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Abstract—The ability to predict the quality of a wireless
channel is essential for enabling anticipatory networking tasks.
Traditional channel quality prediction problems encompass pre-
dicting future conditions based on past measurements of the same
channel. In this paper we study the channel quality prediction
problem across different wireless channels. To this extent, we
consider a reference scenario including multiple 4G cells, each
of which operates on multiple concurrent frequency carriers.
We propose a framework based on transfer learning to predict
the channel quality of a given frequency carrier when no or
minimal information is available on the very same frequency
carrier for model training. For the transfer learning task we
use convolutional neural networks and long short-term memory
networks. We compare their performance against statistical
methods on a dataset collected from a commercial 4G mobile
radio network. The performance evaluation carried out on the
reference dataset demonstrates the validity of the proposed
transfer learning approach, achieving a root mean squared error
of 0.3 on average.

I. INTRODUCTION

Anticipating the channel quality with high accuracy and
low overhead can boost the proactive optimization of mo-
bile radio networks. As examples, channel quality prediction
(CQP) has been proposed for efficient resource allocation of
video streaming traffic [1], interference alignment performance
enhancement [2], and massive multiple-input multiple-output
(MIMO) requested feedback reduction [3].

The common approach to CQP leverages past information
of the channel to predict its future quality. Conversely, in this
work, we address the CQP problem across different wireless
channels. To this end, we focus on 4G Long Term Evolution
(LTE) cells across different frequency carriers (i.e. 1.8 GHz
and 2.1 GHz). The key performance indicator for channel
quality used in this work is the channel quality indicator (CQI),
which is an index that reflects the channel status provided by
the user equipments (UEs) to their respective cells, ranging
from 0 to 15 in LTE.

We introduce a transfer learning framework to predict
the CQI across different channels. Two main scenarios are
considered: (i) when knowledge is transferred across different
frequency carriers of the same 4G cell and (ii)) when knowl-
edge is transferred across channels of different cells operating
at the same frequency carrier.

The proposed framework can be conveniently used by a
network operator to make educated decisions in different
relevant situations:

o Network optimization/management: Only a sub-Gig fre-
quency carrier is active at one cell, and the network
operator needs to decide whether to activate higher layers
by anticipating their expected quality.

o Radio resource/energy management: The carriers at
higher frequencies at a cell perform duty cycling for
energy management purposes and the network operator
needs to decide when to switch them on/off.

The performance of the proposed transfer learning approach
is validated against classical machine learning and statistical
methods. The dataset used for the experimental part of this
study consists of CQI values collected over a time period of
one month from a commercial mobile radio network deployed
in a medium-sized city in Northern Italy.

The main contributions of this paper are as follows:

« We provide deep learning architectures that significantly
outperform statistical methods, showing the high non-
linearity of the CQIL.

o We introduce transfer learning to carry out predictions
across different cells and frequency carriers. Our trans-
fer learning methods significantly outperform traditional
machine learning methods when the amount of samples
available from the target cells is limited.

The rest of this paper is organized as follows: Section II
reviews previous work in the area of CQP with an emphasis on
the ones using deep learning. Section III describes the dataset
as well as the preprocessing steps followed. Section IV focuses
on the proposed deep transfer learning approach. Experiments
and discussion of the obtained results are reported in Sec-
tion V. Finally, Section VI summarizes the main contributions
of this paper and describes future research directions.

II. RELATED WORK

CQP techniques have been widely investigated in multi-fold
network environments; either to take advantage of future link
improvements or to counter bad conditions before they impact
the system [4].

In the field of cognitive radio networks, traditional ap-
proaches for CQP consist of collecting wireless channel statis-
tics and carrying out predictions by applying conventional
methods, such as Wiener filters, cubic spline extrapolation
and short-term average [5]. Other studies exploit the nonlinear
characteristics of the channel. For instance, in [6] the spectrum
sensing process is modeled as a non-stationary Hidden Markov



Model. In [7], spatial and temporal correlation are taken into
account to model the CQP as a multivariate Gaussian Process.

