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ABSTRACT
In the last years, the automotive industry has incorporated more

and more electronic components in vehicles, leading to complex

on-board networks of Electronic Control Units (ECUs) that com-

municate with each other to control all vehicle functions, making

it safer and easier to drive. This communication often relies on

Controller Area Network (CAN), a bus communication protocol

that defines a standard for real-time reliable and efficient transmis-

sion. However, CAN does not provide any security measure against

cyber attacks. In particular, it lacks of message authentication, lead-

ing to the possibility of transmitting spoofed CAN messages for

malicious purposes. Nowadays, Intrusion Detection Systems (IDSs)

detect such attacks by identifying inconsistencies in the stream of

information allegedly transmitted by a single ECU, hence assuming

the existence of a second malicious node generating these messages.

However, attackers can bypass this defense technique by discon-

necting from the network the ECU of which they want to spoof the

messages, therefore removing the authentic source of information.

To contrast this attack, we present CopyCAN, an Intrusion De-

tection System (IDS) that detects whether a node has been discon-

nected by monitoring the traffic and deriving the error counters of

ECUs on CAN. Through this process, it flags subsequent spoofed

messages as attacks and reacts accordingly even if there is no in-

consistency in the stream of information. Our system, unlike many

previous attempts to address security issues in CAN, does not re-

quire any modification to the protocol or to already installed ECUs.

Instead, it only requires the installation of a monitoring unit to the

existing network, making it easily deployable in current systems

and compliant with required CAN standards.
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1 INTRODUCTION
In the last decades, the adoption of electronic components inside

vehicles has increased exponentially. Modern vehicles incorporate

up to 200 ECUs, which control not only the engine but perform var-

ious functions that make driving easier and safer (e.g., Automatic

transmission, (Adaptive) Cruise Control, Anti-lock Brake Systems,

Autonomous driving technologies). ECUs form complex on-board

networks and their communication relies mainly on Controller

Area Network (CAN) [12], a bus communication protocol designed

by Robert Bosch GmbH in 1983 for automotive applications to pro-

vide reliable and efficient in-vehicle communication in real-time

between ECUs. These features made CAN the standard for on-board

vehicle communication for over 30 years up to today. Moreover,

vehicles are widely connected to the outside world, through both

local and remote connections (Bluetooth, cellular radio, GPS sys-

tems and so on). This tendency keeps increasing through the years,

leading to consider them as giant computers moving on the road,

able to send and receive data, and to communicate with each other.

However, the growth of on-board network systems and their

interconnection with the outside world has increased both the

attack surfaces and the vulnerabilities exploitable for malicious

purposes. Researchers have already shown that it is possible to gain

control of a vehicle, both through local or remote communication,

and alter its behavior [11, 15, 20, 27, 31]. The effects of such attacks

range from simply changing the audio track played on the radio,

to very serious consequences like disabling braking systems or

stopping the engine. Since Miller and Valasek’s demonstration of

being able to control remotely a Jeep Cherokee in 2015 [20], the

attention toward automotive security has increased.

Regarding CAN, one of its main weaknesses has proven to be

the lack of message authentication. Since nodes in the network do

not validate the origin of a message, an attacker can send spoofed

CAN messages that receiving nodes are not able to distinguish
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from authentic ones. Therefore, after an attacker exploits an exter-

nally communicating ECU, he or she can proceed to send messages

through this ECU to all nodes connected on the same CAN bus

and exploit them through forged CAN frames. However, multiple

ECUs nowadays check received messages to control whether two

different nodes are sending two streams of information with the

same identifier, and react by not accepting any of the data received.

For this reason, a common approach, after the attacker has made

his way inside the network, is to cut off the target ECU from bus

communication. To achieve this, a known mechanism, proven pos-

sible by Palanca et al. in [22], takes advantage of the error handling

protocol of CAN to convince the target ECU to shut itself off the

network. At this point the attacker is free to send the forged and

spoofed messages without handling the stream of frames sent by

the victim ECU. The capabilities of the attacker, once he lays undis-

turbed on the network, must be of concern. In fact, CAN, which

ensures real-time message transmission, is the most commonly

used communication bus for ECUs whose function affects driving

and, consequently, the safety of people in and around it.

Multiple measures have been proposed to either stop attackers

from getting access to CAN networks or to deny their messages to

be accepted by the receiving ECUs: they space from segmenting

networks to make the access to critical subnetworks more complex,

to authentication protocols, to IDSs. All these countermeasures

have their pros and cons. For example, authentication protocols

usually require significant data and computation overheads or mod-

ifications to the hardware of all concerned ECUs, rule-based IDSs

can not recognize most powerful attacks, and machine-learning-

based IDSs do not have the certainty of not incurring into false

positives. Therefore, the automotive environment is still far from

being secure and new countermeasures are still required to defend

from all those attacks that are not yet covered.

In this paper we present CopyCAN, an error-handling protocol-

based intrusion detection system for Controller Area Network

(CAN). CopyCAN is able to detect when any ECU has been cut

off the CAN bus and to flag every further attempt to transmit mes-

sages spoofed from the disconnected ECUs as attacks. Furthermore,

CopyCAN requires only to add its monitoring unit to the existing

network, making it easily deployable in current systems without the

need of modifying other nodes. Finally, since CopyCAN requires a

non-standard CAN transceiver, we discuss the possible reactions

that can be implemented through it after an attack is detected.

In detail, we make the following contributions:

• We describe an easily deployable IDS which detects if any

ECU has been cut off from the communication bus.

• We demonstrate the feasibility of our work by implementing

a proof-of-concept testbed.

• We test the performances of our IDS and suggest future

works to improve them.

• We analyze the possible reactions that can be implemented

once the attack is detected.

The paper is structured as follows: In Section 2 we describe the

information regarding CAN required to understand our approach.

In Section 3 we describe the related works and subsequentially in

Section 4 the threat model of our methodology. In Section 5 we

describe our approach. In Section 6 we present the implementation

Figure 1: Representation of the basic connections amongst
ECU components and CAN bus

CAN Transceiver

Computing Unit 
(Processor or 

Microcontroller)

CAN Transceiver

CAN Controller

Computing Unit 
(Processor or 

Microcontroller)

ECU1 ECU2

CAN Controller

our intrusion detection system and how focusing on its feasibility

and performances. Finally, in Section 7 we discuss the possible

reactions that can be implemented once our IDS detects an attack.

In Section 8 we present our conclusions, the limitations of our

approach and suggest some potential future works.

2 BACKGROUND CAN PROTOCOL
Since our approach directly relies on the inner workings of CAN,

we deem that an overview of its functions is necessary. We will

focus on the aspects directly related to our works. For additional

details we refer to the official CAN specification [12].

