator spaces Dn as above determined by a given4

orthonormal basis (en)n≥0 and consider a GKSL representation (3.1) by means of5

operators H = H∗ ∈ D0 and L� = S∗n�M� for n� ≥ 0, L� = S−n�M� for n� < 0. L6

is a generator of WCLT if and only if7

(1) n� 
= 0 for all � ≥ 1.8

(2) The function � �→ n� is injective.9

(3) For all pair (�, l) such that n� = −nl, there exist complex constants z�, wl such10

that z�M� = wlM l (i.e. z�M� = wlM
∗
l since M� and Ml are diagonal).11

Proof. Generators of WCLT clearly enjoy the properties (1)–(3). Conversely, if12

these properties hold, let K =
∑

m≥0 m |em〉〈em| and let13

Λ− = {� ≥ 1 : L� = S∗(−n�)M� with n� < 0},
Λ+ = {� ≥ 1 : L� = Sn�M� with n� > 0 and 
 ∃ k s.t. Lk = S∗(n�)Mk}

(recall the convention S∗m = S−m for m < 0). In other words, Λ− is the set of14

indices corresponding to operators L� which are of annihilation type, mapping each15

level j into the lower level j+n�, Λ+ is the set of indices corresponding to operators16

L� of creation type, mapping each lower level j into the upper level j+n�, for which17

there exists no another associated operator Lk of annihilation type mapping the18

same upper levels j + n� into the same lower levels j.19

The sets Λ− and Λ+ form a partition of the set of indices �. Define20

D =
∑

�∈Λ−
S∗(−n�)M� +

∑
�∈Λ+

S∗n�M�.

Clearly,21

∑
{(m,m′):m−m′=|n�|}

Pm′DPm =

{
S∗(−n�)M� if n� < 0,

S∗n�M∗
� if n� > 0.

Recalling that, for all � ∈ Λ−, z�M� = wlM
∗
l for another index l such that n� = −nl,22

with z� = 0 if and only if there is no creation type operator associated with L�, it23

follows that the generator L is of WCLT with B+ = { |n�| : � ≥ 1 } and24

• for � ∈ Λ−, L� = S∗(−n�)M�, Γ−|n�| = 1, Γ+|n�| = w�z
−1
� if there is an associated25

creation type operator, Γ+|n�| = 0 if not,
26

• for � ∈ Λ+, L� = S∗n�M∗
� , Γ+n�

= 1, Γ−n�
= 0.27

This completes the proof.28

1950008-8
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Remark 4.1. It is worth noticing here that a system with a generic Hamiltonian1

HS , weakly coupled with a reservoir with an interaction like D⊗A(g)+D∗⊗A∗(g),2

gives rise to a generic QMS (see Refs. 1 and 8 and the references therein). However,3

a highly degenerate system Hamiltonian such as the number operator on the one-4

mode Fock space Γ(C) � �2(N) with a suitable interaction operator D may give rise5

to a generic QMS as well. Indeed, if we consider the canonical orthonormal basis6

(en)n≥0, the system Hamiltonian N and interaction operator D7

N =
∑
n≥0

n|en〉〈en|, D =
∑
k≥1

|e2k−1〉〈e2k |,

then one immediately sees that the only nonzero Dωs (see (2.5)) are those corre-8

sponding to frequencies ω = 2k −2k−1 = 2k−1. Choosing constants Γ−ω > Γ+ω > 09

in such a way that the series (2.6) is strongly convergent, we find a generic QMS.10

Indeed, this QMS could also arise from the weak coupling limit of the system11

Hamiltonian12

HS =
∑
k≥1

2k|ek〉〈ek|

and 2k − 2j = 2k′ − 2j′ if and only if k = k′ and j = j′. This can be seen supposing13

that k ≥ k′ (if not exchange k and k′) and k > j (if not exchange k and j) to fix14

the ideas. In this case, the identity 2k − 2j = 2k′ − 2j′ with k = k′ implies j = j′.15

Moreover, it cannot hold for k > k′ because it is equivalent to 2k−k′ − 2j−k′
=16

1 − 2j′−k′
and one can see that 2k−k′ − 2j−k′

> 1 > 1 − 2j′−k′
.17

Remark 4.2. The class of WCLT generators introduced in Ref. 2 correspond to18

the case when the interaction is of multiplicity one. More general interactions are19

possible, like those of dipole type
∑

j(D
∗
j ⊗A(gj)+Dj ⊗A∗(gj)), studied in Ref. 3,20

where Dj are operators acting on h and A(gj), A∗(gj) are annihilation and creation21

operators of a quantum field. WCLT generators with interaction of multiplicity22

greater than one will be considered in the nearest future.23

4.1. Circulant generators are not WCLT24

Circulant generators are another class of finite-dimensional generators simple25

enough to allow explicit computation of their invariant states but rich enough to26

go beyond detailed balance, see Ref. 6. They leave invariant operator subspaces27

(Bn)0≤n≤d−1 similar to our subspaces (Dn)−d≤n≤d but with a cyclic (or circu-28

lant) structure. Due to this fact, they are not generic WCLT with a nondegenerate29

Hamiltonian.30
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