More recent approaches include the application of deep
learning by modeling the CQP problem as a supervised
machine learning problem. For instance, [8] uses Taguchi
optimization, and long short-term memory networks (LSTMs)
for spectrum prediction, specifically for channel quality as
well as channel occupancy. A similar approach has been
proposed in [9] for 5G, where convolutional neural networks
(CNNs) and LSTMs are used for making predictions. For
a comprehensive overview on channel quality prediction the
interested reader may refer to the survey in [4].

In general, most of the aforementioned works leverage
past channel quality to anticipate future channel quality. Con-
versely, we target the case where limited or no data is available
on the channel we wish to predict. We show that taking data
from a given channel can be used to make predictions about
a different channel.

III. PROBLEM STATEMENT AND BACKGROUND

In this work we propose machine learning approaches to
predict wireless channel quality in 4G LTE networks.

The reference scenario includes multiple LTE cells hosting
two frequency carriers, operating at 1.8 GHz and 2.1 GHz
respectively. The problem at hand can be defined as predicting
the CQI of the downlink wireless channel operating at a given
frequency, with no or limited available data from the same
channel. Specifically, we focus on two sub-problems:

o Intra-cell CQI prediction, where CQI values of a given
frequency carrier are forecast mainly from CQI values
of a different frequency carrier of the same cell. As an
example, the CQI of the carrier at 1.8 GHz is leveraged
to predict the CQI of the carrier at 2.1 GHz.

o Inter-cell CQI prediction, where CQI values of a given
frequency carrier are forecast from CQI values of a
different cell, working at either the same or a different
frequency carrier.

In both of the aforementioned problems, we consider the cases
where no or limited information on the carrier to be predicted
is available for model training.

To address these problems, we leverage a dataset obtained
from a commercial 4G network deployed in a medium-sized
city in Northern Italy. It includes channel quality information
for 5 multi-carrier LTE cells. In detail, the dataset contains
10 time series for 5 different cells working at two different
frequencies (i.e., 1.8 and 2.1 GHz, respectively). Each time
series element reports the hourly average of the CQI. The total
amount of data is equivalent to 583 CQI measurements for
each series. The data was recorded between January 8, 2017
and February 1, 2017, for a total of 24 days and 7 hours.

The reference dataset was preprocessed according to the
following steps:

e Missing value and outlier detection: No missing values

and outliers were found.

o Stationary assessment: Most of the methods for time
series forecasting work under the assumption that the

time series is stationary. By using Dickey-Fuller [10] and
KPSS [11] statistics tests, we found that in the majority of
cases the data was already stationary. However, to avoid
non-stationary cases, a first order difference transforma-
tion is carried out to the whole dataset.

A. Notation

Let (xff)z:ol = {az¢’,z7,... 2 |} be the sequence of
CQI values obtained for cell ¢ € C in a frequency carrier
f € F during T hours. Without loss of generality C = {4, B}
contains arbitrary pairs of cells used as target and source
domains for the transfer learning task. Similarly, 7 = {1,2}
contains the different frequency carriers. Hereafter, we use 1
and 2 to denote 1.8 GHz and 2.1 GHz, respectively.

The CQP problem can be formalized as follows: given no
or a limited amount (i.e. t — [) of CQI observations from a
target frequency carrier f and a target cell ¢, (27’ ):;ll , we
aim to forecast future CQI values (Qf ! ):;N, where N denotes
the forecasting horizon. We leverage CQI observations from
a different carrier f’ # f of the same cell ¢ or from a set of
the same or/and different carriers 7/ C F of a different cell

c #c.
IV. PREDICTION APPROACHES

In this section, we describe the prediction approaches
adopted in this work, including baseline algorithms used as
benchmarks, the deep and transfer learning methods as well
as all the considered prediction scenarios.

A. Baselines

1) Average: Every CQI sample in (g’ )f:iv is predicted

as the average value of previous observations at the same
time during the same season in (z;’ ):;;, given by ¢’ =
% Zil Ti—;w. IN Our case w = 24 since we assume a season
of 24 hours. Let Ti; denote the number of samples used for
training chosen from the previous observations (:Elcf ):;(1) and
let H = Ti;/w represent the amount of samples to average.