The Controller Area Network (CAN), developed by Robert Bosch

GmbH [12], is a serial communications protocol that efficiently

supports distributed real-time control between vehicle’s Electronic

Control Units (ECUs). A typical ECU, shown in Figure 1, consists of

a CAN transceiver to transform physical signals in logic values, a

CAN controller, generally implemented in hardware, to enforce the

protocol and a computing unit, which is usually a micro-controller

running custom firmware and software. CAN is a carrier-sense,

multiple-access protocol with collision detection and arbitration on

message priority (CSMA/CD+AMP). This implies that each node has

to check if the bus is free before trying to transmit data, otherwise

it has to wait for a specific signal before trying again. Collision

detection and arbitration on message priority is implemented so

that when a node starts transmitting data it still checks for collisions

during the arbitration phase, and when a collision happens only

the message with the highest priority keeps being transmitted.

2.1 Message Transmission
CAN messages are transmitted by sending different voltages be-

tween the two wires of a twisted pair cable: when the voltage

difference amongst the two wires is “high” (i.e., usually between 3

and 5 volts), the value is defined as “dominant” and is usually trans-

lated into a binary 0, while when the difference is “low” (usually

close to 0 volts), it is defined as “recessive” and translated into a

binary 1. In this way, dominant values overwrite recessive ones:

this is called zero-dominance property. Although CAN does not

require a clock, it is a synchronous protocol in which time is split

into bit-time slots. Therefore, when two ECUs try to transmit a
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Table 1: Description of the fields ofCANdata and remote frames. Length distinguishes between 11/29-bit fieldswhennecessary.

Field Length Description
SoF: Start-of-Frame 1 Single dominant bit which signals the start of a message

ID: Identifier 11 Unique Packet Identifier

RTR (11-bit): Remote Transmission Request 1/0 Dominant for 11-bit data frames, Recessive for 11-bit remote frames

SRR (29-bit): Substitute Remote Request 0/1 Must be recessive.

IDE: Identifier Extension Bit 1 Dominant for 11-bit data frames, recessive for 29-bit ones

ID-extended 0/18 Extended ID field for 29-bit data frames

RTR (29-bit) 0/1 RTR for 29-bit frames: dominant for data frames, recessive for remote ones

RB0,1: Reserved Bits 1/2 Reserved dominant bits for possible future expansions

DLC: Data Length Code 4 Number of data bytes

Data Field 0-64 Data transmitted by data frames

CRC: Cyclic Redundancy Check 15 Check for data sanity

CRC Delimiter 1 Must be recessive

ACK: Acknowledgment slot 1 Sent by transmitter as recessive, the receiver over-

writes it as dominant if the message is error-free

ACK delimiter 1 Must be recessive

EoF: End of Frame 7 Sequence of recessive bits

dominant bit and a recessive one in the same slot, all receiving

nodes listening on the bus consider only the dominant value.

The CAN protocol includes four types of messages, called frames:

data, remote, error, and overload frames. As explained later, only

data and remote frames require arbitration. For this reason, each

data and remote frame is identified by a message ID which is either

11 or 29 bits long, depending on the employed CAN format (Stan-

dard or Extended). When two ECUs start to transmit in the same

bit-time slot, an arbitration procedure takes place, where the mes-

sage ID defines its priority: thanks to the zero-dominance property

explained above, 0 bits are considered dominant over 1 bits, hence

messages with numerically smaller IDs have a higher priority. For

the mechanisms explained above, CAN requires a careful design of

the network nodes and of the sent IDs. In fact, although there is

not any kind of enforcement of this rule, in CAN there cannot be

two different nodes sending messages with the same ID, otherwise

the arbitration phase could be resolved with more than one node

still writing on the bus. We proceed to explain the four kinds of

frames available in CAN.

Data and Remote Frames. As visible in Table 1, are composed

of many fields. The first ones, both in the standard and extended

formats, mainly regard the arbitration phase. Then, in data frames

we find the field related to the data payload. Finally, in both data

and remote frames there is the Acknowledgment (ACK) slot, which

is sent as recessive (1) by the transmitter, and has to be overwritten

with a dominant bit (0) by one of the receivers to validate the

message. All the fields described in the table, except the Cyclic

Redundancy Check (CRC) Delimiter, the ACK field, and the End

Of Frame (which have a fixed-form), are coded with the method of

bit stuffing: whenever a transmitting node detects five consecutive

bits with the same logical value to be transmitted, it automatically

inserts a complementary bit in the actual transmitted bitstream.

This complementary bit is also recognized from receiving nodes,

and, hence, discarded as not being part of the original payload.

Data frames are usually autonomously sent on a fixed time interval,

although other nodes can request them by sending remote frames.

Error Frames. They consist of two fields: error flag and error

delimiter. Usually the transmission of one error flag leads to a

superposition of error flags, followed by the error delimiter. Error
Flag It can be Active, consisting of six consecutive dominant bits, or

Passive, consisting of six consecutive recessive bits. An ’error active’

node detecting an error condition signals this by transmitting an

active error flag. The error flag’s form violates the rule of bit stuffing

explained above: as a consequence, all other nodes detect an error

condition and start transmitting their own error flag. Therefore

the sequence of dominant bits which can be monitored on the

bus results from a superposition of different error flags, leading

to a sequence long between a minimum of six and a maximum of

twelve dominant bits. An ’error passive’ node detecting an error

condition signals it by transmitting a passive error flag. The ’error

passive’ node then waits for six consecutive bits of equal polarity:

the passive error flag is complete when these six equal bits have

been detected. Error Delimiter This field consists of eight recessive

bits and signals the return to normal bus communication.

Overload Frames. They are obsolete and rarely used. They are

sent to delay the transmission of the next data or remote frame,

mainly due to nodes requiring more time to compute previous

frames. They consist of the overload flag (six dominant bits, like the

active error flag) and the overload delimiter (eight recessive bits,

like the error delimiter). Overload frames, despite having the same

structure of error frames, are not transmitted due to the detection

of an error but are sent only in Interframe Space (IFS) (explained

in the next paragraph) to delay transmission. Since in the IFS the

method of bitstuffing is not implemented they do not raise errors

from other nodes.

Finally, data and remote frames are separated from preceding

ones, whatever types they were, by the Interframe Space (IFS). This

field contains a minimum of three recessive bits (Intermission) plus

all the recessive bits representing the bus idle condition, where no
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node is trying to transmit and the bus is free, ready for the next

dominant Start-of-Frame. Overload frames can be transmitted only

during the Intermission field.

2.2 Error Detection
As explained above, when a node detects any error during the

transmission, it signals it by transmitting an error frame. This leads

also the other nodes on the bus to notice that an error occurred and

to transmit their own error frame. Here the different types of error

(not mutually exclusive) that can occur:

• Bit error, raised if a node sending a bit on the bus reads a dif-

ferent bit value than the one being sent. The only exception

is when the transmitting node sends a passive error flag and

it detects a dominant bit.

