
A Runtime Resource Management Policy for
OpenCL Workloads on Heterogeneous Multicores

Daniele Angiolettib, Francesco Bertanic, Cristiana Bolchinia, Francesco Cerizzib, Antonio Mielea
Politecnico di Milano – Dip. Elettronica, Informazione e Bioingegneria – Italy

a {first_name.last_name}@polimi.it b {first_name.last_name}@mail.polimi.it c francesco2.bertani@mail.polimi.it

Abstract—Nowadays, runtime workload distribution and re-
source tuning for heterogeneous multicores running multiple
OpenCL applications is still an open quest. This paper proposes
an adaptive policy capable at identifying an optimal working
point for an unknown multiprogrammed OpenCL workload
without using any design-time application profiling or analysis.
The approach compared against a design-time optimization
strategy demonstrates to be effective in converging to an solution
guaranteeing required performance while minimizing power
consumption and maximum temperature; it achieves on average
values 0.085 W (5.15%) and 0.83◦C (1.47%) worse than the static
optimal solution.

Index Terms—OpenCL, Hetenrogeneous System Architectures,
Runtime Resource Management.

I. INTRODUCTION

Nowadays, system architectures are heterogeneous, inte-
grating various kinds of processing units, such as asymmet-
ric multicore CPUs, GPUs and HW modules. Two easily
accessible commercial examples are the Samsung Exynos
5422 chip, integrating an ARM big.LITTLE multicore CPU
and an ARM Mali GPU, and the Nvidia Tegra, featuring a
similar multicore and an Nvidia GPU. These architectures are
particularly attractive because of the availability of a variety
of operating points, allowing one to finely tune the achievable
performance and power/energy consumption. This represents
an opportunity to adapt and optimize workload execution, also
based on the peculiarities of each application.

In this scenario, OpenCL enables the programmability of
the heterogeneous resources by means of a single program
implementation to exploit data parallelism. However, runtime
resource management remains an open challenge, because
OpenCL requires the designer to explicitly select and configure
the specific processing unit where to execute an application.

Indeed, in those scenarios where such architectures can
be efficiently exploited, this constitutes a relevant limitation
when considering that 1) the workload is highly variable
and not necessarily known in advance, 2) each application
may have different Quality of Service (QoS) requirements
(in terms of a target throughput) and its execution on dif-
ferent processing units may lead to different performance,
3) there are many knobs to be tuned (e.g., Dynamic Voltage
and Frequency Scaling (DVFS) and level of parallelization),
and, finally, 4) devices may present system-level requirements
and constraints, in terms of power budget and temperature
limits, especially in mobile and embedded scenarios. Thus, a
coordinated tuning and control of both system architecture and

application is paramount to optimizing workload execution and
resource usage.

In this paper, we propose an adaptive runtime resource
management policy minimizing power consumption and chip
temperature for architectures featuring a big.LITTLE CPU and
a GPU, executing a multiprogrammed OpenCL workload with
QoS application-level constraints. The main contributions are:
• a purely runtime adaptive strategy, not requiring any

design-time application profiling;
• support for multiprogrammed OpenCL workload;
• coordinated use of application mapping, CPU quota, level

of parallelization, and CPU/GPU frequency tuning;
• targeting the fulfillment of QoS requirements while mini-

mizing system power consumption and temperature peak.
Experimental results show that the runtime solution based on
the proposed policy has comparable performance with respect
to a design-time approach, without the need of in-advance
knowledge and the time/cost for performing the design space
exploration and storing/accessing the pre-computed optimal
solution. More precisely, the approach rapidly converges and
fulfills the workload throughput requirements (less than 3.25%
of performance violations) with power consumption and max-
imum temperatures close to those of the optimal configuration
identified at design time, achieving on average values 0.085 W
and 0.83◦C penalty. As such, the approach is interesting in
situations where a design-time solution cannot be computed
because of the unpredictability of the application scenario or
the too many possible alternatives.

The paper is organized as follows. Section II discussed the
related work, and Section III introduces the background on
the target system. Section IV presents an empirical analysis
of the effect of various knobs, leading to the definition of
the runtime resource management policy later detailed in
Section V. Section VI proposes the experimental validation
of the policy, and Section VII draws the conclusions.

