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Abstract

In this paper, a self-implemented model updating global optimization procedure is successfully
applied to a remarkable case study concerning a historic centennial Reinforced Concrete (RC)
bridge with parabolic arches, based on recorded experimental vibrational data and arising
identification of modal properties. In order to boost the degree of confidence and robustness
of the developed model updating procedure, appropriate computational strategies are pro-
posed at the level of both Sensitivity Analysis (SA) and global optimization. In particular,
Latin Hypercube Sampling (LHS) is employed in drawing up both strategies, as a systematic
automated way to determine appropriate multi-start sets of initiation points, optimally dis-
tributed throughout the parametric domain. The procedure involves a gradient-based method
and proposes an interaction algorithm between mechanical FEM solver and numerical com-
puting environment. Moreover, the gradient of the objective function involved in the model
updating is analytically derived, instead of by often-used Finite Differences (FD), toward bet-
ter accuracy and computational efficiency. Comprehensive updating results starting from a
first FEM base model are achieved, for the considered case study, and show that the relative
eigenfrequency and mode shape estimations are considerably improved, for all the structural
modes accounted for within the updating process, with a very good final matching between
experimentally extracted and FEM modelled modal properties.

Keywords: Structural identification; Model updating; Latin Hypercube Sampling (LHS); Sen-
sitivity Analysis (SA); Global optimization; Historic Centennial Reinforced Concrete (RC) arch
bridge.
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1 Introduction

The combination of in-situ testing and computer modeling represents a crucial means for the Struc-
tural Health Monitoring assessment of existing civil engineering structures. Such a combination
relies on the so-called model updating, also referred to as model calibration (e.g. Ribeiro et al. [1],
Shabbir and Omenzetter [2], Bedon et al. [3]). This process typically includes the following se-
quence: to acquire – to model – to update the model. It consists of a complex procedure in which
each link of the chain constitutes a rather non-straightforward operation. It refers to situations in
which one seeks to combine information from testing activities and analytical or numerical (typ-
ically FEM) models of the as-build structure, in order to achieve a realistic representation of the
targeted construction. Specifically, a reconciling process between experimental evidence and model
response is attempted.

Within the dynamic range of structural response, natural frequencies and mode shapes may
be considered as well-suited characteristics toward FEM model updating purposes. In fact, they
provide detailed information regarding the global and local behaviors of a structure, in terms
of mass and stiffness distribution, and may be identified from acquired data during vibrational
recordings, even along operational states of the structure (by Operational Modal Analysis (OMA)
approaches). In this case, the above-mentioned sequence for model updating becomes: to acquire –
to identify – to model – to update the model. To identify modal properties of a structure constitutes
by itself a non-trivial operation, and particular efforts are commonly devoted to handle just such
a task. For an extensive review on OMA approaches and related system identification methods,
the reader may e.g. be referred to the work by Reynders [4]; the contributions by Mottershead
and Friswell [5,6] and Fritzen et al. [7] also represent standard references on vibration-based model
updating. Recent contributions to OMA approaches may additionally be found in the works by
Benedettini and Gentile [8], Ubertini et al. [9], Pioldi et al. [10–12], Cardoso et al. [13], and
references quoted therein.

This paper pertains to a comprehensive model updating case study concerning a hundred-year
old RC bridge with parabolic arches (1917) located in Brivio, northern Italy, over the Adda river,
between the provinces of Lecco and Bergamo. Thereby, the modal identification phase becomes
part of the updating procedure, after an experimental campaign that was earlier carried out (2014)
by ambient vibrational measurements. In particular, the paper focuses on the calibration phase
of a 3D FEM model of the structure, based on the modal properties that are acquired by prior
OMA processing of the recorded experimentation data. It follows in continuity with previous
works on this specific subject, in which preliminary studies were conducted on the identification
of the modal properties of the bridge (see Ferrari et al. [14,15], also based on Heterogeneous Data
Fusion, as additionally explored in Ravizza et al. [16]) and on the associated modelization phase (see
Ferrari et al. [17]). Specifically, the paper develops a fully automated and consistent FEM updating
approach, in which the matching process between experimental evidence and model response is
governed by an enhanced Sensitivity Analysis-based (SA-based) and global optimization-based
algorithm.