2) Auto ARIMA: This is the automatic implementation of
Auto-Regressive Integrated Moving Average (ARIMA) intro-
duced by Jenkins in [12]. Seasonal ARIMA models are usually
denoted by ARIMA(p,d, q)(P, D,Q),,, where coefficients
p,d,q are the order of the autoregressive model, the degree
of differencing, and the order of the moving-average model,
respectively. m refers to the number of periods in each season
and P,D,(Q refer to the autoregressive, differencing, and
moving average terms of the seasonal part of the model,
respectively. By using grid search we optimize the ARIMA
coefficients (p,d, q,m, P, D, Q) that fit our data.

B. Deep Learning

The deep learning pipeline consists of the following steps:
training, testing and performance evaluation. First, the general
time series forecasting problem, is re-framed as a supervised
machine learning problem. For this purpose, we use sliding
windows of size w = 24 by shifting the original time series
one step to the right 7' times. Fig. 1 shows the process in
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Fig. 1: Sliding windows for time series forecasting
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details. The resulting supervised machine learning problem is
defined as finding the function ¢g(x,0) = y, x € R and
y € R that maps w hours of CQI observations to the CQI
value on the next hour. Each input vector x is given by the sub-
cr\t—w . . cy

sequence (z;) _," |, y is given by y;’ and 6 represent the
neural network weights. Then the data is divided into training,
cross validation and test sets. Before training, the data is scaled
between —1 and 1 by using a min-max scaler, which is fitted
to the training set and applied to the cross validation and
test sets. It is worth noting that the first order difference and
scaling transformations should be reversed before evaluating
the performance of our algorithms. During training, a model
g(x,8) is created by fitting the selected architecture on the
training set. The cross validation set is used at a later stage by
the network to select a good combination of hyper-parameters.
At testing time, g(x,0) is applied to data coming from the
same or a different frequency carrier. Finally, the data is
projected to the original space by reversing the scaling and
first order difference transformations.

1) CNN: CNNs [13] have significantly improved the state
of the art in computer vision. They have shown remarkable
performance as feature extractors, when using hierarchical
data. This means, the lower layers of the network can extract
general patterns from the inputs, while the deeper layers
extract the more specific ones. Inspired by this fact, we first
evaluate the use of CNNs for a general time series forecasting
problem and in a second step we use the same architecture
for the transfer learning approach. In both cases, the reference
CNN architecture is comprised of 7 layers; the first 5 layers
of the network are a combination of one dimensional (1D)
convolutional layers followed by a 1D max pooling layer.
Finally, a flatten layer as well as a dense layer are stacked
for producing the final output. We apply rectified linear unit
(ReLU) nonlinear transformations as the activation function.
Fig. 2 shows the architecture in detail, as well as the model
inputs and outputs. We use 256 filters and a kernel size of
3. For the max pooling layers we use stride s = 2 and pool
size § = 2. The dimension of the first convolutional layer
corresponds to the dimension of the feature space, which is
the window size w = 24, in our case.
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Fig. 3: LSTM architecture

2) LSTM: LSTMs [14] have shown great performance in
natural language processing. Their success lies in the fact that
they are recurrent neural networks containing multiple logical
gates and are capable of learning long term dependencies in
sequence predictions. In this paper, we use a many-to-one
LSTM architecture, which is comprised of 1 LSTM layer
followed by 1 dense layer that produces the final output. Fig. 3
shows the unrolled architecture in time, as well as the inputs
and outputs. We use subsequences with a length equal to the
selected window size w to predict the next sample in the
sequence as inputs. By using w = 24 as the dimension of
the feature space, the model will not capture time correlation
patterns longer than 24 hours. For this purpose, we use the
stateful LSTM implementation in Keras [15] that returns the
current sequence in each training step. The returned sequence
is then used in the next iteration allowing us to capture time
correlation patterns longer than 24 hours.

C. Transfer Learning

For the transfer learning task we first train a model on the
source domain, then we create a new model by taking the
previous model, freezing its first layers and adding new layers
that will be randomly initialized. Finally, we retrain on the
target domain.

For the CNN architecture, we freeze the first two convo-
lutional layers and randomly initialize the last one (Fig. 2).
We transfer more general features learned by the first layers
of the network in a richer source domain (i.e. longer time
series) to a limited target domain (i.e shorter time series). For
fine tuning we keep the same architecture. The LSTM is used
as feature extractor since we just retrained the last layer of
the network, which is equivalent to train a linear classifier on
top of a pretrained LSTM (Fig. 3). We transfer the long term
patterns learned in a richer domain to a limited target domain.