• Stuff error, raised if six consecutive bits with the same polar-

ity are detected in a message field that should be coded with

the method of bit stuffing.

• CRC error, raised if the CRC calculated by a receiving node

is different from the CRC transmitted in the frame.

• Form error, raised when a fixed-form bit field contains one

or more illegal bits.

• ACK error, raised by a transmitting node when it does not

monitor a dominant bit in the ACK slot.

Whenever a bit, stuff, form or ACK error is detected by any

node, the transmission of an error flag is started by the respective

node at the next bit time. Whenever a CRC error is detected, the

transmission of an error flag starts at the bit time following the

ACK delimiter. Finally, after a corrupted frame has been detected,

such a frame is automatically retransmitted as soon as the bus is

idle again, according to arbitration.

2.3 Fault Confinement
In order to handle faulty devices, a node on a CAN bus can be

in one of the following three states: ’error active’, ’error passive’

or ’bus off’. An ’error active’ node can normally take part in bus

communication and sends an active error flag when it detects an

error. An ’error passive’ node takes part in bus communication

but when it detects an error it sends a passive error flag, which is

detected and echoed by other nodes only if the error passive node

had already won arbitration at the time when the error occurred.

Moreover, after a transmission, the ’error passive’ node has to wait

eight bit time slots before initiating another transmission. Finally, a

’bus off’ node is not allowed to participate in bus communication.

To define in which state a node (ECU) is, each node keeps track

of its own two error counters: Transmit Error Count (TEC) and

Receive Error Count (REC). These counters are modified according

to the following rules (as taken from [12]):

(1) When a receiving node detects an error, its REC is increased

by 1, except when the detected error is a bit error during the

transmission of an active error flag or an overload flag.

(2) When a receiving node detects a dominant bit as the first bit

after sending of an error flag, its REC is increased by 8.

(3) When a transmitting node sends an error flag, its TEC is

increased by 8. However there are two exceptions in which

the TEC is not changed: if the transmitter is ’error passive’

and detects an ACK Error and does not detect a dominant bit

while sending a passive error flag, or if the transmitter sends

an error flag because of a stuff error that occurred during

arbitration whereby the stuff bit is located before the RTR

bit, and has been sent recessive but monitored as dominant.

(4) If a transmitting node detects a Bit Error while sending an

Active Error Flag or an Overload Flag, its TEC is increased

by 8.

(5) If a receiving node detects a Bit Error while sending anActive

Error Flag or an Overload Flag, its REC is increased by 8.

(6) Any node tolerates up to seven consecutive dominant bits

after sending an Error Flag or Overload Flag. After detecting

the 14th consecutive dominant bit (in case of an Active Error

Flag or an Overload Flag) or after detecting the 8th consecu-

tive dominant bit following a Passive Error Flag, and after

each sequence of additional eight consecutive dominant bits,

every transmitter increases its TEC by 8 and every receiver

increases its REC by 8.

(7) After the successful transmission of a message (getting the

ACK and monitoring no error until End Of Frame is finished)

the TEC is decreased by 1 unless it was already 0.

(8) After the successful reception of a message (reception with-

out error up to the ACK Slot and the successful sending of

the ACK bit), the REC is decreased by 1, if it was between 1

and 127. If REC was 0, it stays 0, and if it was greater than

127, it is set to a value between 119 and 127.

(9) A node is ’error passive’ when its TEC or REC equals or

exceeds 128. An error condition letting a node become ’error

passive’ causes the node to send an Active Error Flag.

(10) A node is ’bus off’ when its TEC is greater than or equal to

256.

(11) An ’error passive’ node becomes ’error active’ again when

both its TEC and REC are less than or equal to 127.

(12) A ’bus off’ node is permitted to become ’error active’ (with

its error counters both set to 0) after 128 occurrences of 11

consecutive recessive bits monitored on the bus.

3 RELATEDWORKS
CAN has been implemented on vehicles for around thirty years.

During this period lots of different countermeasures have been

proposed to solve its considerable security flaws: these counter-

measures range from the simple insertion of secure gateways to

divide the on-board network into subnetworks [34], up to the more

complicated implementation of honeypots [32]. There have also

been proposals to replace CAN with network protocols on which

security is more easily implemented [22, 30], such as automotive

Ethernet [13]. However, the real-time properties and the lower costs

of CAN and its successor Controller Area Network with Flexible

Data-rate (CAN-FD) make them mandatory in some subnetworks.

In the latest years the trend regarding CAN-related security

have been mostly focused on two main countermeasure categories:

authentication protocols and Intrusion Detection Systems (IDSs).

Regarding authentication protocols, the general idea relies on
using part of the CAN packet to transmit a hash of the message,

encrypted through a secret key, alongside a counter (to defend

from replay attacks). Although some state-of-the-art proposals like

LeiA [24], VatiCAN [3] and VeCure [33] strengthen the security of
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CAN, their downsides are still relevant: the decreases in response

times and data bandwidth, generated respectively by the calculation

and the transmission of the hash, make the usage of authentication

protocols an unfeasible solution in most cases. In fact, their imple-

mentation is hardly feasible on less powerful ECUs, such as sensors,

due to the computation requirements, while busy networks with

many ECUs would suffer from the bandwidth overheads.

Regarding Intrusion Detection Systems (IDSs), instead, the
general idea relies on reading the bus and detecting whether an

attack is being performed. We can divide IDSs for CAN in three

categories, depending on the approach they apply to detect at-

tacks. Frequency-based IDSs, such as [21, 28], take advantage of

the mainly periodic trend of CAN communication (ECUs send mes-

sages with the same ID at regular intervals) and detect abnormal

behaviors when the frequency of a message changes unexpectedly.

Specification-based IDSs comprise all those IDSs that detect incon-

sistencies of data through the analysis of a set of given rules (all the

traditional rule-based IDS are included in this category). Two of the

latest and less trivial examples are Parrot [9] and the new STINGER

CAN transceiver [2] from NXP [1]. Their basic functioning is based

on the knowledge of which CAN IDs are transmitted by the ECU

they are installed on (as explained in Section 2 each ID is sent by

only one CAN node for each network). When one of such IDs is

transmitted on the network, if it was not sent by the ECU on which

Parrot or STINGER are installed on, they flag it as an attack and react

accordingly. Finally, data-sequence-based IDSs comprise all those

IDSs that detect intrusions by analyzing the changes in the data

payload of messages through time (e.g., Markovitz and Wool [17],

Taylor et al. [29]) IDSs have fewer downsides compared to authen-

tication protocols but are also less effective. In fact, the final goal

of an IDS is only to recognize attacks, and not to prevent them as

authentication protocols do. Moreover, the IDS is unaware of the

aftermaths of the detection and requires to be installed alongside a

“reactional” component in order to be effective. In cyber-physical

systems, such as the automotive one, this characteristic of IDSs

makes them less suitable to be implemented: in fact, among the

proposed IDSs, many of them do not ensure the absence of false

positives (especially among those IDS which implement machine

learning algorithms). This prevents from being able to react by

shutting down the node which is sending the messaged flagged as

malicious, since it may lead to the unnecessary lowering of safety

features of the vehicle. Furthermore, multiple attacks can often be

implemented without surpassing the bounds of preset rules (both

frequency or data related), since such rules have to be valid in many

vehicular environments.

