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Saturated granular flows: constitutive modelling under steady simple shear
conditions

D. VESCOVI∗, P. MARVEGGIO∗ and C. DI PRISCO∗

In this paper, the authors analyse numerical and experimental results concerning either dry and saturated granular

flows under steady, simple shear conditions. A new constitutive model is introduced, on the base of the mixture

theory, according to which granular and liquid phases are considered separately. The constitutive relationship

refers to the Representative Elementary Volume and assumesthe mean values of all kinematic variables, of both

granular and liquid phases, to coincide. For the two phases,a parallel scheme is chosen. As far as the granular

contribution is concerned, the authors employ an already conceived constitutive model where the critical state

concept and the kinetic theory of granular gases are merged,and in which the granular temperature plays the

role of state variable for the material. Under saturated conditions, the new model accounts for granular-liquid

coupling effects. In fact, the liquid viscosity results to be a function of granular concentration, whereas the

evolution of granular temperature is influenced by the liquid molecular viscosity. The model is validated against

numerical results and critically discussed. For sufficiently small values of concentration, the transition from

Newtonian to Bagnoldian regime, for increasing values of strain rate, is correctly reproduced.
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INTRODUCTION

Fast landslides are mass movements of natural materials

propagating over long distances. They involve mixtures of

fine and coarse grains under saturated and/or unsaturated

conditions. At the inception, very often, the soil behaves

like a solid (quasi-static conditions), whereas, during

propagation, part of the material flows like a granular

mixture (dynamic conditions), strains stop localizing and

the system is dramatically agitated. In contrast, in case of

flow-slides, fluidization takes place at the beginning of flowing

and transition from fluid-like to solid-like conditions occurs

only when the soil mass stops propagating.

In the context of granular materials, the problem of both

defining unified stress-strain relationships under any flow

conditions, and reproducing the transition of a solid-like

granular mass into a fluid-like flow, and vice versa, seems

to be still unsolved. Commonly, the propagation phase has

been largely investigated by employing theoretical/numerical

tools, according to which the rheology does not take into

consideration the two distinct phases (grains and liquid).These

approaches assume the moving mass to be a single-phase

incompressible material, characterized by a rate-dependent

mechanical behaviour. In contrast, according to the authors,

in order to describe both inception and propagation stages

of fast landslides, the two-phase nature of the material and
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the coupling between the liquid and the grains cannot be

disregarded.

In the framework of continuum mechanics, the goal of the

theoretical approach discussed in this paper is to describeand

to predict the mechanical behaviour of the whole medium,

starting from the physics of the grain-grain and grain-water

interaction. The constitutive model is based on the definition

of a Representative Elementary Volume (REV) for the system,

in which boundary effects are disregarded since the medium

is assumed to be homogeneous in space. Within the REV,

whenever grains interact, each other or with water, part of the

energy is dissipated, transferred to heat and then dispersed in

the environment. In this perspective, the analysis of steady

state conditions allows to focus on the dissipative mechanisms

governing the process. In fact, under steady and homogeneous

conditions, the stored energy is constant, the diffused energy

nullifies and all the energy produced is entirely dissipated.

Under dry conditions, the collective mechanical behaviour

of a granular system is governed by the properties of the

individual particles and the interactions among them. At

the micro-scale level, the particle interactions develop two

dissipative mechanisms: enduring contacts among grains

which are involved in force chains, and inelastic collisions.

When the first mechanism prevails, the material behaves like

a solid, whereas when the particles interact only under the

form of collisions, the material response can be assimilated

to that of a fluid. Under saturated conditions, the presence of

water changes the dynamics of the grain-grain interaction,and

produces additional dissipations due to grain-water contacts.
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In particular, the grain-grain interaction is damped by the

presence of the liquid phase, then the energy dissipation of

the granular phase increases since the particle movements are

bounded by the liquid. As will be discussed in the following,

from the liquid phase point of view the presence of immersed

grains produces three effects: (i) the liquid streamlines must

deviate from their original path in proximity of the grains,

behaving these like obstacles for the flow; (ii) lubrication

effect. When two or more particles approach each other, the

liquid in the region in between them is squeezed out, and its

pressure locally increases. (iii) If the grains are not purely

transported by the stream, but their motion deviates from the

mean flow, the grain velocity fluctuations generate velocity

fluctuations in the liquid, which are associated with localized

energy dissipation. All the three effects are present even if the

mean velocities of the granular and the liquid phase coincide.

Numerical simulations and experiments are powerful tools

to investigate the rheology and the dissipative mechanisms

of granular mixtures. In the recent years, several papers have

been published concerning experimental (Verdugo & Ishihara,

1996; Huanget al., 2005; Fall et al., 2010; Boyeret al., 2011;

Fernandezet al., 2013; Paredeset al., 2013; Dinkgreveet al.,

2015; Lin et al., 2015; Panet al., 2015; Clavaudet al., 2017)

and numerical (Fernandezet al., 2013; Setoet al., 2013;

Mari et al., 2015; Ness & Sun, 2015; Singhet al., 2018) results

on saturated granular mixtures. Although these results have

improved consistently the current state of knowledge on

wet granular behaviours, they present some limitations. In

particular, laboratory experiments cannot perfectly guarantee

homogeneous conditions within the specimen and the

results are affected by boundary conditions. In contrast, in

numerical simulations, the liquid phase is not realistically

reproduced but only its effect is simulated through the

implementation of lubrication forces at the contacts between

grains (Kim & Karrila , 1991; Ball & Melrose, 1997).

The goal of this paper is to propose a constitutive model

capable of simulating the behaviour of a mixture of grains

saturated with water, under homogeneous and steady shear

conditions. The model is formulated within the context

of the two-phase mixture theory and, in order to account

for the dissipative mechanisms of grain-grain and grain-

water interaction, the energy balance equation for the two

phases is used. Under dry conditions, the model resumes

the theory proposed inBerzi & Jenkins(2015), in which a

unique formulation allows to continuously describe both the

solid- and the fluid-like phases. The dry model is based on

a parallel scheme, as was proposed inBerziet al. (2011);

Vescoviet al.(2013); Redaelliet al.(2016), according to which

the granular stress tensor is calculated as the sum of a quasi-

static and a collisional contribution. The two contributions

to the stress tensor represent the two previously mentioned

dissipative mechanisms, that is force chains and collisions. The

originality of the approach proposed in this paper derives from

the extension of the dry model to saturated conditions. Thisgoal

is achieved by: (i) considering the additional balance equations

for the liquid phase (two-phase mixture theory), (ii) including

additional dissipative contributions accounting for the presence

of water, and (iii) adopting a suitable definition for the liquid

viscosity depending on the granular concentration.