D. Scenarios

In this section we describe the prediction scenarios con-
sidered in this paper. We introduce two general approaches
depending on data availability in the target domain: 1) intra-
cell CQI prediction and 2) inter-cell CQI prediction.

Table I summarizes all the considered forecasting sceparios
as well as the inputs and outputs in every case. Let P+ 7%/
be the scenario where past CQI values of frequency f’' and
cell ¢’ (hereafter referred to as “data c’f,”) are used to predict
future CQI values of data cy. When using transfer learning
methods, we use the operator “+” to denote the retraining
stage for fine tuning. For instance, let P €77 denote the
scenario where the model pretrained on data c’f, is retrained
using data ¢, where f'.f € F, and ¢, ¢ € C. Along similar
lines, multiple stages of retraining can be considered, denoted



TABLE I. Considered Scenarios

Problem Notation Inputs Fine tuning Outputs Algorithms
oA AT NN
Intra-cell pA2—Az (27) l - (3) S Average, S Auto ARIMA, S CNN, S LSTM
i— i=t
CQa oA Y =T yy N
Prediction pA1—Az (=), - (32) BS Auto ARIMA, BS CNN, BS LSTM
1= 1=t
T—T T—1 T+N
pA1+A2 Ay (x;n) ) (;,;;‘2) l (g;“?) TL CNN, TL LSTM
1= 1= 1=t
t—1 i+
LERE (=) - ) BS Auto ARIMA, BS CNN, BS LSTM
Inter-cell "i(l) _— ﬁi\/
cQr pB2+A2—Az (=) (=) ) TL CNN, TL LSTM
Prediction =0 =t =
pB1+B2— A2 (=), (=), (52) P TL CNN, P TL LSTM
1= } i= 1=t
T—T =T =T TF
PRIFB bAoAz | () . (=) . (=) l (52) P TL CNN, P TL LSTM
i= i= i= 1=t

by multiple “+” operations. Note that the time indices are
omitted in the aforementioned notations for brevity. Overall,
values on the left side of the arrow are related to the training
phase, using observations taken before the time ¢; whereas
values on the right side are related to the forecasting step,
beginning on time ¢.

Without loss of generality, let us define ¢ = A and f = 2 as
the target cell and target frequency on which the CQI values
are to be predicted, respectively. For different scenarios we
select different data ¢/,¢ € C := {A,B} and f',f € F :=
{1, 2} for training or fine tuning. Below we describe in detail
the scenarios listed in Table 1.

1) Intra-cell CQI Prediction: The goal is to predict future
CQI values of As, given all past CQI observations from the
same cell and a different frequency (i.e. data from A;) but no
or a limited amount of data from As.

No data available from A, for training: P41 ~42 cor-
responds to the case where the higher frequency carrier was
never activated. Therefore, there is no data available from cell
A working at frequency 2. We forecast (ny)ertN by training
a model using (z:'")!Z}. We assume that CQI values coming
from layers working at dlfferent frequencies follow the same
distribution.

Limited amount of data available from A, for training:
Here the higher frequency carrier has been turned on a number
of days ago, and a limited amount of data A, is available
for training. The first solution is to use the limited data from
Ay to predict future CQI values from As. However, if the
time correlation is longer than the limited observed period,
this model will fail to capture this long time correlation. This
is why we extend our approach to use all the past observations
from the lower frequency A; plus the limited amount of
observations from A,. Here, we introduce the concept of
transfer learning across network layers working at different
frequencies. Both approaches are explained below:

o PA2742: We use past CQI observations (z2)!_} from

the same cell and frequency carrier to predict (g;“ﬂf*;’v .
pAi1tA2—=42: This is the transfer learning case. We use
sufficient data (2:'')!Z} from frequency 1, and limited
data (z ;42):& ! from frequency 2. We first train g1 741
Al)t y Then, we create g1 742742 and retrain

on (x;
A2)t ! Finally, we use the

it with the 11m1ted data (z;

K2

retrained g1 T42742 to carry out the prediction.