It is worth to note that so far the paper considers a fully deterministic approach, toward
the model updating purposes. In this sense, other valuable model updating approaches account-
ing for uncertainty, e.g. based on Bayesian parameter estimation methods (see e.g. Beck and
Katafygiotis [18], as a first introduction on the principle of Bayesian parameter estimation and
Behmanesh et al. [19], as a recent reformulation of such a principle for structural identification)
are not considered within the present discussion.

SA-based algorithms belong to the realm of optimization procedures and they are very com-
mon in structural engineering. For example, based on SA, Bakir et al. [20] propose the use of
a constrained optimization algorithm for damage detection purposes, with particular reference to
the analysis of buildings. In Jaishi and Ren [21], the FEM model of a concrete-filled steel tubular
arch bridge is updated; in a later work by Jaishi and Ren [22], a SA-based FEM model updating
is carried out for the damage detection in a RC beam. Lu et al. [23] combine SA with a two-level
neural network, to improve the FEM model updating procedure, and a numerical case study is
engaged to verify the proposed algorithm. In Moaveni et al. [24], a SA-based FEM model updating
method is combined with an uncertainty analysis, to update the FEM model of a seven-story RC
wall building structure.
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More recently, Nguyen et al. [25] have assessed the serviceability limit state of vibrations of
a high-performance fiber RC bridge, using vehicle-bridge interaction within the model updating
procedure; in Polanco et al. [26], the use of SA-based model updating is employed to determine
the degree of composite behavior of the operational bridge decks, with uncertain shear connectors.

As far as complex structures are concerned, such as combined cable-stayed suspension bridges,
SA-based model updating methods may be combined with the introduction of sub-structuring,
in order to improve the computational efficiency of the model updating process (Friswell and
Mottershead [5]). A substructuring FEM updating method is discussed in detail by Weng et al. [27],
from the SA point of view. An example of this operating way is provided by Jang and Smyth [28], in
which an optimization procedure dealing with nonlinear inequality constraints is employed for the
FEM model updating of a bridge; also, combining the substructure-based model updating method
with the Response Surface (RS) method, a cable-stayed suspension model bridge is updated by
Shan et al. [29]. However, RS-based FEM model updating relies on the so-called Variance Analysis-
based (VA-based) algorithms (Catbas et al. [30], Guillaume et al. [31]), which are founded, unlike
SA-based methods, on the statistical analysis of the uncertainties linked to the structure and the
measured data.

A major advantage of resorting to optimization routines is that the updating procedure becomes
automated, thus abandoning typical empirical processes of “manual tuning”, despite for the possi-
ble drawback that the tuning problem may become intrinsically ill-posed. This commonly occurs
when several uncertainties may be linked to the structure of interest, in particular with regard
to material properties, geometrical features and boundary conditions. This may mathematically
translate into the existence of multiple local minima of the optimization problem, instead as of a
single global one. In such cases, appropriate strategies should necessarily be provided. In fact, if a
local minimum is mistaken for a global one, a wrong updating solution may eventually be provided.

To avoid local minima, multi-start optimization methods began to be widely used in the 1980s
(see for instance Boender and Rinnooy Kan [32]). Moreover, at the beginning of 2000, some other
advanced improvements were proposed, in accordance to multi-start optimization strategies, such
as, for example, criteria relating to couple local search points, to obtain a unique solution (see
for instance Suykens et al. [33]). Moreover, a certain amount of research effort in that context
has been devoted to improve evolutionary and genetic algorithms toward global optimization, by
the so-called surrogate-assisted evolutionary algorithm (see for instance Jin [34], Müller et al. [35],
Vincenzi and Savoia [36]).