DRY AND SATURATED GRANULAR, STEADY FLOWS

Experiments and numerical simulations performed to study

the mechanical behaviour of granular media under both

dry (Babicet al., 1990; Campbell, 2002; Ji & Shen, 2006,

2008; Hatano, 2008; Otsuki & Hayakawa, 2009; Chialvoet al.,

2012; Vescovi & Luding, 2016) and saturated steady shear

conditions (Huanget al., 2005; Fall et al., 2010; Boyeret al.,

2011; Paredeset al., 2013; Dinkgreveet al., 2015; Ness & Sun,

2015), have shown that granular matters can behave like solids

or fluids according to the shear rate and the concentration

imposed. In the former case the relationship may be assumed to

be strain rate-independent, whereas in the latter one cannot. The

presence of force chains distinguishes solid-like from fluid-like

mechanical responses. Force chains are related to the geometric

arrangement of contacts, which can be characterized by means

of the fabric tensor. In particular, under homogeneous, simple

shear conditions, force chains have been observed to arise when

the first invariant of the fabric tensor, i.e. the coordination

number, is larger than a critical value (Vescoviet al., 2018).

Moreover, under steady, simple shear conditions, there is

a one-to-one relation between the coordination number and

the concentration,ν (Sun & Sundaresan, 2011), where, for

a granular material composed of identical particles,ν is

defined as the ratio of the the solid volume of the particles

over the total volume of the system (dry or saturated).

Then, in the case of steady, homogeneous shear flows, the

concentration determines whether the granular system is solid-

like or fluid-like, with the phase transition occurring at the

critical concentrationνc. For sufficiently small values of shear

rate, the stresses are rate-independent when the concentration

is larger than νc. Then, a solid-like behaviour may be

expected forν > νc, whereas fluid-like behaviours develop

when ν < νc. νc depends on the internal micro-structure of

the system (Sun & Sundaresan, 2011; Vescoviet al., 2018),

the poly-dispersity (Ogarko & Luding, 2013; Kumaret al.,

2014) and the inter-particle friction,µ, (Chialvoet al., 2012).

In particular, in their numerical simulations on steady,

homogeneous shear flows of dry, mono-dispersed particles,

Chialvoet al. (2012) have measured the critical concentration

based on the observation that the pressure fluctuations

peak at the phase transition. SimilarlySun & Sundaresan

(2011) identified the critical concentration governing the same

transition by extrapolation to zero of the relation betweenthe

pressure and the concentration. By fitting the results of their

numerical simulationsSun & Sundaresan(2011) obtained the
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following relation:

νc = 0.582 + 0.058e−5µ. (1)

For the sake of clarity, it is fundamental specifying thatνc

defined in equation (1) is the critical concentration under very

specific conditions:

• the granular material is mono-dispersed,

• all the grains are spherical,

• steady, simple shear conditions are imposed (different

values for νc are obtained in the case of either

compression or extension triaxial tests).

In general, under steady state conditions, for a well determined

granular material, the concentrations at which the material

stops behaving like a solid and starts transforming in a

fluid-like material, is varying according to the type of control

imposed (Kumaret al., 2014; Luding, 2016), that is on the

Lode angle defined in the strain rate space.

To underline the role played by the liquid in affecting

the mechanical behaviour of the material on both solid-

like and fluid-like responses, in figure1 the numerical data

of Chialvoet al. (2012) and Ness & Sun(2015) concerning,

respectively, dry (a) and saturated (b) granular systems

are compared. All their data are obtained by performing

Discrete Element Method (DEM) numerical simulations of

steady, homogeneous, shearing flows, under constant volume

conditions, on an assembly of particles. The data from

Chialvoet al. (2012) concern a mono-disperse, dry system

of spherical grains (µ = 0.5). The results fromNess & Sun

(2015) are relative to an ideal suspension (i.e., completely

saturated granular material) of spherical particles (µ = 1)

in a fluid of molecular viscosityη0. In particular, the

introduction of lubrication terms into the interaction forces

among particles mimics the presence of the liquid (“pseudo-

saturated” conditions). Since lubrication forces are present

only when particles interact among each other, when the solid

concentration is sufficiently low the liquid response cannot be

simulated properly. In such conditions, the mixture behaviour

is dominated by that of the liquid, as it will be described later,

then also its response may be not realistically simulated bythis

numerical approach. In order to obtain a more refined set of

results, one should consider the application of other numerical

techniques, such as Lattice Boltzmann Method (LBM) coupled

DEM or Computational Fluid Dynamics (CFD) coupled DEM.

LBM and CFD simulate the liquid phase dynamics and,

together with DEM, could realistically couple liquid and grains,

but in the authors knowledge, up to now, these approaches

have not yet been employed to investigate steady, simple shear

conditions.

In figure1, the dimensionless shear stressτ∗ = τd/kn ver-

sus the dimensionless shear rateγ̇∗ = γ̇d
√

ρpd/kn measured

by Chialvoet al. (2012) and Ness & Sun(2015), are plotted

for different values ofν, beingd, ρp andkn diameter, density

and contact elastic stiffness of particles, respectively.The

contact stiffness is related to the particles Young modulusEp

by the following relation:kn = πdEp/4 (Ji & Shen, 2008).

Under both dry and pseudo-saturated conditions, at low shear

rates, there are two families of curves, distinguished byνc.

For ν < νc, τ∗ continuously decreases for decreasing shear

rates (fluid-like behaviour), whereas such a dependence ofτ∗

on γ̇∗ normally reduces and nullifies forν > νc (solid-like

behaviour). For very large values ofγ̇∗, in both cases the

dependence on the concentration vanishes and all the curves

approach an asymptote characterized by a slope of1/2. In both

figures 1(a) and (b), the fluid-like and solid-like behaviours

merge aṫγ∗ ∼= 10−2.

Since the inter-particle friction coefficientµ adopted in

the two sets of simulations does not coincide,νc is slightly

different. Nevertheless, the solid-fluid transition occurs in a

very narrow range of concentration around the critical value,

and in figures1(a) and (b) the value ofνc (which, according to

equation (1) should beνc = 0.587 and0.582, in the two cases,

respectively) cannot be quantitatively measured.

An interesting re-interpretation of the data in figure1, is

reported in figure2, where the apparent viscosity, that is the

ratio τ∗/γ̇∗ = τ/γ/
√

ρpdkn, is plotted againstν. The three

different sets of numerical data in figure2 are obtained by

imposing different values of the (dimensionless) shear rate,

which are almost the same in the dry and saturated cases. In

both cases, forν < νc, the apparent viscosity increases with

shear rate, whereas forν > νc it decreases. In the context

of non-Newtonian fluid mechanics, the two rheologies are

commonly called shear thickening and thinning, respectively.