2) Inter-cell CQI Prediction: Here we consider the scenar-
ios where training samples come from a different cell B, under
the assumptions that cell B has both frequency carriers active.

No data available from A, for training: If the higher
frequency carrier of cell A was never activated, an alternative
is to rely solely on data collected from another cell B. Here
we have two different options:

PB2=42; We learn ¢gP27P2 using (2°?)!Z} and apply
the trained model to predict (g}f‘z)“r}v . This approach
assumes that data coming from cells in different loca-
tions working at the same frequency follows the same

distribution.
PBl +Bso— Ao

: We aim at applying the complete behavior
of a cell B to the target cell A using all data available
from B. Using (zP")!Z} and (7?)!Z) we learn the
model gP%1+52752 and apply it to predict (9;*)/XN.
Limited amount of data available from A, for training:
In case where (:L'f‘z)t ll is available from As; either we use
z2)! to predict (7/2)!XN as before, or we introduce
transfer learning; this time across cells. Below we explain the
transfer learning approaches across cells:
pB2tAz2—42. We learn gBy — By in cell B working at
frequency 2. We create gB2+42742 by taking ¢gB2— 52
and retraining with the limited data from A, (x fz)f L.

Finally, we use the retrained model %2+ 42742 to predict
( ~Ag )tJrN
i

o PBitB2t42242: We aim at transferring the whole be-
havior from B to A. We learn gP1+B2~B2 in B and

transfer this model to A, by retraining gZ1+tB2752 on
A, to derive gBrtBatA2—A2

V. NUMERICAL RESULTS

In this section we describe the setup of the experiments
and discuss the performance of intra-cell and inter-cell CQI
predictions with the approaches provided in Section IV.

A. Experimental Setup

The reference dataset comprised of 583 CQI samples across
time (Section III) is divided in training, cross validation and
test sets containing 535, 24 and 24 samples, respectively. The



TABLE II. Hyper-parameters

Hyper-parameters CNN, TL-CNN LSTM, TL-LSTM
Batch size 128 1
Number of epochs 300 early stopping 300
Early stopping patience = 3 -
Total number of layers 7 2
Activation function ReLU ReLU
Optimizer Adam Adam
Loss mean squared error | mean squared error
Learning rate 0.001 0.001
Dropout 0.2 0.2

different prediction approaches encompass different parame-
ters, which require fine tuning for further optimization. The
Average method is parameter free; whereas Auto ARIMA
requires m = 24 to be set a priori (Section IV-A2). As
for CNNs and LSTMs, the use of different window sizes
{1,6, 12,24} was explored. Manual cross validation is carried
out to choose a good architecture for this problem. We tried
different batch sizes in the set {1, 13,43, 128}. Table II shows
the final selection of parameters and hyper-parameters after
cross validation for each model.

The prediction accuracy is measured by the root mean
squared error (RMSE) between real and predicted values in
the test set (with size Ty = V) defined by Eq. 1:

t+N

1
N > @ — i) (1)

i=t

RMSE =

In the following sections we show the average RMSE across
cells when changing the amount of days taken from the target
domain for model training or fine tuning.

B. Intra-cell CQI Predictions

Fig. 4 shows the average RMSE when applying intra-cell
CQI prediction (Table I). The x-axis shows the amount of
CQI samples (measured in days) available from the target
frequency that were used for training or fine tuning the models
accordingly. The S curves refer to cases where the proposed
methods are applied by leveraging only data available from
the same frequency (P“27~42). The TL curves are related to
the transfer learning scenarios, where the model is pretrained
on source data coming from Ay, then fine tuned on target data
coming from A, (PA1+A42742) Finally, the points labeled as
BS refer to cases where there is no data available from the
target frequency for training or fine tuning; thus the only data
available is from a lower frequency (P41742). We can draw
the following conclusions:

e On average we achieve a RMSE of 0.3. This is reasonable
since CQI values are in the range of 0 to 15 with very
low variance.

o The deep learning approaches (i.e. S-CNN, S-LSTM,
TL-CNN and TL-LSTM) outperform Auto ARIMA and
Average methods in all cases. The conjecture here is that
the deep learning methods better capture the CQI time
series non-linearity.