II. RELATED WORK

One of the first approaches for the runtime resource manage-
ment in heterogeneous multicores has been defined in [1]; the
controller adapts the execution of single-threaded applications
on big.LITTLE architecture to optimize power consumption
while satisfying application level performance requirements.
Subsequent approaches proposed more advanced controllers
managing a single multi-threaded application [2], or multiple
ones in the same scenario [3]. None of such approaches

considers thermal issues or GPU acceleration. Other ap-
proaches consider coordinated CPU-GPU power or thermal
management [4], [5], but they consider a single multi-threaded
application whose functionalities are already mapped on CPU
or GPU; thus only DVFS tuning is actuated to guarantee the
required performance. A final group of approaches adopts
OpenCL to enable application mapping of the same kernel
on CPU and GPU. However, due to the many actuation knobs
that define too complex an optimization problem, most of the
approaches act at design time (e.g. [6], [7]), or at runtime but
considering a single application (e.g. [8]). An existing solution
similar to our work is the one proposed in [9]. Differently
from our approach, it performs a time-consuming design time
profiling of each application to be executed to identify the
optimal execution point in terms of power consumption. Such
information is used at runtime to optimize overall power
consumption while executing a workload composed of an
unknown mix of such applications. Later the approach has
been enhanced also to consider temperature [10].

Indeed, none of the these solutions tackles runtime resource
management in a coordinated manner, without any design-time
information gathering, the gap we aim at filling.

III. BACKGROUND

System Architecture. The solution we propose can be ex-
ploited on any heterogeneous architecture, featuring asymmet-
ric CPUs and GPUs and running Linux Operating System
(OS). Here we adopted a popular mobile computing board,
the Odroid XU3 [11] featuring a Samsung Exynos 5422 chip.
It integrates an ARM big.LITTLE multicore with four cores
per cluster, and an ARM Mali GPU. CPU frequency can
be tuned at cluster level between 200MHz and 2GHz on
the big core and from 200MHz to 1.4GHz on the LITTLE.
The chip is provided with four power sensors connected to
the big, LITTLE, GPU and memory units, respectively, and
temperature sensors for each big core and for the GPU.
Target Applications. We envision a variable workload com-
posed of streaming parallel applications (e.g., video processing
ones) having a QoS requirement in terms of a minimum
throughput. Applications are characterized by a computation-
ally intensive kernel, repeatedly executed on input data (e.g.,
video frames). The adopted OpenCL benchmark suite is the
PolyBench for GPU processing, modified to 1) iteratively
execute the computational kernel, and 2) perform a discovery
and setup of available OpenCL devices and to enable at each
iteration the choice of the actual processing unit.
OpenCL Runtime. On the Odroid XU3, OpenCL execution
is supported by the vendor for the Mali GPU only. An open-
source runtime, Portable OpenCL (PoCL) library [12], has
been installed for CPU execution, and concurrent discovery
of runtimes has been enabled with an OpenCL ICD Loader.
Runtime Resource Controller. We implemented a controller
similar to the one proposed in [13]. It consists of a process
running in user-space, capable of 1) accessing all HW sensors
and knobs through Linux interface, 2) controlling process allo-
cation by means of the cgroups mechanism, and 3) measuring

applications’ performance in terms of throughput with the
HeartBeat mechanism. The HeartBeat interface is used by the
controller to set the OpenCL device to be used by each running
application. Similarly to other OpenCL runtimes for CPU,
PoCL sees ARM big.LITTLE CPU as a single uniform device,
ignoring the asymmetric multicore configuration and thus
leading to performance inefficiencies. The adopted controller
exploits cgroups to mimic the availability of two separate
devices, the big and the LITTLE clusters.

IV. ARCHITECTURE CHARACTERIZATION

This section reports the results of the systematic analysis
of the effects of knobs on performance, power consumption
and temperature. It is the basis for characterizing the specific
architecture power/performance models, and for deriving the
knowledge for the runtime resource management policy, in
defining a priority in using knobs to achieve the desired
behavior.