In this paper, a compact SA- and global optimization-based model updating strategy, belong-
ing to the realm of multi-start optimization methods, is proposed to avoid possibly falling on local
minima, toward the model updating of a challenging case study based on real experimental modal
properties. It consists in first seeking several optimization paths that take off from different ini-
tiation points (or initial guess points or start points); then, in analyzing the set of the obtained
solutions leading to potentially different optima; finally, in selecting the global optimum among
them. The procedure involves a Trust Region (TR) algorithm (Nocedal and Wright [37]) as a local
searching method. It is conceived as a gradient-based method (convex programming), able to find
the optima in the basins of attraction of the considered initiation point. The procedure is based
on the evidence that the closer to the authentic optimum solution one may place the initiation
point, the higher is the recorded probability not to fall on a local minimum. Having more than one
initiation point, the probability of an initiation point to be closer to the proper solution (global
optimum) increases as well. Furthermore, in order to make the procedure self-consistent, the effi-
cient Latin Hypercube Sampling (LHS) method (McKay et al. [38]) is systematically adopted to
automatically select the initiation points of the optimization routine. Shortly, the method dis-
cretizes first the parametric solution domain into sub-domains, and then locates the initiation
points within the optimally selected sub-domains. After such a procedure, the initiation points
come out as well-placed and un-clustered throughout the solution domain.

The number of initiation points is chosen by the user and it relates to (i) the space dimensions
and (ii) the extension of the solution domain. While point (ii) may normally be handled by
engineering judgment and expertise, the definition of point (i) keeps non trivial. The parameters
to be taken into account within the matching procedure, and thus for defining the initiation point,
are typically determined by SA (Saltelli et al. [39]). Sensitivity Analysis is widely used for model
updating tasks and is considered as a necessary upstream step (Mottershead et al. [40]). However,

3



in its common application, it possesses the inherent inconsistency that SA is assessed on a fixed
local point (initiation point), which may not coincide nor be near to the final (optimum) one.
This clearly constitutes a drawback of the updating procedure. In fact, the initiation point may
be “far away” from the optimum point and SA may point out to the appropriate underlying
parameters located around the initiation point but not around the optimum one. This might
lead to convergence problems or even to convergence failure. To avert this issue, the adoption
of a LHS method is proposed here, first starting at the level of SA and then going to the level
of global optimization. Also, the SA phase is analytically carried out, to avoid unwanted and
costly approximations linked to numerical evaluations (e.g. through Finite Differences – FD) and
to improve performance.

As a main reference to the salient points of the considered case study and of the self-imple-
mentation methodology, and to the original contributions of the present attempt, the following
characteristic items may be outlined:

• The proposed updating procedure is herein developed and applied to a complete FEM model
updating case study concerning a historic RC bridge with parabolic arches (1917), whose
dynamic response has been first captured during an experimental vibrational campaign and
then adopted as a benchmark reference for OMA modal identification and model updating
purposes. A number of the identified modal properties of the structure is involved within the
model updating procedure. Key structural parameters as Young’s moduli and mass densities
are located and consistently identified by the procedure, based on both natural frequency
and mode shape estimations.

• The main original proposal of this paper consists in the comprehensive model updating
investigation of the considered case study, which is handled by a self-implementation of an
efficient LHS method to widely inspect the solution domain, in order to both perform a
Sensitivity Analysis and to achieve a global optimization, in searching for potential multiple
minima of the objective function, as revealed by a TR algorithm, and to derive a global
optimum one. The benefits from the LHS implementation are illustrated throughout the
paper. LHS indeed turns-out fundamental, for the present implementation purposes, since
it does not require specific modifications of the optimization procedure itself and thus may
also be implemented for a wide range of optimization problems.

• The whole updating procedure manages a fully automated interaction between mechanical
FEM solver and numerical computing environment. This becomes very useful when necessary
to consistently modify the FEM model to be updated (e.g. at the level of the boundary
conditions or of the morphological characteristics). In this context, it is worthwhile to recall
that in this work, in an effort to contain the computational burden of the updating procedure
and to improve performance, the derivatives employed for the evaluation of the gradients of
the objective function within the optimization problem are analytically determined.

The outline of the paper is as follows. Section 2 briefly introduces the theory of LHS and
TR methods, as pertinent to the present implementation. Moreover, the FEM model updating
procedure is presented and discussed. In particular, the objective function implemented into the
optimization procedure is introduced, together with all SA-related aspects. Herein, the deriva-
tives of the objective function adopted for the model updating are provided in their analytically
determined form. Section 3 presents structural testing and modeling. Section 4 assesses the imple-
mented model updating procedure, as applied to the present structural case study. Final comments
on the effectiveness of the whole updating process within the present case study are pointed out
in closing Section 5.