Our solution targets a specific property of CAN, the Transmit

Error Count (TEC) of the controller, which at the best of our knowl-

edge is rarely used as a countermeasure. In fact, the only IDS that

works at transceiver level and exploits the TEC, is the one imple-

mented in STINGER [2]. However, STINGER only defends the ECU

on which it is installed, while CopyCAN watches over the whole

bus. Moreover, CopyCAN cannot be bypassed since it is able to

monitor the TEC of the victim and does not require any knowledge

about the malicious ECU, making it unfeasible for the attacker to

fake or modify the counter even knowing about the implementation

of CopyCAN on the bus.

4 THREAT MODEL
The possibility of a remote attacker in automotive networks was

not considered when CAN was designed, hence the protocol has

not been designed by taking into account security. Furthermore,

the necessity for a cost-effective and real-time protocol led to the

choice of having short data frames (maximum 8 bytes of payload)

and medium bandwidth (in the best case up to 1Mbps), which do

not leave a lot of space for implementing security features at a later

time. Over the years, with the proliferation of wireless technologies

such as Bluetooth, Wi-Fi, and Long Term Evolution (LTE), some

ECUs started to be designed with external communication capa-

bilities and are now reachable from remote. However, these ECUs

are still connected to all other ECUs inside the vehicle through

wired on-board networks. Nowadays, on-board communication

does not consist of a single or two CAN networks on which all

ECUs are connected, as was the standard 20 years ago. In fact, se-

cure gateways [34] divide it into various sub-networks that limit

the capabilities of the attackers.

4.1 Real World Attacks
Researchers implemented many attacks in the last ten years to

demonstrate on one side the capabilities that an attacker has once

getting access to CAN networks, and on the other side the lack of se-

curity in the design of marketed vehicles. Initially, in the early 2010s,

Koscher et al. [16] and Checkoway et al. [7] proved first that, by con-

necting physically to the CAN networks of the vehicle, they could

take control of it in some situations, and second that some early

stage attack surfaces, such as a CD player or a Bluetooth device,

were exploitable if already connected to such CAN networks. Some

years later Miller and Valasek published three papers on automo-

tive security: in the first [31] they made an in-depth analysis of the

capabilities of an attacker with CAN bus access, proving that more

equipped vehicles, with more safety and comfort accessories, were

more vulnerable to attacks. In the second [19] they analyzed the

topology of multiple vehicles, some newer than others, discussing

the security of each one. Finally, in the third [20] they demonstrated

an attack performed completely from remote, through the cellular

connection, on a one-year-old vehicle, on which they managed

to force cyber-physical controls such as park-assist-related steer,

brake and acceleration. For this third attack, they required to ex-

ploit two ECUs in order to obtain the capability to write on the

correct CAN bus. Once on the bus, they were able to perform all

the different attacks by spoofing CAN messages, without requir-

ing to control directly the ECU that performed the brake, steer

or acceleration. After these works, different researchers proposed

similar real-world attacks implementable from remote on newer

cars such as on a Tesla S [27] and BMWs [15], demonstrating that

although manufacturers have implemented some security features

in vehicles, a skilled attacker can still gain access and take control

of the vehicle.

Finally, all the attacks presented up to now consist mainly on

spoofing the messages of other ECUs. The last real world attack we

present, implemented by Palanca et al. [22], shows the possibility

for the attacker to target one ECU and disconnect it from the CAN

bus through a targeted Denial of Service (DoS) attack.

2019-09-25 15:47. Page 5 of 1–12.



U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM CPS-SPC, November 11, 2019, London, UK Longari and Penco, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4.2 Attacker Capabilities
We consider an attacker who has already obtained control of (or in-

stalled) an ECU on the CAN bus. The attacker has complete knowl-

edge of the system and the functionalities of each ECU on the

network, and he also knows which CAN messages are required to

control each functionality. The attacker can either be connected

from remote or from inside the vehicle, and he is aware of CopyCAN

being installed on the network. The only requirement that we have

is that the attacker does not have physical access to the ECU on

which our IDS is installed. However, in all literature regarding CAN

related countermeasures, this is considered an assumption since if

the attacker has such capabilities, he has non strictly “cyber-related”

methods to achieve his goals [7].

4.3 Attack Model
After explaining the attacks that have been proven to be feasible

throughout the years and the strengths of our attacker, we describe

how we can classify attacks to CAN.

Sniffing. Sniffing is not usually considered a threat. Since the nodes

are connected to the bus network, reading the messages from and

to other nodes just requires to be physically connected. Further-

more, the authentication protocols mentioned in Section 3 does not

encrypt the whole message. The reason for this is dual: encryption

would require an even higher computation time, and usually CAN

messages are not interesting to be sniffed for an attacker since they

do not carry data meaningful to steal.

Denial of Service (DoS). DoS is instead usually considered a

threat, but not to the safety of the people in and around the vehicle.

In fact, since ECUs may fail due to malfunctions while the vehi-

cle is on the road, the whole system has been designed to ensure

safety anyway. However many features, comprising the possibility

to drive the vehicle, could be compromised due to the malfunctions.

For this reason, an attacker with financial goals or that targets

the reputation of the manufacturer may still have interest in DoS

attacks.

To implement a DoS the attacker has two options: either he

floods the CAN bus with packets with ID “0” to win all arbitrations,

although this approach is easily detectable by an IDS, or he exploits

the same characteristic of CAN exploited by Palanca et al. [22],

creating a so-called targeted DoS attack:
This attack takes advantage of the rules for fault confinement

provided by the CAN protocol. Essentially, apart from rare excep-

tions (as explained in Section 2.3), when a transmitting node sends

an error flag its TEC is increased by 8: this means that after 16 in-

valid transmissions an ’error active’ node withTEC = 0will become

’error passive’ (TEC = 128), and after 16 more invalid transmissions

it will go in ’bus off’ state (TEC = 256), disconnecting itself from

the bus. The goal of the attacker is therefore to convince the target

node of being defective by triggering victim’s fault confinement

protocol enough times.