A. Power and Performance Models

We adopted well-known estimation models and we em-
pirically computed the characterizing parameters from the
experimental campaigns executed with the reference board.
Power model. Borrowing from [4], [14], power consumption
Pi of core i can be represented as a function of the frequency
level fi (and corresponding voltage Vi) and utilization Ui due
to the running applications:

Pi = a[fi] · Ui + b[fi] (1)

a and b are two constants empirically derived for each kind
of core (big, LITTLE and GPU) and for each frequency fi,
which is the same for the whole cluster. Finally, Ui is directly
provided by the OS, and the assigned CPU quota is directly
proportional to the utilization. Indeed, as shown in [4], [14],
an application-agnostic power model (considering utilization
only) offers a reasonable accuracy to properly take decisions
in the proposed control loop.
Performance model. Performance models have been devel-
oped to estimate throughput due to configuration variations
only on the CPU. Throughput (thj) of an application j (or in
general its performance) running on a single cluster i (either
big or LITTLE) has an almost linear relationship with the CPU
quota Qj assigned to the application and cluster’s frequency
level fi, whereas there is a sublinear relationship with the
parallelization level #t (in number of assigned CPU cores),
as shown in [4], [13]. Furthermore, as in [3], it is reasonable
to estimate an average performance ratio between big and
LITTLE clusters at the same baseline frequency, namely rb→L.
A generic value of such parameter is computed at design time
on a characteristic workload; then, it may be also tuned at
runtime for each application to have more accurate estimations
based on throughput measures.

Therefore, given the current configuration curr, we can
estimate the performance in a new configuration as:

thnew = rγb→L ·
Qnew
Qcurr

·
(
fnew
fcurr

)
·
(
#tnew
#tcurr

)β
· thcurr (2)

0 5 10 15 20 25 30 35 40
Throughput [hb/s]

1

2

3

4

5

6

7
P

ow
er

 c
on

su
m

pt
io

n
[W

]
4 big @ 2GHz
quota 1

4 big @ 2GHz
quota 0.1

4 big @ 900MHz
quota 1

Scaling frequency
Scaling quota

(a) Frequency vs. CPU quota ef-
fects, using the big core cluster

0 5 10 15 20 25 30 35
Throughput [hb/s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
ow

er
 c

on
su

m
pt

io
n

[W
]

@ 200MHz

@ 1.4GHz

@ 2GHz

@ 2GHz

@ 900MHz

@ 2GHz

@ 2GHz

@ 266MHz

@ 600MHz

4 LITTLE
1 big
2 big
3 big
4 big
GPU

(b) Frequency and use of different
resources (big, LITTLE, GPU)

Figure 1. big.LITTLE running 2DCONV with different settings

where β ∈ (0; 1) takes into consideration the overhead for
parallel execution over multiple cores in the same cluster, and
γ is 1 when there is a migration from the big to the LITTLE
cluster, −1 from the LITTLE to the big one, and 0 otherwise.

B. Knobs Effects

Figures 1-2-3 show the measured throughput, power con-
sumption and temperature in the different configurations, and
how they vary (linearly or not) when we change knobs settings,
as discussed in the following.
DVFS vs. CPU quota. Effects of DVFS and CPU quota
on performance and power consumption have been already
investigated [1]; we here recap the results in the scenario of
OpenCL applications. Figure 1(a) shows the throughput (in
heartbeat/s.) and the corresponding power consumption (sum
of all power sensors) of a 2DCONV application running on four
cores of the big cluster when varying the frequency level (from
2GHz down to 1GHz) using a 100% CPU quota, and, dually,
when varying the CPU quota (from 100% down to 10%). As
clearly shown, varying the frequency allows one to minimize
power consumption while maintaining the same performance
trend; indeed, reducing the static power consumption is much
more effective than acting on the dynamic also with parallel
applications.
Parallelization vs. DVFS. Similarly, we analyzed the change
of the frequency level against the number of threads spawned
on different cores (from 4 down to 1). Figure 1(b) reports
the results for 2DCONV; each series of data represents a
configuration with a different number of big cores scaling
in frequency from 600MHz to 1.2GHz with a 100MHz step.
The graph shows that the power consumption slope with
respect to the throughput is much steeper in configurations
using fewer cores; moreover achieving a certain throughput,
the configurations with more cores exhibit a lower power
consumption. This is the direct consequence of the fact that the
same throughput can be obtained at lower frequencies by using
more cores in parallel. Thus, to achieve a certain throughput
level, maximizing the parallelism level to select the minimum
frequency level is beneficial for power consumption. Finally,
by comparing results in Figures 1(a) and 1(b), we can also
conclude that to obtain the same throughput it is much more
effective in terms of power consumption to scale parallelism
level than the quota.