Figure2 clearly highlights the phase transition between fluid-

like and solid-like behaviours, occurring atν ≈ νc where all

the curves corresponding to different shear rates intersect each

other, providing also a quantitative tool to numerically assess

νc. Independently of whether the granular material is either dry

or saturated, solid-like behaviour appears if the particles are

packed densely enough (ν > νc) that a network of persistent

contacts develops within the medium, resulting in a jammed

mechanically stable structure. On the other hand, when the

system is so dilute that persistent force chains cannot develop

(ν < νc), the medium is unjammed and reveals a fluid-like

response (Vescovi & Luding, 2016).

Dry and saturated steady, homogeneous, granular flows

behave differently only in the fluid-like regime, forν < νc, at

small dimensionless shear rates (γ̇∗ < 10−2). In fact, in the

solid-like regime, dry and saturated systems seem to exhibit

the same rheology (figure1), that is the liquid phase seems

not to affect the granular response. Whenν < νc and γ̇∗

is sufficiently small, in the case of dry systems, the shear

stress scales quadratically with shear rateτ∗ ∼ γ̇∗2 (“Bagnold

scaling”, Bagnold, 1954, figure 1(a)). Conversely, when the

system is saturated, as is evident in figure1(b), the shear
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Fig. 1. Dimensionless shear stress versus dimensionless shear rate for different values of ν, in case of (a) dry granular systems
(Chialvo et al., 2012) and (b) non-Brownian suspensions with liquid viscosityη0/

√

ρpdγ̇ = 2.15 · 10−4 (Ness & Sun, 2015)
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Fig. 2. Apparent viscosityτ∗/γ̇∗ = τ/γ̇/
√

ρpdkn versusν for different γ̇∗ values, in case of (a) dry granular systems (byChialvo et al.,
2012) and (b) non-Brownian suspensions with liquid viscosityη0/

√

ρpdγ̇ = 2.15 · 10−4 (by Ness & Sun, 2015)

stress scales linearly with shear rateτ∗ ∼ γ̇∗ (Newtonian

like regime) at very low shear rates (γ̇∗ < 10−3). In this

case, the coefficient/inclination is a function ofν. In contrast,

for moderate shear rates (10−3 < γ̇∗ < 10−2), τ∗ ∼ γ̇∗2

(Bagnoldian like regime). This is emphasized in figures2(a)

and (b): forν < νc, viscosity curves at different shear rates

maintain the same separation distance (γ̇∗) in the dry case

(figure 2(a)), whereas in saturated systems tend to get closer

for decreasing shear rates (figure2(b)).

If the apparent viscosity is plotted againstγ̇∗ for ν < νc

(figure 3), it becomes apparent that in the saturated system

τ∗/γ̇∗ is almost rate-independent forγ̇∗ < 10−3 (Newtonian

regime), and then follows the same trend as in the dry case

for γ̇∗ > 10−3. In the case of dry systems, the apparent

viscosity depends linearly oṅγ∗ for γ̇∗ < 10−2, and for

γ̇∗ > 10−2, continuously decreases untilτ∗/γ̇∗ ∼ γ̇∗−1/2 at

large shear rates. In figure3, the dry and pseudo-saturated

data sets compared are characterized by concentrations which

differ similar quantities from the corresponding criticalvalue,

νc − ν ≈ 0.03, then a quantitative comparison is possible.

As a consequence, the influence of the liquid in which the

particles are immersed is limited to the Newtonian regime,
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Fig. 3. Comparison of apparent viscosityτ∗/γ̇∗ = τ/γ̇/
√

ρpdkn
of both dry and saturated granular systems, forν < νc

where γ̇∗ < 10−3 and ν < νc. In this regime, the viscous

forces, due to the presence of the liquid, dominate the response

of the mixture which coincides with that of a Newtonian

liquid. For increasing values ofγ̇∗, the particle inertia becomes

dominant, and the mixture response is equivalent to that of

a dry granular system. It is worth emphasizing that, in the
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Newtonian regime, the response of the mixture is also expected

to coincide with that of a pure liquid without suspended grains

when the concentration is small. As a consequence, the shear

stress should not be affected by the concentration, as for a

Newtonian liquid. As noticeable in figure1(b), this expected

behaviour is not simulated by the numerical data. In fact,

all the curves maintain the same distance each other in both

Bagnoldian and Newtonian regime, then the dependence of

τ∗ on ν does not decreases for decreasing values ofν. In

the simulations ofNess & Sun(2015), the liquid phase is not

realistically simulated, and the liquid presence is accounted

for only by adding lubrication forces at the contacts between

particles. This simplification seems to be unable to mimic the

mixture rheology in the Newtonian regime, when the system

is dominated by the viscous effects due to the liquid phase only.

If the numerical results, discussed here above, are compared

with the laboratory experimental test results available in

the literature concerning shear flows of saturated mixtures,

the theoretical framework becomes further more complex.

Experimental tests have been performed byFall et al. (2010)

by using polyethylene spherical particles (ρp = 1050 kg/m3,

Ep = 3000 MPa), of diameter d= 40 µm, suspended in water

(η0 = 10−3 Pa·s). A wide-gap Couette geometry was in this

case used to avoid confinement effects. The authors investigated

dense suspensions at concentrations below the critical value,

identified asνc = 0.605, where the material response is fluid-

like. The authors observed the transition from the Newtonian

to the Bagnoldian regime in the imposed range of shear rate

(γ̇ = 10−2 ÷ 102 s−1). To qualitatively compare numerical

(Ness & Sun, 2015) and experimental (Fall et al., 2010) data,

quantities made dimensionless with liquid molecular viscosity,

particles diameter and density are here adopted, as is illustrated

in figure4, where the “relative viscosity”,(τ/γ̇) /η0, is plotted

versus the Stokes number,St = γ̇ρpd
2/η0, for the two data

sets. The Stokes number represents the ratio of particle inertia

to the viscous forces, and allows to distinguish between

Newtonian and Bagnoldian regime. The range of Stokes

number adopted in the experiments is 4 orders of magnitude

smaller with respect to the simulations. This seems to be due

to the fact that, in laboratory tests, apparatus and particles

have small dimensions, whereas in simulations large values

of γ̇ are usually imposed to avoid large computational costs.

Nevertheless, the two data sets show similar features, scaled by

a factor of10−3.