There are mainly two ways to implement this attack: the first

one, presented by Palanca et al. [22] and represented visually in

Figure 2, requires a non-standard CAN controller and can be divided

in two phases: The attacker first has to detect the ID of one of

the frames sent by the target ECU. Second, the attacker waits for

the victim to win an arbitration, then waits for the transmission

Figure 2: Representation of Targeted DoS as in [22]
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Figure 3: Representation of frequency-based targeted DoS
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of the payload: at this point he overwrites one of the recessive

bits of the victim’s message with a dominant one. This causes the

detection of a bit error by the victim, signaled by the transmission

of an error flag and a subsequent new attempt to transmit the

frame. The TEC of the victim increases by 8 for each time the frame

is overwritten. Therefore, the attacker only needs to perform 32

straight bit overwrites of a frame sent by the victim node in order

to block that node in ’bus off’ state.

This attack is not counterable by the victim. However, given the

requirement of a physical modification of the CAN controller of

the attacking device, this attack is feasible only if the attacker had

previous physical access to the vehicle. For this reason, in the litera-

ture it is usually considered a threat mainly for car-sharing services,

in which case the attacker has physical access to multiple vehicles

in a relatively short amount of time, while being less dangerous for

traditionally owned cars.

On the other hand, the second kind of targeted DoS is not as

reliable as the first one, but does not necessarily require a modified

CAN controller, which makes it much more feasible to implement

in remote attacks.

Figure 3 shows how this attack works: In this case the attacker

requires to detect the ID of one of the frames sent by the victim,

and the frequency at which messages with that ID are transmit-

ted. Obtained this information, the attacker sends a message with

the same ID but with an 8 bytes long sequence of “0” as payload,

synchronized with the message of the victim. If the attack is timed

precisely the ID sent by the victim and the one sent by the attacker

overlap, hence convincing both the victim and the CAN controller

of the attacker (which has not been modified) that they won arbitra-

tion. However, since the data payload of the attacker is composed

only of dominant bits, and making the suitable assumption that the

victim is sending meaningful data and not only dominant bits as the

attacker does, at least one recessive bit of the victim is going to be

overwritten by the attacker, hence triggering its fault confinement

protocol and sending an error active flag on the bus (which triggers

also the fault confinement protocol of the attacker, increasing its

TEC of 8 points). Both ECUs repeatedly try to send their own mes-

sage, not realizing that they are being overwritten by the other and

both repeatedly increase their TEC. However, as explained in [9],

when both switch to “error passive” state, the victim can only send

error passive flags, which are not detected by the attacker who

keeps transmitting successfully his frames, hence only the victim

increases its TEC until switching to “bus off” state.

2019-09-25 15:47. Page 6 of 1–12.
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The unreliability of such an attack comes from the unpredictabil-

ity of the precise instant in which the victim sends the first bit of

its message. If the attacker anticipates or delays the dispatch of its

frame of a “bit time slot,” the attack fails.

Spoofing. Finally, spoofing attacks are the most threatening ones.

Amongst the real-world attacks explained in Section 4.1, all those

that affect the safety of people in and around the vehicle comprise

the use of spoofed CAN messages.

Spoofing attacks are easier than targeted DoS to implement,

since the only requirements for the attacker are to know the ID

of the frame that he wants to spoof and to know how the data is

encoded in the payload (i.e., how the receiving ECU translates the

bits of the payload into meaningful information). After the attacker

obtains this knowledge, whether it is public or through reverse

engineering of a similar vehicle, he can proceed to send the packet

to the receiving ECU, which will consider it as being transmitted

from the spoofed victim.

However, through the years countermeasures have been applied

to protect the network from such attacks. There are three counter-

measures that the attacker needs to bypass to spoof the message: (a)

the attacker needs not to cross the boundaries of rule-based IDS. To

obtain this goal he just requires to know the rules and respect them

when implementing the attack: in fact, as mentioned in Section 3,

not all attacks require to cross the boundaries set by rule-based IDS.

(b) The attacker needs to ensure that the receiving ECU considers

his data over the ones of the authentic transmitting node. In order

to do so, Miller and Valasek [31] increased their frequency of trans-

mission: however, this may nowadays trigger frequency-based IDS.

(c) The attacker has to avoid to be detected by Parrot [9] or similar

countermeasures.

However (a) is feasible to bypass, knowing the rules of the IDS,

and in order to take care of (b) and (c) the attacker can implement

a targeted DoS against the transmitting ECU of which he wants to

spoof the messages.

As we explained up until now, this is the most threatening kind

of attack to automotive networks, since it threatens the safety of

people in and around the vehicle. The implementation of the attack

through a previous DoS is also currently the only one that cannot

be detected.

CopyCAN focuses on detecting this implementation of the attack

by knowing which ECUs should be in “bus off” state.

5 APPROACH
The final goal of CopyCAN is to detect when any ECU has been

disconnected from the network through the exploitation of the

fault confinement mechanism of CAN, as explained in Section 4.3.

Specifically, CopyCAN keeps a copy of the Transmit Error Count

(TEC) of the protected ECU. In fact, the core concept behind our

approach is that, since the attacker abuses of the fault confinement

protocol of CAN to shut down the victim ECU, we can exploit the

same protocol to detect when said ECU switches to “bus off” state.

We proceed to explain in detail the reasoning behind CopyCAN’s

behavior: first we explain the basic assumptions required for its

functioning, then we proceed to explain how the rules for mod-

ifying the TEC are implemented. Finally, we describe its model

through the use of an “extended finite state machine”. To conclude

the description of our approach, we discuss potential reactions to

the detection of an attack.

5.1 Assumptions and Physical Placement
CopyCAN does not use a standard CAN controller. In fact, since it

reads every single bit transmitted on the bus, it requires to retrieve

the data directly from the CAN transceiver.

CopyCAN requires to be on the same physical network of the

protected ECUs and the messages cannot be transmitted through

a gateway since this would not relay the CAN errors, making it

impossible to detect when the victims switches to “bus off” state.

There are no theoretical limitations to the number of ECUs simul-

taneously analyzed by our IDS.

We assume that CopyCAN knows all the IDs “owned” by each

protected ECU (i.e., all the IDs of messages that each ECU transmits)

since it needs to understand, while an error occurs, whose TEC

should be incremented. However, CopyCAN does not require to

know any other information about the victim.

Lastly, we assume CopyCAN to be listening on the network since

the moment in which the first packet is sent, since otherwise it may

not be aware of previous events that triggered a TEC change in one

of the protected ECUs.

Similar assumptions are also done by the majority of other state-

of-the-art IDSs for CAN.

5.2 Fault Confinement Rules Analysis
CopyCAN detects the increment or decrement in the Transmit

Error Count (TEC) of the protected ECU through the analysis of

the fault confinement rules listed in Section 2.3. We refer to them

to explain how we implemented them.

As we already mentioned, our goal is to knowwhen the defended

ECU gets disconnected from the network, switching to “bus off”

state. Rule (10) explains that this happens only when the TEC of

the ECU reaches 256. Therefore we are only interested in counting

the TEC, and not the REC, of the protected ECU. For this reason,

rules (1),(2),(5) and (8) are not necessary. Since the IDS does not

require to know when an ECU goes in “error passive”state, rules

(9) and (11) are also not of our concern.