2 Optimization and updating implementation framework

2.1 Latin Hypercube Sampling and Trust-Region optimization

Latin Hypercube Sampling (LHS) originates from the field of statistics, McKay et al. [38]. It
constitutes a sampling method originally designed to generate controlled random samples; in other
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words, such a method is able to accurately recreate the input distribution through a sampling, in
fewer iterations, when compared to classic random sampling (Monte Carlo method), characterized
by the problem of clustering, whenever a small number of iterations is performed, Olsson et al. [41].

The LHS is based on the stratification of the probability distributions of each component
of an M -dimensional vector of variables θ =

{

θi, i = 1, . . . ,M
}

. Specifically, let the Cumulative
Distribution Function (CDF) of each θi to be known and P the number of samples to be generated.
Stratification divides the CDF curve into P equal intervals on the cumulative probability scale
(0 to 1). Thus, the ranges of θi results to be partitioned into P intervals, of equal probability
size 1/P . Then, operating the Cartesian product of these intervals, domain D ⊆ R

M of θ becomes
divided into PM cells, each of probability P−M . A LH sample of size P is then obtained from
a random selection of P cells among those partitioning D, according to the criteria of the so-
called Latin Square rule (see Cavazzuti [42]). Hence, sampling is forced to represent values in each
interval, and thus, to recreate the input probability distribution.

An intuitive representation of the LHS application in sampling procedures is provided in Fig. 1.
In the figure, four points are (a) randomly generated and (b) automatically generated through the
implementation of the LHS method in a 3D parametric space bounded between values [0, 1] in each
dimension. From this representation it is possible to observe that in case (b) the points appear as
un-clustered and much well-spread, in filling the parametric domain, with respect to case (a). It
is important to note that the LHS method for M variables and P points is independent from the
specific application under consideration, and that, once the sampling of domain D for M variables
and P points is formulated, a re-calculation of the sampling is not required.
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Figure 1: Latin Hypercube Sampling: (a) Non-LHS random distribution vs. (b) LHS-based automated
distribution of four points in a [0, 1]-bounded 3D parametric space.

Trust-Region (TR) optimization may be used for deterministic model updating, in finding an
optimum set of model parameters θ∗i (i = 1, . . . , p) that minimizes a misfit between experimen-
tal data and model predictions, on a certain parametric space D ⊆ R

p. Such a discrepancy is
represented by a so-called objective or cost function f(θ). The model updating problem is thus
equivalent to a nonlinear programming problem:

θ
∗ = argmin

θ ∈D
f(θ,d) (1)

where d is a given set of experimental data and θ∗ is the sought optimum solution. TR methods are
used in mathematical optimization to search for a minimum of objective function f(θ), Nocedal
and Wright [37], and define, around iterative current point θk, a confidence region, usually a
hypersphere, assuming that there a local quadratic model may adequately represent the objective
function. Then, the direction and extension (hypersphere radius ∆k) of the step apt to minimize
the local quadratic model are simultaneously determined and a new iterative point is set out.
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In this study, according to a Matlab implementation with the adoption of the lsqnonlin function,
the objective function is approximated in each trust region through a quadratic Taylor expansion
model m(ζ) = f(θk) + ∇f(θk)T ζ + ζTBkζ/2 where ∇f(θk) is the gradient vector of objective
function f(θ) at current iterate θk and Bk represents a suitable approximation of the Hessian
matrix, so that m(θk + ζ) ≃ f(θk + ζ). At each iteration, the TR method then solves for the
following (constrained) optimization sub-problem:

ζ∗ = argmin
‖ζ‖≤∆k

m(ζ)
(2)

The algorithm automatically sets the TR size, based on ratio ρk = Ared,k/Pred,k, where Ared,k

is the (actual) reduction in the objective function, while Pred,k the (predicted) reduction in the
approximated model. TR iterations are terminated once appropriate stopping criteria are met.

2.2 FEM model updating procedure

It is well known that, in model updating instances, if some of the requirements of objective func-
tion f(θ) are competing, multiple local minima of the optimization problem stated in Eq. (1) may
exist, Mokhtar et al. [43]. As a consequence of such a lack of quasi-convexity of the objective func-
tion, the majority of the available local optimization algorithms, such as the above TR method,
cannot guarantee that a global minimum may be found. In order to seek out the overall best
solution, a global-scope search effort becomes thus imperative.