According to the authors, the quantitative discrepancies

between experimental and numerical data could be ascribed

to the dimension of the particles to be employed to define the

dimensionless Stokes number. In the plot of figure4, the length

scale of the problem is assumed to be the particle diameter,

as each particle behaves independently without forming small

clusters. Though, each polyethylene particle is cross-linked to

the others forming polymers and therefore cluster formation is

expected, although this phenomenon has not been investigated
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Fig. 4. Comparison between numerical and experimental data in
terms of relative viscosity (τ/γ̇) /η0 versus Stokes numberSt =
γ̇ρpd2/η0

in the experiments. Considering for example a cluster having

an equivalent diameter ten times greater than the one of the

particle, the experimental data set would be scaled by a factor

of 102, almost overlapping with numerical data.

MODEL THEORETICAL ASSUMPTIONS

In this paper, a two-phase (grains and liquid) material is

considered. For the sake of simplicity, the granular phase is

assumed to be an assembly of identical spheres of diameter

d and constant densityρp, immersed in a liquid of constant

densityρl (where subscript “l” stands for liquid). The density

of the granular phaseρg can be computed asρg = ρpν (where

subscript “g” stands for granular).

In order to clarify the rheological approach proposed, the

energy balance equation for the mixture is here below taken into

consideration. In contrast, the standard mass and momentum

balances (Drew, 1983; Jackson, 2001; Pitman & Le, 2005) are

not reported for the sake of brevity, since these latter are not

employed in the following.

The energy balance for the mixture can be written as follows:

σ : ε̇ =ρpν

(

∂χg

∂t
+ ug · ∇χg

)

+

+ ρl (1− ν)

(

∂χl

∂t
+ ul · ∇χl

)

+

+ (ug − ul) ·B+∇ · q+ Γ,

(2)

whereσ stands for the total stress tensor andε̇ for the strain rate

tensor, unique for both phases since no mean relative motionis

assumed:ul = ug, whereug andul are the local velocities of

the granular and liquid phases, respectively. In equation (2), q

stands for the energy flux,B is the buoyancy force,χg andχl

are the internal energies andΓ is the system dissipated energy.

Owing to the assumption of considering steady state,

homogeneous and simple shear conditions, equation (2)

becomes

τ γ̇ = Γ, (3)
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whereτ and γ̇ are the shear stress and the shear strain rate,

respectively. By separating the two contributions (granular and

liquid), equation (3) may be written as follows

(τg + τl) γ̇ = Γg + Γl. (4)

In particular, Γg accounts for the energy dissipated at the

contacts between two or more grains, whereasΓl represents the

energy dissipated by the liquid:

Γl = ΓE
l + ΓL

l + Γgl
l , (5)

where:ΓE
l is the energy dissipated by the liquid due to the

presence of the immersed grains which behave as obstacles

for the liquid flow (Einstein, 1905); ΓL
l is the additional

dissipation associated with particle collisions. The liquid

is squeezed out from the space between the surfaces of

the colliding particles and its pressure locally increases.

This phenomenon is known in the literature as lubrication

effect (Stachowiak & Batchelor, 2013; Fernandezet al., 2013).

Finally, Γgl
l is a further contribution due to the grain agitation

(fluctuations of grain velocities) within the liquid phase and not

directly correlated to collisions.

According to the authors, for the sake of clarity, equations(4)-

(5) may be written as:

τg γ̇ − Λ = Γg, (6)

τlγ̇ + Λ = ΓE
l + ΓL

l + Γgl
l , (7)

whereΛ stands for the energy transferred by the granular to

the liquid phase. Equation (6) implies the agitated, fluctuating

motion of grains to be damped by the presence of the liquid.

In equation (7), Λ coincides, by assumption, withΓgl
l . In other

words, the granular phase transfers part of its kinetic energy (Λ)

to the liquid phase which dissipates it as thermal energy:

τlγ̇ = ΓE
l + ΓL

l . (8)

Equations (6) and (8) will be employed in the following

sections to define the rheologies for both granular and liquid

phases.

THE CONSTITUTIVE MODEL

As is commonly assumed in the geomechanical community, the

“total” stress tensor of the granular-liquid mixture,σ, can be

written as the sum of the granular and the liquid contributions:

σ = σg + σl. (9)

Equation (9) can also be interpreted as a generalization of

the effective stresses definition (Terzaghi, 1943), according to

which, the stresses attributed to the granular phase are supposed

to work in parallel with the liquid contributionσl. Differently

from the original principle, here the deviatoric liquid

contribution is assumed not to be negligible. Analogously,

according to the effective stress principle,σg coincides with

the stress associated with the arising of force chains, whereas,

in the model illustrated hereafter,σg does not nullify even if

force chains disappear, that is whenν < νc.

According to the assumption of considering simple shear

conditions, only the shear and the normal stress components

of the stress tensor,τ andσ, respectively, have to be defined,

that is:

τ = τg + τl, (10)

σ = σg + σl. (11)

Granular phase

To model the granular contribution, the theoretical approach

proposed byBerzi & Jenkins(2015) for dry granular systems

is here adopted. This is based on the standard kinetic theoryof

granular gases (Jenkins & Savage, 1983; Lun, 1991; Campbell,

1990; Garźo & Dufty, 1999; Goldhirsch, 2003). In the context

of kinetic theories, an additional internal state variablefor

the granular system is introduced: the granular temperature T .

The granular temperature represents a measure of the system

agitation, and is defined as:

T =
1

3
〈〈|ug − vp|2〉〉. (12)

wherevp is the instantaneous single-particle velocity,ug is the

mean velocity of the granular phase defined asug = 〈〈vp〉〉,
where〈〈·〉〉 designates the average obtained by using the single-

particle velocity distribution function.

The model of Berzi & Jenkins (2015) is developed as an

extension of the standard kinetic theory to account for

the deformability of particles, and works according to a

“parallel scheme” (Berziet al., 2011; Vescoviet al., 2013;

Redaelliet al., 2016). According to this approach, at the micro-

scale two are the possible dissipative mechanisms due to

the interaction among particles: (i) the former one associated

with enduring contacts among the grains involved in force

chains, and (ii) the latter one with nearly instantaneous inelastic

collisions. When the first mechanism prevails, that is when the

concentration is sufficiently high, the dry granular material is

assumed to behave like a solid (quasi-static regime). On the

other hand, when the medium is dilute, a stable contact network

cannot develop in the system and particles interact mainly by

means of collisions. In this case, the material response canbe

assimilated to that of a fluid (collisional regime).

The energy dissipation related to the granular phase,Γg, is thus

assumed to be the sum of two contributions:

Γg = Γqs+ Γcol, (13)

whereΓqs is the rate at which energy is dissipated by enduring

contacts, andΓcol is the energy dissipated by collisions.