12 14 16 18 20 22 24 26 28 30
Throughput [hb/s]

1

1.5

2

2.5

3

3.5

Po
w

er
 c

on
su

m
pt

io
n

[W
]

@ 266MHz @ 350MHz
@ 420MHz

@ 480MHz

@ 543MHz

@ 600MHz

@ 1.8GHz

@ 1GHz

2DConvolution on GPU
2DConvolution on CPU

(a) 2DCONV

4 6 8 10 12 14 16 18
Throughput [hb/s]

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
ow

er
 c

on
su

m
pt

io
n

[W
]

4 big @ 200MHz
quota 1

4 big @ 600MHz
quota 1

@ 350MHz

@ 420MHz

@ 480MHz

@ 543MHz

@ 600MHz
GESUMMV on GPU
GESUMMV on CPU

(b) GESUMMV

Figure 2. Frequency and use of big/GPU effects

idle big 1 big 2 big 3 big 4 GPU
Running device

40

45

50

55

60

65

T
em

pe
ra

tu
re

 [°
C

]

big 1
big 2
big 3
big 4
GPU

Figure 3. Maximum device temperature due to execution on another device

LITTLE vs. big. Experimental results confirmed that as long
as the LITTLE cores allow to reach the required throughput,
their use leads to lower power consumption and lower temper-
atures, therefore they are always preferable to the big ones.
CPU vs. GPU. Similarly to the LITTLE cluster, the GPU can
provide performance similar to the big cluster when running at
high frequency levels. However, as shown in Figure 2, different
applications (i.e., 2DCONV and GESUMM) exhibit a different
performance/power trade-off on big cluster and GPU: while
the former performs better on the big cluster, the latter shows
a lower power consumption when running on the GPU and
achieving the same throughput. Therefore we cannot define
a-priori the best power-efficient allocation between GPU and
big cluster, but an online profiling is required.
Temperature analysis. Finally, we performed a systematic
analysis of the chip temperatures; to speed-up the process
we built a thermal model based on the classical RC thermal
network for steady-state temperature by using linear regression
(as in [5]). We report in Figure 3 a representative subset
of the results consisting of the measured temperatures (four
big cores and GPU) when each single unit is working; we
noticed that big cores are not distributed symmetrically in the
chip thus there is a sensible effect on the reached maximum
temperatures due to self-heating and thermal interference
among cores. We explored this asymmetry and concluded that
when considering the same operating conditions (in terms of
resource utilization and frequency), an ordering of the incurred
maximum temperature can be identified in the big cluster: big1
- big4 - big2 - big3. Moreover this ordering is independent
of the fact that the GPU is working or idle. Given this
empirical knowledge, the runtime resource management policy
can directly exploit this ordering in selecting the resources
when aimed at minimizing the maximum temperature, rather
than using the derived thermal model.
Final Remarks. The analysis has been used to derive model

parameters a, b and γ in Eq. (1) and (2). The second outcome
is a so-called knobs priority order, that is the definition
of an empirical preference in exploiting the available knobs
to achieve the required throughput while minimizing power
consumption: 1) LITTLE/big/GPU mapping, 2) DVFS, 3) par-
allelism, and 4) CPU quota. Online application profiling is
necessary to decide whether to use CPU or GPU, and from
the thermal point of view, an opportunistic selection of the big
cores has to be performed to limit the maximum temperature.