In this work, such an effort is attempted with regard to a “globalized” extension of a local
search method. In particular, the TR method is herein considered, as follows. A number n of
initiation points is first generated, as spread within the parametric (solution) domain. The TR
algorithm is then used to perform as many optimization runs as the generated initiation points,
providing, at the end of the (n) runs, a set of n solutions (local minima) E = {θ∗,p, p = 1, . . . , n}.
The solution candidate to be the global one, θ̄

∗
, is finally selected among the set of the obtained

local minima (θ̄
∗
∈ E), through appropriate criteria.

The characteristics of set E are based on the mathematical properties of objective function f(θ)
and on the initial population of initiation points. It is obvious that the higher the employed
initiation points, the higher the probability to find a globally best solution, and that a convenient
criterion to select the initiation points is mandatory to trust the global optimization procedure in
leading to a successful solution.

As earlier stated in the Introduction, to comply with the above provisions, the above LHS
sampling method is employed within the updating procedure, at two different levels: Sensitivity
Analysis and global optimization.

First, the LHS method is implemented within a SA phase to set which parameters are to be
contemplated within the updating procedure. This implies to define which parameters mostly
influence the FEM modal response and, consequently, the dimensions of the parametric domain in
which the optimization routine shall work. The advantages in using the LHS method relate to what
follows. Sensitivity Analysis provides that derivatives of the FEM modal properties with respect
to each characteristic parameter have to be evaluated: large or small values of such derivatives
mean dependence or independence with respect to the selected parameter, respectively. However,
modal derivatives are local quantities, i.e. they depend on the point where they are evaluated. If
modal derivatives of a parameter are evaluated only at a certain point where, for instance, they
result to be small, they will lead to the erroneous exclusion of that parameter from the optimization
procedure. To avert this issue, modal derivatives with respect to each parameter must be evaluated
at several points distributed within the whole parametric domain. Specifically, LHS is thus used
to generate a set of N optimally spread initiation points (Section 2.1) within a parametric domain,
dimensionally defined by the operator. From each sample obtained from LHS, a FEM eigenvalue
problem is run and sensitivities are evaluated, computing a total number of N sensitivity matrices.
Then, the average normalized relative sensitivity matrix is calculated. Based on the analysis on
the components of such a matrix, the parameters that govern the modal response of the structure
are finally established and selected as variables within the optimization routine. In doing so, the
initiation point-localization dependence of SA is thus avoided.
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Upon implementation at the level of SA, the LHS method is also used to define initiation
points θ0,p from which the local optimization routine (TR) takes off, time after time, to finally
search for potential multiple minima of the objective function. A careful selection of the point from
which the optimization procedure takes off (initiation point) may increase the degree of confidence
of the expected solution. Indeed, the closer this point to the solution, the higher the probability
not to fall on a local minimum.

Sensitivity Analysis and definition of the initiation points, then constitute the preprocessing
phase of the present optimization procedure. In a next step, the core of the optimization routine
begins (processing phase). In particular, once the initiation point is defined, a FEM solver is
involved to compute the structural response (here evaluated in terms of modal properties). Then,
objective function f(θk) and its gradient ∇f(θk) are calculated. Stopping criteria are checked,
determining if current point θk is the solution of the optimization path. If not, new point θk+1

is determined, through the TR method, and the optimization routine is repeated. The algorithm
stops when specific stopping criteria are met.

2.2.1 Selection of global optimum

The selection of global minimum θ̄
∗
∈ E may be performed according to different criteria. For

instance, following a rigorous mathematical test, the global minimum should be the one providing
the lowest value of the objective function. Another more engineering criterion may state that the
choice should concern the point characterized by the least (minimum) value between the worst
(maximum) errors on the frequencies among all local minima (“minimax” criterion). This specif-
ically in view of the goal of refining as much as possible the eigenfrequency estimations, once
predictions of the mode shapes are anyway being rather satisfactory. In this work, this last mini-
max criterion is applied as the rule of determining the best minimum point. This issue is further
detailed in the applications later presented in Section 4.2.1.