Analogously to what already done for the grain-liquid mixture,
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the strain rate tensor is assumed to be unique and the granular

stress tensor is split as it follows:

τg = τqs+ τcol, (14)

σg = σqs+ σcol. (15)

Subscripts “qs” and ‘col” stand for quasi-static and collisional,

respectively. By substituting equations (13)-(14) into equation

(6) and by assuming the energy produced by the quasi-static

contribution to be completely balanced by the quasi-static

dissipated energy (τqsγ̇ = Γqs), the energy balance equation for

the granular phase reduces to:

τcolγ̇ = Γcol + Λ. (16)

According to the model, the rate-independent contributions

of the stresses are associated with the development of force

chains within the medium. Only when a contact network

originates in the system, the material behaviour is solid-

like, rate-independent and quasi-static stresses arise. This

occurs whenν > νc; i.e., νc is assumed to be the minimum

concentration allowing the contact network to develop under

steady conditions. In contrast, whenν < νc, force chains are

inhibited, the material response is fluid-like since particles can

interact only by means of collisions, and stresses show a severe

rate-dependency.

At the steady state,

σqs = F0(ν)
kn
d
, (17)

τqs = σqstanφ
′

ss, (18)

whereφ′

ss is the internal friction angle of the material under

simple shear conditions. In equation (17),F0 is a dimensionless

function defined as:

F0(ν) =







0, if ν ≤ νc,

a0 (ν − νc)
2/3 , if ν > νc,

, (19)

beinga0 a dimensionless material parameter. The dependence

onν is taken fromChialvoet al. (2012).

According to this approach, the critical state (Roscoeet al.,

1958; Schofield & Wroth, 1968; Muir Wood, 1990) is inter-

preted as the steady state forγ̇ going to zero. In fact, as it

will be described in the following, in the limit oḟγ → 0 σcol

vanishes in equation (15). Then, in such conditions, the granular

stress component of the normal stress coincides with the quasi-

static one and depends only on the concentration, accordingly

to equation (17). Under this condition,σg plays the role of the

classical soil mechanics effective normal stress, associated with

the solid skeleton contact network (force chains activation).

As far as the collisional contribution is concerned, according to

Berzi & Jenkins(2015):

σcol = F1(ν, T ) T, (20)

τcol = F2(ν, T ) T
1/2γ̇, (21)

Γcol =
F3(ν, T )

L(ν)

T 2

γ̇
, (22)

whereF1, F2 andF3 are characterized by a similar definition:

Fj(ν, T ) =











fj(ν) gj(ν)T
−1/2

fj(ν) + gj(ν)T−1/2
, if ν ≤ νc,

gj(ν)T
−1/2, if ν > νc,

(23)

with j = 1, 2, 3. Function L in equation (22) is named

correlation length and accounts for the presence of clusters of

particles occurring at sufficiently large concentrations,close to

νc. In particular, for small values ofν, L tends tod (diameter

of grains), whereas forν > νc, L is constant and equal to its

value atν = νc. The expressions forfj , gj , for j = 1, 2, 3, and

L are listed in the Appendix to the paper.

The collisional terms of the constitutive relationship area

function of granular temperatureT . To evaluate this latter,

the collisional part of the granular energy balance equation,

equation (16), is employed. In particular, the first term right

of equation (16) is a function ofν andT as in equation (22),

whereasΛ is a priori unknown. As was previously mentioned,

Λ is expected to be defined as a function ofT since it represents

the part of fluctuating energy of grains transferred to the liquid,

and there dissipated.

Since the approach introduced assumes:

• a collection of particles immersed in a Newtonian liquid

characterized by a molecular viscosityη0,

• no mean relative motion among the granular and liquid

phases (ul = ug),

• inertial effects not to affect the system behaviour (Stokes

regime),

then:

Λ =

n
∑

i=1

FD
i

∣

∣ul − vp,i

∣

∣ , (24)

where

FD
i = 3πdη0

∣

∣ul − vp,i

∣

∣ (25)

is the Drag force on thei-th spherical particle (Stokes, 1851)

andn = 6ν/(πd3) is the number of particles per unit volume.

Sinceul = ug, by substituting equation (25) into equation (24),

and from the definition of granular temperature, equation (12),

it follows:

Λ =
54

d2
νη0T. (26)
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8 SATURATED GRANULAR FLOWS: CONSTITUTIVE MODELLING

By substituting equations (21), (22) and (26) into equation (16),

the dependence ofT onν andγ̇ is derived:

F3(ν, T )

L(ν)
T 2 +

54

d2
νη0T γ̇ − F2(ν, T )T

1/2γ̇3 = 0. (27)

Equation (27) does not include singularities, but cannot, in

general, be solved explicitly forT . This derives from the

assumption of Stokes regime. As is evident, forγ̇ going to zero,

T nullifies, and, consequently, alsoσcol andτcol vanish.

Liquid phase

As was previously mentioned, the liquid phase is assumed to be

Newtonian and incompressible, so that:

τl = η(ν)γ̇, (28)

beingη a suitable defined viscosity for the liquid, depending on

the concentration, accounting for the dissipation of energy due

the presence of the suspended granular phase.

The authors assume:

η(ν) = η0Fη(ν), (29)

where

Fη(ν) =











Cη
fη(ν)

fη(ν) + Cη
, if ν ≤ νc,

Cη, if ν > νc

(30)

is the non-dimensional viscosity function, whereasCη is a non-

dimensional constitutive parameter andfη is a non-dimensional

function describing the dependency ofη on the concentration

for sufficiently small values ofν.

In equation (30), fη(ν) and theCη value are filleted according

to an expression analogous to that used for the collisional terms

in equation (23).

For ν > νc, force chains develop within the granular phase,

therefore the number of grains experiencing collisions may

be assumed to be constant withν. This implies that even the

dissipation of energy related to the inertial contacts within the

liquid phase gets a constant value, too. It is worth noting that

at any rate the quantitative value ofτl, for ν > νc, is totally

negligible with respect toτg, which is lower bounded byτqs.

Therefore, according to equation (30), Fη gets the constant

valueCη whenν > νc.