V. THE PROPOSED RUNTIME MANAGEMENT POLICY

Based on the discussed observations, we designed a runtime
resource management policy aimed at:
• dynamically mapping parallel applications guaranteeing

the each desired throughput;
• converging at run-time to the optimal mapping w.r.t. the

minimization of power and thermal impact;
• predicting near-to-optimal execution configuration to

minimize the convergence time;
• periodically adjusting the adopted configuration based on

feedback loops and responding to performance oscilla-
tions and other events (such as application termination).

The policy awakens with a predefined control period and its
workflow is organized in four main phases, called profile,
decide, refine, and idle. No design-time characterization of
the executed applications is required and the management
relies on the following additional assumptions: to provide
best performance applications are executed in isolation, as
in [9], and big and LITTLE clusters are considered as separate
devices, preventing heterogeneous mappings, as in [8].
Profile. An initial online profiling is executed on every new
application entering the system. To avoid perturbations on
the already-running workload, a single idle LITTLE core is
used to run the application for few control cycles to measure
the throughput thcurr at frequency f . If no LITTLE core is
available, a big one is used. The operation is repeated on
the GPU to compute thcurr_GPU . Since isolation cannot be
achieved when the GPU is already in use, concurrent execution
is performed, thus slightly affecting the performance of the
running application for few cycles.
Decide. It is performed on any newly profiled application
ai to predict a close-to-optimal execution point based on
the estimation models and the knobs priority order discussed
in Section IV. Algorithm 1 describes the decision process.
Initially (Lines 1-11), the performance estimation model is
used to identify on each cluster the first operating point
guaranteeing performance requirement thtarget and minimiz-
ing power consumption. Configurations are scanned by it-
erating frequencies f from the current one (not to perturb
running applications) to the highest one, and for each f by
increasing parallelism w.r.t. the available cores c; as discussed
in Section IV, this approach favors parallelization vs. DVFS
to minimize power consumption. The process stops at the
first compatible configuration, representing the most power
efficient one. Similarly, the GPU is analyzed (Lines 13-17),
iterating only on the frequency.

Algorithm 1 Decide phase
1: for all ai ∈ Appsprofiled do
2: mappings← ∅
3: for all cluster ∈ {big;LITTLE} do
4: if cluster.#idleCores 6= 0 then
5: found← false
6: for (f ← cluster.fcurr to cluster.fmax)∧ !found do
7: for (c← 1 to cluster.#idleCores)∧ !found do
8: th% ←

ai.thcurr
ai.thtarget

· rγ
b→L

· cβ · (f
cluster.fcurr

)

9: if th% ≥ 1 then
10: mappings← mappings ∪ {(cluster, f, c)}
11: found← true
12: found← false
13: for (f ← GPU.fcurr to GPU.fmax)∧ !found do
14: th%_GPU ←

ai.thcurr_GPU
ai.thtarget

· (f
GPU.fcurr

)

15: if th%_GPU ≥ 1 then
16: mappings← mappings ∪ {(GPU, f, 1)}
17: found← true
18: found← false
19: for (m ∈ mappings)∧ !found do
20: if m.cluster = LITTLE then
21: found← true
22: if found then
23: applyMapping(ai,m)
24: else
25: m← selectMinimumPower(mappings)
26: if m.cluster = big then
27: m.big_cores_to_use←thermalModelCoreSelection(m.c)
28: applyMapping(ai,m)
29: else if m.cluster = GPU then
30: applyMapping(ai,m)
31: else
32: rejectApp(ai)

Algorithm 2 Refine phase
1: for all ai ∈ Appsrunning do
2: thref ←

ai.thcurr
ai.thtarget

3: if (thref < 1− ε) then
4: needMoreResources← needMoreResources ∪ {ai}
5: else if (thref > 1 + ε) then
6: needLessResources← needLessResources ∪ {ai}
7: for all ai ∈ needLessResources do
8: c← ai.#cores