o Opverall, LSTMs outperform CNNs when we have at least
some data from the target frequency for training and fine

X  —%— TLCNN =%=- S Autoarima  —%— BS Auto arima
0.9 —e— TLLSTM -%- SCNN —*— BS CNN
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0.8
0.7
w
2
206
0.5 1
R Lo
0.4 N
SN
I
* e e el
0.3 h-_..*;_;:-_-g-----—-—-——-= --------------- -«
0 5 10 15 20

Days taken from the target domain for training

Fig. 4: RMSE, Intra-cell CQI predictions

tuning. The reason is that LSTMs are better at capturing
long time correlations than CNNs. However, when no
data is available from the target domain, CNN performs
better.

o The transfer learning methods outperform traditional ma-
chine learning methods when the amount of data taken
from the target frequency for training or fine tuning
decreases specially when using LSTMs.

e In general the transfer learning algorithms (TL) signifi-
cantly outperform the cases where we do not use data of
the target domain (BS). Therefore, using a limited amount
of data for fine tuning helps to improve the performance.

C. Inter-cell CQI Predictions

In this section, we analyze numerically the performance
of inter-cell CQI prediction approaches (Table I), where we
use as source domain a different cell B at the same fre-
quency (PB2742 and PPB2tA2742) or the source domain
includes information on all the frequencies (PZ1 52742 and
pBi+B2+4:=42) Fig 5 shows the average RMSE over the
same 4 cells used shown before. It is worth noting that the
fifth cell of the dataset is not shown in the results and just
used as source domain for the inter-cell case. We can observe
the following:

o The performance features a trend similar to the one of
the intra-cell CQI prediction case with RMSE close to
0.3. Similarly, the deep learning approaches outperform
the baseline methods and the LSTMs perform better than
CNNs, when there is limited data from the target fre-
quency to be used for training or fine tuning. Otherwise,
when no data is available from the target frequency, CNN
methods perform better.

e The transfer learning algorithms (TL-CNN, TL-LSTM,
P-TL-CNN and P-TL-LSTM) outperform the traditional
machine learning approaches, specially when the amount
of data available from the target frequency is scarce.

e The model transfer approaches (P-TL-CNN and P-TL-
LSTM) outperform the transfer learning models (TL-
CNN, TL-LSTM), specifically when the amount of data
from the target frequency available for training is small.
Therefore, transferring the whole behavior from one cell
to another can help to improve the prediction performance
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when the amount of data from the target domain is
limited.

D. Discussion

The above mentioned numerical results suggest that, among
all the proposed algorithms, the LSTM performs the best. This
is expected since the LSTM is able of capturing longer time
correlation than the CNN. Overall, the proposed LSTM based
methods achieve a low RMSE under 0.3. This is partially
given by the low variance of the CQI that is averaged hourly
and across users in each cell. Fig. 6 summarizes all the
methods that use an LSTM. The solid lines show the intra-
cell prediction approaches; whereas the dashed lines show the
inter-cell prediction approaches.

e When the amount of data available from the target
frequency is limited, the best approach is using intra-cell
transfer. Otherwise using data from the same frequency
leads to better results. Overall, the intra-cell approaches
outperform the inter-cell ones.

o If intra-cell transfer cannot be performed due to the
unavailability of the data in source cell, the inter-cell
approach can still be used since the difference between
P-TL-LSTM and intra TL-LSTM is small.

VI. CONCLUSIONS

We proposed a transfer learning framework to solve the
CQP problem in the challenging cases where no or limited
information is available on the channel we wish to predict.
The proposed framework was tested on a dataset from a
commercial LTE network, showcasing how transfer learning
can be carried out across pairs of cells working at different
frequencies, or at the same frequency in different locations.
The obtained results show that the proposed deep transfer
learning methods are particularly effective when the amount
of data available from the target channel to be predicted is
limited.

This is a preliminary study towards applying transfer learn-
ing to CQI forecasting. Immediate follow ups will include the
application of this approach to other network key performance
indicators as well as the introduction of a “sophisticated”
selection criteria to identify the cells which should be used as
a source domain (wireless channels and cells) for the transfer
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learning task. Future work will also include optimization and
fine tuning of the deep learning models, and the evaluation of
different deep neural network architectures.
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