For ν < νc, to definefη(ν) the authors decided to employ

the experimental results ofEilers (1941); Roscoe (1952);

Krieger & Dougherty(1959); Chang & Powell(1994) accord-

ing to which, if γ̇ → 0 and the mixture is interpreted as a one-

phase material:

τ = η0

(

1− ν

νc

)

−2.5νc

γ̇. (31)

0.2

0.550.40 0.500.45 0.60 0.65

ν

0.6

0.0

0.4

0.8

1.0

2.0

1.8

1.6

1.4

1.2

f  (ν) / C
F  (ν) / C

[ -
 ]

ηη

ηη

νc

Fig. 5. Non-dimensional viscosity function,Fη/Cη (solid line,
equation (30)), and fη/Cη (dashed line, equation(35)) versusν

Forν values sufficiently small, this relationship asymptotically

tends to the well knownEinstein(1905) function:

τ = η0 (1 + 2.5ν) γ̇. (32)

According to equations (10) and (14):

τ = τcol + τqs+ τl. (33)

Since the previously mentioned experimental results referto

ν < νc andγ̇ → 0, equation (33) reduces to:

τ = τl, (34)

in fact the collisional shear stress depends onγ̇ more than

linearly, whereasτl ∼ γ̇.

From equations (28)-(31) and (34):

fη(ν) =
(

1− ν

νc

)

−2.5νc

. (35)

As an example, in figure5, the complete evolution ofFη with

ν is plotted.

STEADY SIMPLE SHEAR CONDITIONS

Calibration

The constitutive parameters can be distinguished in micro-and

macro-mechanical. In particular, micro-mechanical parameters

relative to the granular phase are: particle diameterd, density

ρp, Young modulusEp, coefficient of normal restitutionen and

inter-particle friction coefficientµ; whereas macro-mechanical

parameters are: the critical concentrationνc, the internal

friction angle of the material under simple shear conditions

φ′

ss, and the dimensionless coefficientsa0 andCη appearing

in equations (19) and (30), respectively. Solid phase micro-

mechanical parameters and the liquid molecular viscosityη0

do not require any calibration, whileνc andφ′

ss can be put in

relation with the micro-parameters:νc is given by equations (1)

as a function ofµ and an expression forφ′

ss has been provided
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D. VESCOVIET AL. 9

Table 1. List of material parameters. First and second lines: parameter to simulate numerical results of Chialvo et al. (2012) and
Ness & Sun (2015) on dry and pseudo-saturated granular systems, respectively. Third line: parameters simulating the mechanical
behaviour of an ideal water saturated soil (critical discussion)

Material en µ νc tanφ′

ss a0 η0/
√

ρpdkn Cη

Dry simulations 0.7 0.5 0.587 0.386 0.20 - -
Pseudo-saturated simulations0.7 1 0.582 0.393 0.25 2.15 · 10−4 247
Saturated soil 0.7 0.5 0.587 0.386 0.20 10−6 247

γ  = γ d √ ρ  d / k
. .

np
*

0.0060.0040.002 0.010 0.012 0.014 0.0160.008 0.018 0.020

τ 
 =

 τ
 d

 /
 k

n
*

0.004

0.006

0.008

0.010

0.014

0.016

0.018

0.020

0.012

0.024

0.022

ν = 0.65
ν = 0.63
ν = 0.61
ν = 0.59

τ  = 0.0033 + 0.265 γ
.

* *

τ  = 0.0078 + 0.196 γ
.

* *

τ  = 0.0126 + 0.148 γ
.

* *

τ  = 0.0173 + 0.180 γ
.

* *τ  = 0.0163 + 0.289 γ
.

*

*

τ  = 0.0129 + 0.281 γ
.

*

*

τ  = 0.0090 + 0.274 γ
.

*

*

τ  = 0.0038 + 0.268 γ
.

*

*

Linear interpolations
Theoretical lines (equation (40))
for C   = 247η

Fig. 6. Calibration of Cη for ν > νc

in Berzi & Jenkins(2015), as reported in the Appendix. In

contrast, the unique parameters to be calibrated area0 andCη.

In this paper,a0 has been derived from the numerical data

of Chialvoet al. (2012), who performed 3D DEM numerical

simulations on granular assemblies of identical spheres with

differentµ values. Therefore, here below only the calibration

of Cη is discussed.

To this goal, the authors used the numerical results obtained by

Ness & Sun(2015), for ν > νc, reported in figure6 in terms of

τ∗ againstγ̇∗.

According to equations (21), (23), (28)-(30) and (33), for ν ≥
νc:

τ = τqs+ [g2(ν) + Cηη0] γ̇, (36)

and, under non-dimensional form:

τ∗ = τqs
d

kn
+ [g2(ν) + Cηη0]

1
√

ρpdkn
γ̇∗. (37)

In equation (37), from equations (18)-(19) and considering

kn = πdEp/4,

τqs
d

kn
= a0 (ν − νc)

2/3 tanφ′

ss, (38)

whereas, from the definition ofg2(ν) reported in the Appendix,

g2(ν)
√

ρpdkn
=

2

3
√
π
νJ(ν), (39)

where J(ν) is given in the Appendix. Then, equation (37)

becomes

τ∗ = a0 (ν − νc)
2/3 tanφ′

ss +

[

2

3
√
π
νJ(ν) + Cη

η0
√

ρpdkn

]

γ̇∗.

(40)

By imposing the angular coefficients of equation (40) to

coincide with the angular coefficients of the interpolating

straight lines of figure6 (dashed lines), and by averaging over

the values obtained for the differentν, it resultsCη = 247. The

solid lines in figure6 represent equation (40) whereCη = 247

and the micro- and macro-parameters are those corresponding

to the simulations ofNess & Sun(2015), as listed in Table1.

Validation

The dry, theoretical model has been validated against

numerical results ofJi & Shen (2006), Chialvoet al. (2012)

and Chialvo & Sundaresan(2013) in Berzi & Jenkins(2015).

Here, for the sake of brevity, only the numerical simulations

performed byChialvoet al. (2012) on steady, homogeneous

shear flows of spheres (micro-parameters reported in Table1)

are compared with the model results (figure7), in terms of

(a) τ∗ versusγ̇∗ for different imposed concentrations, and (b)

apparent viscosityτ∗/γ̇∗ versusν for different dimensionless

shear rates. The constitutive parameters employed in the

theoretical model are listed in Table1. The predictions

satisfactorily fit the numerical data in both the fluid-like

and solid-like regimes, foṙγ∗ < 10−2. At large shear rates

(γ̇∗ > 10−2, figure7(a)), the theory over predicts the numerical

data, and, in particular, does not reproduce the dependenceof

τ∗ on γ̇∗1/2, already commented with reference to figure1.

Nevertheless, this range of non-dimensional shear rate values

corresponds to unrealistic values of dimensional shear rates for

rigid particles, as soil grains are.

In order to test the theoretical model under saturated

conditions, its predictions are compared with the DEM

numerical data obtained byNess & Sun(2015), described in

the previous section. In figure8(a), model predictions are

plotted together with the DEM results in terms ofτ∗ versus

γ̇∗ for different values of concentration (as in figure1(b)). The

constitutive parameters employed by the authors are listedin

Table1.