9: min#Cores← d(cβ ai.thtargetai.thcurr
)
1
β e

10: if min#Cores = c then
11: ai.quota← ai.quota ·

ai.thtarget
ai.thcurr

12: else if a.cluster.#freeCores > 0 then
13: ai.cluster.f ← appi.cluster.f − FREQ_STEP
14: else
15: ai.#cores = ai.#cores− 1
16: ai.big_cores_to_use←thermalModelCoreSelection(ai.#cores)
17: for all ai ∈ needMoreResources do
18: c← ai.#cores
19: if ai.quota < c · 100% then
20: ai.quota← ai.quota ·

ai.thtarget
ai.thcurr

21: if ai.quota > c · 100% then
22: ai.quota← c · 100%
23: else if a.cluster.#freeCores > 0 then
24: ai.#cores = ai.#cores+ 1
25: ai.big_cores_to_use←thermalModelCoreSelection(ai.#cores)
26: else
27: ai.cluster.f ← appi.cluster.f + FREQ_STEP
28: if ai.cluster.f > ai.cluster.fmax then
29: ai.cluster.f = ai.cluster.fmax
30: applyMapping(ai)

Among the identified configurations (up to three), the LIT-
TLE one is usually preferred, being the most effective w.r.t.
temperature (Lines 18-23). If more than one configuration is
available, power consumption is estimated to decide between
big cores and GPU, and in the former case a subset of big
cores is selected based on the thermal model to limit maximum
temperature. Finally, if no mapping configuration is identified,
the application is killed notifying the user of the lack of
resources to achieve the required QoS (Lines 24-32).
Refine. This phase performs iterative adjustments of the de-
cisions taken on the basis of pure estimations, by exploiting
a feedback loop from the system. Differently from the decide

0 20 40 60 80 100 120
Time [s]

0

2

4

6

8

10

12

14

16

18

20

T
hr

ou
gh

pu
t [

hb
/s

]

(a) Design-time strategy

0 20 40 60 80 100 120
Time [s]

0

2

4

6

8

10

12

14

16

18

20

T
hr

ou
gh

pu
t [

hb
/s

]

tpReq GESUMMV
tpReq 2DCONV
tpReq SYRK
tpReq 3DCONV

Max @ 23.40Max @ 24.17

(b) Proposed approach
Figure 4. Experimental results: throughput

phase that works only on the subset of newly arrived applica-
tions, the refine phase is executed on the overall workload.
The goal is to reduce estimation errors and improve the
performance estimation models, by tailoring them on each
running application; in particular, since the effect of paral-
lelization may vary for each application, the corresponding
sublinear estimation model has to be refined online. Finally,
it is necessary to mitigate the effects of new applications on
the already running ones.

Algorithm 2 presents the refine workflow. The first step
detects applications that are 1) over-performing and 2) under-
performing w.r.t. the given requirement; this condition is based
on the comparison of the ratio between the current throughput
and target counterpart with a specified tolerance threshold ε
(Lines 1-6). Then, for each application of the first set, the
policy tries to perform a reduction of the provided resources,
working on parallelization level, CPU quota and DVFS (Lines
7-16); in particular we can reduce the frequency when there is
at least an idle core in the cluster, which shows resource over-
provisioning. Released resources can be used for increasing
the assignment to under-performing applications (Lines 17-
30), following the same priority order. A similar behavior is
adopted for applications running on the GPU, being the DVFS
the only usable knob to cope with over-provisioned or under-
provisioned applications. To perform iterative adjustments,
the phase is invoked multiple times in subsequent control
periods, until no further actions are possible and applications’
requirements are satisfied. Then, it evolves to the idle phase.
Idle. When the system configuration is eventually balanced
or there is no running application, the manager becomes idle,
until a new event occurs, that is when an application enters
the system, the manager evolves either to the profile or decide
phase, or when an application terminates or a throughput
variation is detected, the manager evolves to the refine phase.

VI. EXPERIMENTAL RESULTS

The proposed policy has been implemented and evaluated
with the experimental setup discussed in Section III. We
compared the approach against a static strategy mimicking the
approaches proposed in [9], [10], the most recent related work
addressing our considered scenario. The strategy assumes that
all applications are known and can be profiled at design-
time; it performs a design-time exploration to identify a set of

optimal configuration points for each application achieving the
required throughput by means of different number of cores and
frequency levels (for the sake of fairness kernel partitioning
is not considered). At runtime, for each application enter-
ing/exiting the system, the Cartesian product of configuration
sets of the running applications is explored to identify the
optimal solution for the overall workload and CPU quota
is dynamically adapted. This strategy minimizes maximum
temperature and power consumption.