The procedure so far described is illustrated in the synoptic flowchart reported in Fig. 2. The
FEM model updating routine used in this work is implemented within MATLAB and function
lsqnonlin is employed to manage the optimization process. ABAQUS may instead be involved as
FEM solver; as an alternative, a FEM solver developed within MATLAB (Ferrari et al. [44–46])
may also be selected. This is actually a user choice, in the implemented updating procedure (see
input block (parallelogram) in Fig. 2).

In following Section 2.3 the objective function considered in this study is presented. Afterward,
Section 2.4 treats the Sensitivity Analysis based on which the parametrization of the solution
domain and the calculation of gradient ∇f(θ) for the TR implementation are determined.

2.3 Objective function for model updating

The objective function in model updating problems based on structural modal properties (see
Eq. (1)) aims at achieving a close match between measured and computed modal parameters.
Weighted least-squares formulations are commonly employed for the definition of the objective
function (see e.g. Jang and Smyth [28], Simoen et al. [47]), as done in this study. Specifically, the
objective function herein considered takes the following form:

f(θ) =
1

2

(

(

1−

M
∑

m=1

αm

)

∥

∥rf (θ)
∥

∥

2

2
+

M
∑

m=1

αm ‖rs,m (θ)‖
2

2

)

(3)

where the summation is performed over theM experimentally available modes, ‖·‖2 is the Euclidean
norm for vectors, θ is the parameter vector to be optimized, rf is the residual vector of the natural
frequencies and rs,m is the residual vector of themth mode shape. In detail, the latter two residuals
are defined as follows:

rfm(θ) =
λm(θ)

λ̃m
− 1 (4)

rs,m(θ) =
φ̃ml
φml

φm(θ)− φ̃
m

(5)
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Figure 2: Flowchart of the LHS optimization process for FEM model updating

In Eq. (4), λ̃m and λm represent (2πfm)2 quantities (eigenvalues) related to identified and com-

puted frequencies f̃m and fm, respectively. In Eq. (5), φ̃
m

and φm(θ) are the identified and
computed (eigenvectors) mode shape vectors, respectively. Since the computed mode shapes may
display a different scale as compared to the identified ones, a scaling factor is applied on computed
mode shape φm(θ); it is equal to the ratio between values φ̃ml and φml , which represent the maxi-

mum components of vector φ̃
m

and vector φm, respectively. It should be noted that such a scaling
factor does not matter in the issue of avoiding a possible magnitude imbalance between the resid-
uals of the natural frequencies and of the mode shapes that may appear in real calculations. This
aspect has been taken into account in the implemented model updating procedure, in adopting
the earlier mentioned “minimax” criterion (Section 2.2.1) on frequency residuals for determining
the global minimum, thus effectively bypassing the possible problem of the above mentioned im-
balance. Other approaches may be used as well to scale the mode shapes, such as the Modal Scale
Factor (MSF), Shahverdi et al. [48]. This operator modifies the scale of the computed mode shapes,
to minimize the difference with the maximum normalized identified mode shapes in a least-squares
sense. However, as a drawback, it requires a very detailed description of the experimental mode
shapes, Jang and Smyth [28].
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In Eq. (3) αm denote appropriate weighting coefficients (αm ≥ 0,
∑

αm ≤ 1), shifting the
importance of updating information on frequencies or on mode shapes (possibly based also on
their availability or estimated accuracy), towards the purposes of the identification process. Notice
that in Eq. (3) the relative differences are taken in the eigenvalue residual, in order to obtain a
similar weight for each eigenvalue residual, due to the fact that, the higher the eigenvalue, the higher
the absolute difference between analytical and experimental quantities. If, conversely, each natural
frequency would be equally weighted in absolute terms, the algorithm would effectively weight
more the higher eigenvalue. In the simulations presented later in the paper, values αm = 1/(2M)
have been assumed for all the M adopted modes, as a reasonable and consistent choice within
the considered runs (see remarks later presented in Section 4.2.1, also concerning the considered
criterion for selecting the global optimum solution devised in above Section 2.2.1, as applied to
the present numerical investigation and pertinent results). As a matter of fact, it is worthwhile to
remark that the presence of the mode shapes, within the updating process (i.e. within the objective
function), is crucial to improve the prediction of the modal characteristics by the model updating,
since they considerable enrich the amount and quality of the information coming from the targeted
data (experimental modal features). On the other hand, once a good matching on the estimated
mode shapes is achieved, keeping the chosen weight within the objective function, the criterion for
the selection of the global minimum, which may be stated on the residual of the eigenfrequency
estimation (Section 2.2.1), may selectively point out to a specific refinement of the frequency
estimations, given the goodness of the predicted mode shapes. Moreover, when calculating the
residual vectors, it is important to make sure that the comparison made between experimentally
identified and numerically computed natural frequencies were made with frequencies corresponding
to the same dynamic mode. This procedure is called mode paring. A classical Modal Assurance
Criterion (MAC) value is used for the mode paring in this study.