From both qualitative and quantitative points of view, the

theoretical predictions are in good agreement with the DEM

results. The model correctly describes the transition between
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Fig. 7. Comparison between numerical data (symbols,Chialvo et al., 2012) concerning dry granular flows and model predictions (lines).
(a) Dimensionless shear stress versus dimensionless shear rate for different values ofν. (b) Apparent viscosity versusν for different γ̇∗
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Fig. 8. Comparison between numerical data (symbols,Ness & Sun, 2015) concerning saturated granular flows and model predictions
(lines). (a) Dimensionless shear stress versus dimensionless shear rate for different values of ν. (b) Apparent viscosity versusν for different
γ̇∗ values

the different macro-responses mentioned in the previous

section. In particular, forν < νc the model is capable of

capturing the transition from Newtonian to Bagnoldian regime.

Nevertheless, by comparing numerical data and model

predictions, some discrepancies appear evident. Forγ̇∗ > 10−1

the model overestimates the shear stresses, whereas, forγ̇∗ <

10−3, when the concentration is sufficiently small, the model

predicts a less pronounced influence of the concentration

on τ∗. As far as the first item is concerned, the authors

observed that the same discrepancy is evident even under

dry conditions (figure7(a)) and it is a consequence of the

limitation of the original constitutive model. As far as thelatter

one is concerned, the authors think that the numerical data

of Ness & Sun(2015) for these values oḟγ are not reliable,

since in the numerical analyses the liquid is absent and its

effect is taken into account only by introducing equivalent

lubrication forces. According to the authors, this approach

cannot realistically reproduce the response of the system where

the liquid governs the material behaviour, i.e. for sufficiently

small values ofν andγ̇.

In figure 8(b), for three values oḟγ∗ the comparison between

model predictions and the numerical data ofNess & Sun(2015)

is done in terms of apparent viscosityτ∗/γ̇∗ versus solid

concentration. The model is capable of capturing the peculiar

response of the material for values of concentration very close

to νc. Nevertheless, even in this figure the above mentioned

discrepancy is evident forν < 0.5.

Critical discussion

In this section, the theoretical model is numerically solved in

order to illustrate some of its features. The material parameters

adopted for the granular phase are listed in Table1 and refer

to an ideal soil (d = 1 mm,ρp = 2500 kg/m3, Ep = 400 MPa)

saturated with water (η0 = 10−3 Pa·s).

In figure9, the dimensionless granular temperatureT/
(

d2γ̇2
)

predicted by the theoretical model is plotted against

concentration, for both dry (dotted lines) and saturated

(solid, dot-dashed and dashed lines) granular materials. Under

dry conditions,T is proportional to the square ofγ̇, in fact all

the lines at different shear rates are superimposed, and, when
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ν > νc, T is not affected by the concentration. If the granular

system is saturated,T does not scale quadratically witḣγ.

At low densities (ν < νc) and low shear rates (γ̇∗ < 10−5),

the granular temperature is smaller than in the case of dry

systems, and the difference increases for decreasing shear

rates. The presence of the viscous dissipation makes saturated

systems less agitated with respect to the dry ones, at the same

shearing velocity. On the other hand, at large concentrations

or large shear rates, the influence of the viscous dissipation

can be neglected, so that saturated and dry responses coincide.

This implicitly suggests that the system is dominated by

the interactions among grains. In particular, whenν > νc,

the presence of force chains dominate the response of the

system, whereas wheṅγ∗ > 10−5, the granular temperature

is sufficiently high and the particles are so agitated that

collisions become so frequent that their dissipating effect

results predominant with respect to the viscous one.

The effect of the liquid phase is reflected on the shear stress,

whose trend is plotted in figure10(a). As for T , the shear

stress is not affected by the presence of the liquid phase at

large concentrations (ν > νc) or large shear rates (γ̇∗ > 10−5).

The differences between dry and saturated responses become

evident in the fluid-like regime (ν < νc), at small shear rates, in

the so called Newtonian regime previously introduced. Under

such conditions, the shear stress predicted in saturated granular

flows is larger with respect to the dry case. In figure10(b),

the granular (dash-dotted line) and the liquid (dashed line)

contributions to the shear stress are illustrated forγ̇∗ = 10−6.

At ν < νc, the granular phase contribution reduces to the

collisional part,τg = τcol, since the quasi-static term vanishes.

τg is smaller than under dry conditions (dotted line), since

the granular temperature is reduced by the presence of the

liquid (figure 9). The agitation of grains is damped by the

liquid phase, and this is reproduced in the model by means of

the energy transferred by the granular to the liquid phase,Λ,

appearing in the granular energy balance. On the other hand,

the liquid phase contribution,τl, is responsible for the increase

in the shear stress, and dominates the global response of the

mixture atν < νc. When a contact network develops within the

medium, i.e. forν > νc, both the granular temperature and the

liquid phase do not affect the behaviour of the mixture, which

is completely governed by the quasi-static contribution ofthe

granular phase, that is, in this regime the previously mentioned

effective stress principle holds.

Figure11 highlights the role played by the liquid molecular

viscosity on the shear stress of the mixture. As was already

pointed out, the behaviour of the system is not influenced by

the liquid phase, and consequently by its viscosity, in the solid-

like regime (ν > νc). This is evident in figure11(b), whereτ∗ is

plotted againstν for different values of molecular viscosity, in

a system sheared atγ̇∗ = 10−6. In figure11(a), the mechanical

behaviour of a fluid-like system at small concentration (ν =

0.58) is illustrated in terms ofτ∗ versusγ̇∗, for different η0.

ν
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/ 
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Fig. 9. Dependence of granular temperature on concentration for
different γ̇∗ values (dry - dotted lines, saturated - solid, dot-dashed
and dashed lines)

As was expected, by increasingη0, the Newtonian regime

(τ∗ ∼ γ̇∗), governed by the liquid viscosity, spans over a wider

range of shear rates and the global shear stress increases at

small γ̇∗. For low values ofη0 (the dry case can be interpreted

as a saturated case for nullifyingη0), the behaviour of the

saturated system deviates from the dry case (dotted line) only

at very smallγ̇∗, since the granular phase mainly dominates the

material response.

CONCLUSIONS

The authors have analysed numerical and experimental results

concerning either dry and saturated granular flows under steady,

simple shear conditions, for different values of both shear

rate and concentration. A new constitutive model has been

introduced on the base of the mixture theory, according to

which the granular and liquid phases are considered separately.