A workload has been generated by considering GESUMMV,
2DCONV, SYRK and 3DCONV applications from Polybench
benchmark suite. These applications present different per-
formance characteristics: 2DCONV is more suited to run on
the GPU cluster with respect to GESUMMV, as shown in
Figure 2; SYRK reaches high throughput easier than 3DCONV
that manifests a slow throughput convergence due to its
heavy workload. Applications are annotated with different
throughput requirements and arrival times. Finally, a tolerance
threshold ε = 5% is used for the throughput request.

Experimental results are reported in Figures 4, 5 and 6
showing applications’ throughput, power consumption and
maximum temperature, respectively. As shown in the first
figure, the proposed policy is able to quickly converge after the
profile phase to a configuration achieving the requested QoS,
taking in 6 control cycles, in the worst case when running 4
applications, i.e., 6s. Then, it continuously refines settings with
a fine-grained tuning to limit possible disturbances, fulfilling
QoS requirements for almost all the time, as reported in
Table I; the percentage of violations is approximately 3.25%
worse than the static strategy. The table also reports the
average throughput and the related standard deviation for
each application, showing almost similar results to the static
approach. We may conclude that the proposed solution is
a viable replacement of the time-consuming profiling-based
static strategy. The policy minimizes power consumption and
maximum temperature achieving on average values 0.085 W
(5.15%) and 0.83◦C (1.47%) worse than the static optimal so-
lution; a more detailed analysis dividing the overall experiment
time in periods is reported in Table II. This represent a relevant
result when considering that we are not using any design-
time information on the workload. Both the percentage of
violations and the slightly lower optimal working points show
the effectiveness of the defined policy, considering no design-

0 20 40 60 80 100 120
Time [s]

45

50

55

60

65

70

M
ax

 te
m

pe
ra

tu
re

 [°
C

]

Design-time strategy
Proposed approach

Figure 5. Experimental results: maximum temperature

0 20 40 60 80 100 120
Time [s]

0

1

2

3

4

5

P
ow

er
 c

on
su

m
pt

io
n

[W
]

Design-time strategy
Proposed approach

Figure 6. Experimental results: power consumption

time information is used. Experimental results are reported in
Figures 4, 5 and 6 reporting applications’ throughput, power
consumption and maximum temperature, respectively.

A unique negative result is reported for 3DCONV. 3DCONV,
quite performance demanding, enters the system when an
already heavy workload is running. The first decision taken
(at time 95s) is to map it on the big cluster and causes
the application to under-perform. At the same time SYRK
is outperforming on the GPU. Therefore, their mapping is
dynamically swapped and within 4 cycles they reach the
desired throughput without affecting the remaining applica-
tions. However, the effect of such overloading is that 3DCONV
considerably violates the QoS requirement, and maximum
temperature and power are not optimal in the last time interval.

VII. CONCLUSIONS

This paper proposes an adaptive policy for the runtime
workload distribution and resource tuning for heterogeneous
multicores running multiple OpenCL applications. The policy

Table I
PERCENTAGE OF TIME EACH APPLICATION SATISFIED THE QOS AFTER

INITIAL PROFILING AND CORRESPONDING AVERAGE THROUGHPUT AND
STANDARD DEVIATION

Req. Design-time strategy Proposed Approach
Appl. Through- % satisfy Throughput % satisfy Throughput

put (hb/s) avg./std.dev. avg./std.dev.
GESUMMV 10 91% 9.86(±0.61) 91% 9.79(±0.55)
2DCONV 14 98% 13.63(±0.77) 92% 13.84(±0.72)
SYRK 17 94% 16.35(±1.33) 96% 16.75(±0.36)
3DCONV 8 95% 7.77(±1.85) 86% 7.16(±1.92)