In model updating schemes, it is often advantageous to select relative factors instead of the
physical parameters themselves as parameters to be optimized, thus avoiding that largely varying
orders of magnitude may induce numerical difficulties (inaccuracy) in the optimization procedure.
To comply with this recommendation, for each considered physical parameter ϑi, the following
corresponding relative non-dimensional factor is considered in the proposed procedure:

ψi =
ϑi
ϑ0i

(6)

where ϑ0i is the ith physical parameter of a reference FEM base model. Thus, each ψi is expected
to range at around 1, for all the model parameters.

As stated in Section 2.2, the TR method needs the calculation of the gradient of objective
function f(θ). According to the expression of objective function f(θ) in Eq. (3), and the change
of variables provided in Eq. (6), the gradient vector components result:

∇fi(ψ) =
∂f(ψ)

∂ψi

=

(

1−

M
∑

m=1

αm

)

rfj (ψ)
∂rfj
∂ψi

+

M
∑

m=1

αm rs,mj (ψ)
∂rs,mj

∂ψi

(7)

where implicit summation convention on repeated indices applies. By the chain rule, the derivatives
of normalized residues rf and rs,m of Eqs. (4)–(5) are computed as follows:

∂rfj
∂ψi

=
∂rfj
∂λk

∂λk
∂ψi

=
1

λ̃j

∂λk
∂ψi

(8)

∂rs,mj

∂ψi

=
∂rs,mj

∂φm
k

∂φm
k

∂ψi

= amjk
∂φm

k

∂ψi

(9)

In Eq. (9), matrix amjk can be calculated as:

amjk =
∂

∂φmk

(

elpφ̃
m
p

elqφ
m
q

φmj − φ̃mj

)

=
elpφ̃

m
p

elqφ
m
q

δjk − φmj
elpφ̃

m
p elqδqk

(elqφ
m
q )2

=
φ̃ml
φml

δjk −
φ̃ml

(φml )2
φmj e

l
k (10)

where el indicates the Cartesian unit vector with unitary lth component and δjk is the Kronecker
delta.
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According to Friswell [49], the eigenvalue derivatives reported on the right hand side of Eq. (8)
are evaluated by means of the following expression:

∂λi
∂ψj

=
1

Mi

φi T

(

∂K

∂ψj

− λi
∂M

∂ψj

)

φi (11)

where K and M are stiffness and mass matrices of the FEM model of the structure and λi and
Mi = φ

T
i Mφi are the eigenvalue and modal mass, of the ith eigenmode, respectively.

On the other hand, a more involved procedure characterizes the calculation of the eigenvector
derivatives reported on the right hand side of Eq. (9). In the algorithm herein proposed, the
procedure presented by Nelson [50] is implemented.

As mentioned in the Introduction, the derivatives in Eqs. (8) and (9) are herein “exactly” deter-
mined, i.e. analytically, instead of by often-used Finite Differences (FD) numerical approximations.
This way to operate is preferred for two main reasons. Firstly, the evaluation of such derivatives
constitutes a mandatory task in gradient-based modal model updating and, therefore, approx-
imations in their accounting may be avoided; secondly, the calculation through FDs is usually
time-consuming. Considerable importance was given to this latter aspect, since it also concerns
the SA phase, as described in the following section.