The basic definition of (3) (“when a transmitting node sends an

error flag, its TEC is increased by 8”) can be implemented in our

IDS by increasing the TEC of the protected ECU if it is the current

transmitter and if we monitor an error flag during its transmission.

The first exception of (3) regards a corner case where a trans-

mitter is error passive and it detects an ACK error. In this case, if

no other node sends an active error flag, the transmitter does not

increase its TEC. This is easily implemented since, from the point

of view of the bus, no error flag is detected: in fact the passive error

flag consisting of six recessive bits is not recognized as an error by

other nodes since the bit stuffing rule has been deactivated since

the CRC delimiter. Therefore, we just avoid increasing the TEC of

the transmitter already when we detect the missed ACK and wait

for the subsequent flag instead.

The second exception regards events happening during arbitra-

tion, which are not of our concern since they are not exploitable by

the attacker (i.e., the attacker cannot know yet whether its target is

writing on the bus).
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(4) represents the corner case in which the CAN transceiver of

the protected ECU fails in a specific way: reading a bit that should

be dominant as recessive during the transmission of an active error

flag. This event is not visible by our IDS, since there is no way to

detect it on the bus. However, since the bit trasmitted on the bus

is dominant, the attacker cannot exploit this to bypass CopyCAN.

Also, as explained later in the implementation in Section 6.2, we

never found occurrences of this corner case in our tests.

(6) represents another corner case: the seven dominant bits are

composed by the active error flag of other nodes (stuff error caused

by the first error flag composed of six equal bits) and one more

dominant bit (which we assume to be comprised in the count just

to double-check the failure of an ECU, since there seems to be no

justification for it in the official CAN specification [12]) .

After these seven dominant bits the node expects the error delim-

iter (eight recessive bits). In case this does not happen, this means

that an error occurred and an ECU is flooding the network with “0,”

or the node is reading incorrectly from the bus. In order to try to

disconnect the faulty node from the network, the TEC of all trans-

mitters is increased by 8 for every time they read eight consecutive

dominant bits after they send an error flag.

We are interested in this rule only if it is triggered when a pro-

tected ECU is transmitting. Since our IDS is only aware of the

transmissions on the bus, and it does not know the error type that

triggered the first error flag, this rule creates ambiguity. In fact, in

a sequence of “0,” we are unaware of when the error flag of the

protected ECU has started: the first bit of the error flag could be

from the first of the sequence up to the seventh. If it is the first, the

protected ECU will consider the fourteenth “0” as a trigger of rule

(6). If, instead, the seventh “0” bit of the sequence is the first one of

the error flag of the protected ECU, the rule will be triggered only

at the twentieth consecutive “0”.

Is it important to notice, although, that in a functioning network

only 12 consecutive “0” can appear consecutively: in fact after six

consecutive “0,” independently from the reason behind them being

transmitted, every error active node should detect a stuff error

and start sending its own flag. After this event, every node on the

network should be waiting for eight recessive bits (error delimiter)

monitored on the bus. Therefore, there is no reason to detect another

“0” after the two sequences of six dominant bits justified by the error

flags. In fact, the chances for this faulty behavior to repeat itself

enough times to trigger the IDS into considering the protected

ECU in “bus off” state, without it actually being in that state, are

considerable zero in real-world scenarios, and this is supported by

our tests, since this behavior was never triggered.

On the other hand, waiting for the twentieth bit would enable

an extremely skilled attacker to trigger the “bus off” state of the

protected ECU without being detected by the IDS. For this reasons,

we choose to count the increasing by 8 of the TEC after the thir-

teenth bit detected on the bus and each eight consecutive dominant

bits after that.

(7) is implemented by decreasing the TEC every time the pro-

tected (ECU successfully transmits a message.

(12) is implemented by resetting the TEC of the protected ECU

after 128 occurrences of 11 consecutive recessive bits on the bus.

Although it may be possible for the protected ECU to “lose” one of

said occurrences, the attacker has no capability of controlling this

event.

5.3 Algorithm Modelization
As mentioned before, CopyCAN requires to read the bus bit by bit,

retrieving data directly from the CAN transceiver. We proceed to

explain the algorithm behind CopyCAN, represented through an

extended finite state machine in Figure 4, which explains how we

parse messages and how we update the counters of the protected

ECUs. For the sake of comprehensibility, we describe the algorithm

required to parse frames with 11-bit IDs, although it can be easily

be adapted to parse frames with 29-bit IDs by following Table 1.

In order to handle the parsing of the frame we require a set of

variables that we proceed to list: BC (Bit Counter), used to check

which frame’s field we are processing: this counter is increased

by 1 whenever we read a bit. PC (Polarity Counter), used to keep

track of how many subsequent bits of the same polarity we read:

in this way we can both handle stuff errors and update the bit

counter after bit stuffing takes place. This counter is increased by 1

if the current monitored bit is identical to the previous one, reset to

zero otherwise. STUFF is used to store the number of stuffing bits

inserted during a frame transmission: after we read five subsequent

bits with the same polarity, we increase this variable by 1. DL is

used to store the number of data bytes of the frame. formErr,
which can assume 0 or 1 values, is used to handle form errors, as

explained later in details. Finally, we use TEC to keep track of the

TEC of the protected ECU.

We divide the analysis in error-free parsing, which describes

the situation in which all ECU behave correctly and no error is

detected, and error handling, in which we describe what CopyCAN

does in case an error occurs.

Error-free parsing. The process starts in idle state during the

ignition of the vehicle, therefore knowing that the TEC of each

ECU is currently equal to 0. All variables mentioned above are

also initialized to 0. As long as we read recessive bits, the bus is in

idle state. Once we monitor a dominant bit, representing the Start

of Frame (SoF), we move to the SoF state. Since from now on bit

stuffing is implemented, we start updating the Polarity Counter (PC)
as explained above.

The algorithm can now process the ID that is being written on

the bus and store it in order to handle the TEC of the corresponding

ECU. The ID is composed by the second to twelfth bits of the

packet, unless bit stuffing is required, in which case we need to

add some bits and update properly the bit counter (e.g., in case of

ID 0x16, which is transmitted as 00000010000, we expect to read

000001010000).

Then we memorize the next bit, which is the Remote Transmis-

sion Request (RTR) bit as expected by the protocol, to distinguish

between data and remote frames.

Now, in the case of 11-bit ID frames, the Identifier Extension (IDE)

bit and reserved bit are both expected to be dominant. Note that,

when considering 29-bit ID frames, also the IDE should be stored

to handle the distinctions between the two different employed

standards.