The constitutive relationship proposed by the authors: (i)refers

to the Representative Elementary Volume and assumes the

mean values of all kinematic variables, of both granular and

liquid phase, to coincide; (ii) assumes the two phases to work

in parallel, as it is according to the well known effective stress

principle in case of quasi-static conditions.

As far as the granular, solid fraction is concerned, the authors

employ an already conceived constitutive approach capable

of describing, at the same time, the mechanical behaviour

of agitated granular flows (fluid-like regime) and solid-like

granular systems. The approach followed by the authors is

based on the introduction of an additional state variable, the

granular temperature, describing the system agitation andon

the assumption that the well known critical state for highly

concentrated granular materials is the limit of steady state

conditions for shear strain rates going to zero. Under dry

conditions, the dissipation of energy may be due either to

frictional contacts belonging to force chains, which can develop

only if the concentration is larger than a critical value, or

to instantaneous collisions, these latter dominating in case of

small values of concentration and large values of shear rate.
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Under saturated conditions, additional dissipation contributions

arise in the liquid phase. These are associated with the

following effects: (i) deviation of the liquid streamlinesdue to

the presence of particles, behaving as obstacles; (ii) lubrication;

(iii) liquid velocity fluctuations due to grains agitation.These

dissipation contributions involve the liquid phase and aretaken

into consideration to define its constitutive relationshipby

introducing a phase viscosity depending on the concentration

according to a suitably calibrated function and on the molecular

viscosity of the liquid. On the other hand, the presence of

water plays a damping role in reducing the fluctuating energy

of the granular phase. The energy balance has thus been

used by the authors to describe the coupling. In fact, the

granular temperature results to be influenced by the liquid phase

molecular viscosity.

The model requires the calibration of only two macro-

parameters. The first one influencing the critical state lineslope,

which governs the material response in the solid-like regime.

The second one governing the coupling between the granular

and the liquid phases, which affects the change in the liquid

viscosity for high values of concentration.

The model has been validated against numerical results, and

critically discussed. The proposed framework seems to be

capable of correctly reproducing the reality by capturing:(i)

for sufficiently small values of concentration, the transition

from a Newtonian to a Bagnoldian regime, when the shear

rate is increased; (ii) the independence of the shear mechanical

behaviour of the mixture when the concentration is sufficiently

high and the material behaves like a solid.
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APPENDIX: EXPRESSIONS FOR THE GRANULAR

CONTRIBUTION

In Tables2 and 3, en is the normal coefficient of restitution

of the particles. It is a micro-mechanical parameter definedas

the ratio of pre-collisional to post-collisional relativevelocity

between colliding particles in the normal impact direction.

Moreover, ǫ is an effective coefficient of restitution which

accounts for the rotation and contact friction of the particles.

Its expression has been proposed byChialvo & Sundaresan
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Table 2. List of expressions for the granular contribution

f1(ν) = A1ν2g0(ν)F (ν),
f2(ν) = A2ν2g0(ν)J(ν),
f3(ν) = A3ν2g0(ν),
g1(ν) = B1ν
g2(ν) = B2νJ(ν)
g3(ν) = B3ν

L(ν) = d2
√

4J(ν)

15 (1− ǫ2)















[

1 +
26(1− ǫ)

15

max (ν − 0.49; 0)

(0.64− ν)

]

, if ν ≤ νc,
[

1 +
26(1− ǫ)

15

(νc − 0.49)

(0.64− νc)

]

, if ν > νc.

F (ν) = A4 +
1

4νg0(ν)

J(ν) = A4 +
π

32

[5 + 2(1 + en)(3en − 1)νg0(ν)] [5 + 4(1 + en)νg0(ν)]
[

24− 6 (1− en)
2 − 5(1− e2n)

]

ν2g0(ν)2

g0(ν) =
(νc + ν − 0.8) (νc − ν) (2− ν)

2 (1− ν)3 (νc − 0.4)2
+

[

1−
(νc + ν − 0.8) (νc − ν)

(νc − 0.4)2

]

2

(νc − ν)

Table 3. List of material parameters for the granular contribution

A1 = 4ρp

A2 =
8

5
√
π
ρpd

A3 =
12
√
π

(

1− ǫ2
)

ρp

A4 =
(1 + en)

2

B1 =
5

12

√
π (1 + en) (Epρp)

1/2

B2 =
d

3
(Epρp)

1/2

B3 =
5

2

(

1− ǫ2
)

(Epρp)
1/2

(2013), on the base of numerical simulations, as a function

of the coefficient of normal restitution and the inter-particle

friction coefficientµ:

ǫ = en − µe−3/2µ.

Finally, in the model proposed byBerzi & Jenkins(2015), φ′

ss

is evaluated as a function of the concentration, the particle

diameter, the shear rate and the granular temperature, derived

using discrete numerical simulations of unsteady, homogeneous

shearing at large concentration (Sun & Sundaresan, 2011;

Berzi & Vescovi, 2015). The expression oftanφ′

ss is

tanφ′

ss =
4J

5
√
π(1 + en)

dγ̇

T 1/2
.

NOTATION
a0, Cη dimensionless material parameters

B buoyancy force

d particle diameter

Ep particle Young modulus

en coefficient of normal restitution

FD
i Drag force on thei-th particle

Fj=0,1,2,3 functions in the collisional contribution

Fη viscosity function

fj , gj , J , fη auxiliary functions

kn particle elastic stiffness

L correlation length

n number of particles per unit volume

q energy flux

T granular temperature

t time

ug , ul local velocity of the granular/liquid phase

vp single-particle velocity

vp,i i-th particle velocity

χg , χl granular/liquid internal energy

ε̇ strain rate tensor

φ′

ss internal friction angle under simple shear conditions

Γ system dissipated energy

Γg , Γl granular/liquid dissipated energy

ΓE
l liquid dissipated energy due to the presence of grains

Γgl
l liquid dissipated energy due to the grains agitation

ΓL
l liquid dissipated energy due to lubrication effects

Γqs, Γcol quasi-static/collisional dissipated energy

γ̇ shear rate

γ̇∗ dimensionless shear rate

η liquid viscosity

η0 molecular viscosity of the liquid

Λ energy transferred by the granular to the liquid phase

µ inter-particle friction coefficient

ν concentration

νc critical concentration

ρg , ρl density of the granular/liquid phase

ρp particle density

σ stress tensor

σ normal stress

σg , σl granular/liquid normal stress

σqs, σcol quasi-static/collisional normal stress

τ shear stress

τ∗ dimensionless shear stress

τg , τl granular/liquid shear stress

τqs, τcol quasi-static/collisional shear stress
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