Table II
MEAN DIFFERENCE BETWEEN DESIGN-TIME AND RUNTIME STRATEGY

Time interval Power consumption Maximum temperature
0s-30s 0.01 W (2.94%) 0.73◦C (1.45%)
31s-61s 0.16 W (11.68%) 0.44◦C (0.79%)
62s-92s 0.03 W (1.41%) 0.04◦C (0.08%)
93s-123s 0.14 W (4.57%) 2.11◦C (3.56%)

identifies an optimal working point for an unknown multi-
programmed OpenCL workload without using any design-
time application profiling or analysis. The approach compared
against a design-time optimization strategy is effective in
converging to a solution guaranteeing the required perfor-
mance while minimizing power consumption and maximum
temperature. Future work will consider kernel partitioning
among heterogeneous devices.

REFERENCES

[1] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical Power Management for Asymmetric Multi-
core in Dark Silicon Era,” in Proc. Design Automation Conf., 2013,
pp. 174:1–174:9.

[2] E. D. Sozzo, G. C. Durelli, E. M. G. Trainiti, A. Miele, M. D.
Santambrogio, and C. Bolchini, “Workload-aware power optimization
strategy for asymmetric multiprocessors,” in Proc. Design, Automation
Test in Europe Conf., 2016, pp. 531–534.

[3] F. Gaspar, L. Taniça, P. Tomás, A. Ilic, and L. Sousa, “A Framework
for Application-Guided Task Management on Heterogeneous Embedded
Systems,” ACM Trans. Archit. Code Optim., vol. 12, no. 4, pp. 42:1–
42:25, Dec. 2015.

[4] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU-GPU
power management for 3D mobile games,” in Proc. Design Automation
Conference, 2014, pp. 1–6.

[5] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel, “Im-
proving Mobile Gaming Performance Through Cooperative CPU-GPU
Thermal Management,” in Proc. Design Automation Conf., 2016, pp.
47:1–47:6.

[6] A. Prakash, S. Wang, A. E. Irimiea, and T. Mitra, “Energy-efficient exe-
cution of data-parallel applications on heterogeneous mobile platforms,”
in Proc. Int. Conf. Computer Design, 2015, pp. 208–215.

[7] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano,
“Customization of OpenCL Applications for Efficient Task Mapping
Under Heterogeneous Platform Constraints,” in Proc. Conf. Design,
Automation & Test in Europe, 2015, pp. 736–741.

[8] C. Bolchini, S. Cherubin, G. C. Durelli, S. Libutti, A. Miele, and
M. D. Santambrogio, “A Runtime Controller for OpenCL Applications
on Heterogeneous System Architectures,” SIGBED Rev., vol. 15, no. 1,
pp. 29–35, Mar. 2018.

[9] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. Al-
Hashimi, “Energy-Efficient Run-Time Mapping and Thread Partitioning
of Concurrent OpenCL Applications on CPU-GPU MPSoCs,” ACM
Trans. Embed. Comput. Syst., vol. 16, no. 5s, pp. 147:1–147:22, Sep.
2017.

[10] E. W. Wachter, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh,
“Reliable Mapping and Partitioning of Performance-constrained openCL
Applications on CPU-GPU MPSoCs,” in Proc. Symp. Embedded Systems
for Real-Time Multimedia, 2017, pp. 78–83.

[11] Hardkernel co., “Odroid XU3,” http://www.hardkernel.com.
[12] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,

and H. Berg, “pocl: A Performance-Portable OpenCL Implementation,”
Int. Journal of Parallel Programming, vol. 43, no. 5, pp. 752–785, 2015.

[13] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini, and
N. Dutt, “Approximation-aware Coordinated Power/Performance Man-
agement for Heterogeneous Multi-cores,” in Proc. Design Automation
Conf., 2018, pp. 68:1–68:6.

[14] H. Rexha, S. Holmbacka, and S. Lafond, “Core Level Utilization for
Achieving Energy Efficiency in Heterogeneous Systems,” in Proc. Int.
Conf. Parallel, Distributed and Network-based Processing, 2017, pp.
401–407.