Once we parse the Data-Length Code (DLC) and store its value,

we either move to CRC state in case the RTR bit was recessive,
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Figure 4: Graphical representation of the state machine model. In black, the transitions to error free states. In red, transitions
to error related states. In blue, transitions to overload related states. When only a number is used to describe the transition
between two states (arrow), we consider it to be the bit monitored on the bus.

meaning that we are parsing a remote frame, or we read the data

payload in case the RTR bit was dominant (data frame): in this last

case we read 8 × DL bits plus potential bit stuffing.

After we parse the CRC, the polarity counter is deactivated since

the bit stuffing rule is not applied from now on.

We proceed to read the last ten bits of the frame: we expect

them to be all recessive except the ACK slot in case of a positive

acknowledge of the frame. If no error occurs we move directly

from DEL/ACK/EoF state to Intermission Field (IF) state: during

this change of state we decrease by 1 the TEC of the protected ECU

since we parsed an error-free frame.

Finally, after three more recessive bits representing the IF, the

algorithm moves back to idle state, waiting for the next transmis-

sion.

Moreover, the algorithm handles the transmission of overload

frames, signaled by a dominant bit monitored during IF state. In

this case we process up to twelve consecutive dominant bits, due to

the propagation of the overload flag, followed by eight consecutive

recessive bits, representing the overload delimiter. After this we

move back to idle state, as expected by the protocol.

Error Handling. If at any moment during the transmission the

polarity counter signals that six consecutive bits with the same

polarity have been read (PC == 5, which is feasible only since we

read the ID until we read the CRC, since the PC is deactivated

after the latter field), the algorithm switches to a state that handles

the error flag. As explained in Section 5.2, the error flag should

be from six to twelve bits long due to error propagation. If it is

longer, the exception of rule (6) is triggered. Once the algorithm

detects a recessive bit, it switches to error delimiter state. Both

when the exception is raised both when the algorithm switches

to error delimiter state, the TEC of the protected ECU is increased

by 8. After eight consecutive recessive bits, representing the error

delimiter, we go back to IF state as expected by the protocol.
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The only error case that is not taken into consideration by the

previous procedure happens when, during the last twelve bits (CRC

delimiter, ACK slot, ACK delimiter, End of Frame (EoF)), a form error
arises. In this case, even if an error happens we may not detect an

error flag: since the bit stuffing rule is currently not applied, if all the

ECUs on the network are in error passive state, even if they detect

the error, they will write six consecutive recessive bits on the bus,

which is the same sequence of bits that we detect in an error-free

transmission. In order to handle this event, if we detect a dominant

bit among these fields (except for the ACK slot, where the dominant

bit represents an ACK), we set formErr to 1 and move to the error

flag state. Here we expect one of two situations: either we monitor

six consecutive dominant bits, representing the active error flag of

the transmitting ECU, followed by the eight recessive bits of the

error delimiter, or we monitor fourteen consecutive recessive bits

in case of a passive error flag plus its delimiter. Through formErr
we can handle properly both situations: after reading the first bit

of the error flag, if this is dominant we set the variable back to

zero to signal that we expect only eight consecutive recessive bits

once moved in error delimiter state, before moving to IF state. If

instead the first bit is recessive, we move immediately to error

delimiter state with formErr equal to one, signaling that we expect

14 consecutive recessive bits before moving to IF state. Whenever

we go back to idle state, in case of both an error-free transmission

and an error handling situation, we reset all variables except TEC.
Finally, the situation after the ECU goes “bus off” is handled in

parallel: when the TEC reaches 256, a check starts for all 11 bits

long sequences of recessive bits and a counter is increased. When

the counter reaches 128 we reset the TEC and assume the ECU to

be connected again.

6 EVALUATION
We describe the environment created to test our approach, both

under a feasibility and a performance point of view. After that, we

discuss the results of our proof-of-concept implementation. We run

two different tests. The first to understand the feasibility of our

methodology and its limitations, while the second to analyze the

performances required to sustain high speed CAN communication.

6.1 Testbed
To represent a real-world environment we implement four different

components in our testbed: the attacker (A), which performs the

bitbanging attack described in Palanca et al. [22] by overwriting

the recessive CRC delimiter of the frame with a dominant bit. The

protected ECU (P), on which the attack is performed. A traffic

generator node (T ), which generates frames with different IDs from

the ones sent by P. Finally, the last node on the testbed is the proof-

of-concept of our IDS, CopyCAN.
The hardware specifications for the attacker A and for CopyCAN,

visible alongside their connections in Figure 5, comprise an AT-

Mega328P microcontroller [4] (Arduino Uno rev3) connected to an

MCP2551 [14] CAN transceiver. The CAN controller in both cases

has been implemented in software due to the necessity of making it

non-compliant to CAN specifications. The traffic generator T and

the protected ECU P are composed of a CANTact [10] USB to CAN

Computer

Computer

Uno rev3

Uno rev3

MCP2551
CAN Transceiver

Software CAN Controller

ATMega328p
Processor

Software CAN Controller

ATMega328p
Processor

MCP2551
CAN Transceiver

CANTact
CAN Controller
& Transceiver CANTact

CAN Controller
& Transceiver

Intel I7-7700
Processor

Intel I7-7700
Processor

C
AN

 B
U

S

Attacker

CopyCAN

Traffic Generator

Protected ECU

Figure 5: Overview of the testbed

interface that works as CAN controller and transceiver connected

to a computer.

6.2 Feasibility Tests
We run two different feasibility tests.

The first test analyses a basic attack recognition that does not

require T. When P tries to send a frame, A flips the CRC delimiter

bit of the frame from recessive to dominant, generating the error

that increases the TEC of P and triggers a new attempt to send

the message. After 32 attempts of transmission “denied” by A, P
switches to bus off state. We ran this test 50 times and CopyCAN
always detected the disconnection of the victim.

The second test recognizes whether the exceptions described

in Section 5.2 regarding rule (4) and (6) of the fault confinement

protocol affect the bus and are relevant for the correct behavior

of CopyCAN. To stress the IDS for this test, the traffic generator

T is connected to the bus and writes frames with different IDs.

While T writes frames, the protected ECU P does the same. In the

first stage of the test the attacker A is switched off: the goal of the

test is in fact to check if any of the exceptions mentioned above

occur due to some possible collisions between frames written by P
and T, causing the TEC of P to increase. After a prescribed period

of time A performs the DoS attack against P : if CopyCAN detects

the disconnection from the bus on P it means that even if some

collisions happened, none generated an exception that was not

detected by CopyCAN. In fact, in case some undetectable exceptions

occurred, P would stop transmitting frames before CopyCAN could

signal P’s transition to “bus off” state. Hence, CopyCAN would

never detect the disconnection of P from the bus. We ran the test 50

2019-09-25 15:47. Page 10 of 1–12.
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Table 2: Performance test results on different processors

Processor Frame processing time Bit processing time Increment Exp. CAN rate
ATMega328P (Arduino Uno rev3) 678µs 7.2µs 0 (base) 100Kbps

Broadcom BCM2836 (Raspberry Pi2) 18µs 0.2µs 37× >1Mbps

Intel i7-7700HQ (Dell XPS 15 9560) 1,87µs 0.02µs 362× >1Mbps

times, with up to 15 thousand frames sent per test. In all the tests

the IDS detected the attack at the exact moment it happened.

6.3 Performance Analysis
We choose the ATMega328P for the feasibility tests due to its real-

time capabilities that derive from the lack of an operating system.

In fact, this property enables us to trust the interrupts, required to

read and write bits, to be precise to the microsecond and not lose

synchronization with the bus. Other devices with non-real-time

operating systems may have faster processors, but do not ensure

reliable timings in reacting to interrupts. This may lead the IDS to

skip bits and lose synchronization between the bus and the state

machine. However, the ATMega328P microcontroller does not have

a fast enough clock rate to keep up with the maximum baud rate of

CAN, which is 1Mbps. In fact, after multiple tests, we detected that

the controller is not able to process all bits (and therefore to update

correctly the counters) if the baud rate surpasses 50Kbps. Therefore,

we proceeded to execute the same code on other systems with

higher-end processors in order to check how much improvement

we can obtain. Since our goal is to evaluate only the execution

speed of the algorithm, without taking into account the variable

delays necessary for reading each bit on the bus (which would be

unreliable due to the lack of real-time operative systems on top of

the processors we used), we produced a sample CAN data frame of

94 bits (5 bytes of payload) and fed it directly to the code as it was

the CAN bus output.

In Table 2 we show the timing results. The processing time is

calculated as an average of 100 tests to process the whole 94 bit

frame. The results highlight that with higher-end processors the IDS

can easily sustain the maximum CAN rate of 1Mbps. In the case of

the Intel i7-7700HQ it should theoretically sustain the CAN FD [6]

maximum baud rate of 12Mbps during the transmission of the data

payload. Due to the lack of an actual interrupt and retrieval of each

bit on the bus, the results are definitely optimistic. In fact, in case

of the ATMega328P, they justify the maximum 50Kbps obtained

in our tests. The bit reading time of Arduino Uno rev3 is 4µs that,
added to the 7.2µs processing per bit gives us 11.2µs or a maximum

baud rate of 89Kbps, requires us to step down to the lower CAN

compliant baud rate of 50Kbps. Depending on the specifications

of the hardware we can then conclude that the increment may be

lower than calculated, but given that the minimum time between

one bit read and the other should be 1µs, we have respectively 0.8µs
and 0.98µs to read the bit, which should definitely be sufficient with

hardware more performing than the Arduino Uno connected to the

MCP2551 CAN transceiver.

7 DISCUSSION ON REACTIONS
Considering the properties of CopyCAN explained in Section 5

and the threat model previously described in Section 4, we proceed

to discuss two reactions that we consider feasible and suitable to

implement. As explained in in Section 4, the severity of the attacks

that CopyCAN protects from is high: a skilled attacker can exploit

it to affect the safety of people in and around the vehicle. Moreover,

in case of vehicles connected to the external environment, similar

attacks have already been proven feasible from remote. Even if

we cannot consider our methodology free from false positives,

due to the exceptions explained in Section 5.2, the probability of

generating false attack detections is close to zero in real-world

scenarios, as shown by our tests in Section 6. Therefore, due both to

the dangerousness of the attacks and to the extremely low chances

of false positives, we claim that the reactions in case of an attack

detection can be as aggressive as necessary.

The first reaction consists in alerting other ECUs and eventually

the driver of the attack attempt. In this case, the ECUs can switch to

a downgraded mode, less reliant on CAN communication for safety

purposes, until the vehicle is reset. The driver, likewise, could for

example send the vehicle to a repair shop to investigate the problem

and detect which ECU has been compromised.

The second and more feasible reaction is implementable thanks

to the fact that CopyCAN already requires a modified CAN con-

troller. In fact the same device can implement both CopyCAN and

a system to perform targeted DoS attacks such as the one from

Palanca et al. [22]. Hence, we suggest that the most immediate re-

action, once CopyCAN flags a message as an attack, should consist

in a targeted DoS attack against the attacker.

The outcome of this DoS falls in one of three cases: The first case

happens if the compromised ECU from which the attack is being

carried out can be switched to “bus off” mode, such as in the second

targeted DoS attack presented in the threat model (in Section 4.3)

where the attacker uses a standard CAN controller. In this case,

the attack is denied completely and the attacker has no chance of

success in spoofing the message. This case has no downsides. The

second case happens if the compromised ECU cannot be switched

to “bus off” mode. In this case, the attacker can keep trying to send

spoofed messages, that will be nullified by CopyCAN. However,

if the attacker tries to send the spoofed messages too fast the bus

may become unavailable. We would like to point out that in this

case the attacker already has the capabilities to implement a DoS

attack against the whole bus, hence we are still blocking him from

achieving his goal. Moreover, as explained in Section 4.3, the vehicle

already implements measures to ensure safety in case of a network-

level DoS attack. The third case represents the situation in which

the IDS flags a false positive. In this case, the reaction shuts the

ECU down before it would actually go “bus off”. However, even

supposing that one of the exceptions presented in Section 5.2 leads
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to CopyCAN counting a higher TEC than the actual one, we claim

that the event of the ECU going “bus off” was already destined to

happen, since the only cases in which the exceptions could happen

are related to either the protected ECU or another node generating

too many errors, showing a faulty behavior.

8 CONCLUSIONS AND FUTUREWORKS
In this paper, we proposed CopyCAN, a novel anti-spoofing Intru-

sion Detection System for Controller Area Networks. CopyCAN

monitors the traffic on the bus and keeps track the error counter

of the protected nodes to detect when they are disconnected from

the network, therefore being able to flag subsequent messages be-

longing to disconnected nodes as attacks. We demonstrated the

feasibility of CopyCAN by implementing it in a proof-of-concept

testbed and we tested the hardware requirements to implement it

in real-world scenarios. Finally, we discussed the feasible reactions

that can be implemented once CopyCAN detects an attack.

The only limitation regarding the CAN protocol fault confine-

ment rules comes from the impossibility to detect rule number (4),

as explained in Section 5.2. In fact, this may lead to the protected

ECU switching to “bus off” state without CopyCAN detecting it.

However, this particular case does not invalid the IDS since it is

nor detectable nor reproducible by the attacker: since the attacker

himself can only monitor the bus as CopyCAN does, he has at most

the same information that we have about the protected ECU. Also,

our tests show that rule (4) does not apply in the high majority of

cases since we always detected the ECU going “bus off”.

Future works will be focused on improving CopyCAN, by ana-

lyzing possible solutions for its limitations, and on extending the

same algorithm to CAN-FD.
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