2.4 Sensitivity Analysis

The stability and well-posedness of gradient-based iterative methods for the solution of nonlin-
ear optimization problems are crucially related to the conditioning of approximated Hessian ma-
trix Bk (see Section 2.1), which depends, in turn, on the gradient of the objective function. Ill-
conditioning of the Hessian matrix may be extremely common in model updating, resulting in a
solution which is very unstable with respect to small changes in the model predictions and in the
data vector.

An effective expedient to prevent this problem lies in avoiding near-zero components in gra-
dient vector ∇f(θ) and over-parametrization along the structure, which produces nearly linearly
dependent columns in the Jacobian matrix for the neighboring elements. This translates into
the selection, for the model updating, of those physically relevant parameters of the FEM model
that sufficiently affect the observed data, i.e., the selection of a reasonable initiation point for the
optimization process, Brownjohn et al. [51].

In order to asses which parameters markedly affect the structural response, thus avoiding con-
sequent ill-conditioning troubles, SA is carried out. The selection of the parameters to be updated
is a decisive moment within the model updating procedure, and the analysis of sensitivity matrix S

constitutes an efficient tool, allowing for the selection of the parameters that most influence the
structural response.

In modal vibration-based model updating, the required sensitivities relate the predicted eigen-
values and eigenvectors to the unknown structural parameters. In this study, SA is based on
the predicted eigenvalues. Thus, it turns out that the sensitivity matrix corresponds to Eq. (11),
namely:

Sij(ψ) =
∂λi(ψ)

∂ψj

(12)

where it is reiterated that λi represents a specific eigenvalue and ψj is defined by Eq. (6), with
i = 1, . . . ,M , for M considered eigenvalues and j = 1, . . . , N for N structural parameters. Since
sensitivities related to different quantities have to be compared, the following normalized relative
sensitivity matrix Sn is specifically employed:

Sn ij(ψ) =
1

λi

∂λi
∂ψj

=
1

λiMi

φi T

(

∂K

∂ψj

− λi
∂M

∂ψj

)

φi (13)

As described above, in the present updating procedure the sensitivities in Eq. (13) are deter-
mined for each of the optimally located points automatically generated by the LHS method within
the parametric domain, and their average is evaluated. Thus, the average Sn matrix is calculated
and the parameters that govern the modal response of the structure are then established and
selected as underlying variables within the optimization routine.
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3 Testing and modeling of Brivio bridge (1917)

3.1 Brief description of the bridge

The historic Brivio Bridge (Santarella and Miozzi [52], Froio and Zanchi [53]) is a three-span RC
arch bridge located between Brivio (province of Lecco, LC) and Cisano Bergamasco (province of
Bergamo, BG), in the Lombardia region, northern Italy. Built in 1917, the bridge crosses the Adda
river at an approximate height of 8 m from water (Fig. 3). The bridge consists of three spans,
with characteristic parabolic arches and is fully symmetric with respect to its mid-longitudinal
plane. The central span is 44 m long, while the lateral spans linked to the river banks are 43.4 m
long, totaling to a length of 130.8 m. The road deck is 9.2 m wide and hosts two roadway lanes
and two cantilever sidewalks, 0.8 m wide. The deck of each span of the bridge includes two main
longitudinal girders (0.45 m × 1.00 m) placed at a respective transverse distance of 8.60 m, and
two further secondary beams (0.20 m × 0.55 m) placed at a distance of 2 m, symmetrically located
with respect to the vertical longitudinal plane of the bridge. Between these girders, transverse
beam connections (0.30 m × 0.75 m) are placed at approximately every 2.30 m. The resulting
structural grid supports a RC slab of 0.15 m of depth.

The characteristic arches of the bridge feature a 42.80 m span and a rise of 8.00 m. Each arch
presents a rectangular cross section, characterized by a constant width, equal to 0.60 m, and a
height varying from 1.25 m (in the middle) to 1.37 m (at the ends). The profile of the arch is
symmetric with respect to the vertical axis at half span. The arches are linked to each other on
their upper central part by eight transverse beams and to the deck by means of sixteen RC hangers
per side, per span, of rectangular cross section (0.32 m × 0.60 m).

Two concrete piers constitute the intermediate supports of the deck into the river bed. The
piers are tapered, with maximum dimensions at the base of 12.8 m along the transverse direction
of the bridge and of 3.8 m along its longitudinal direction. Each pier rests on forty-eight RC piles
driven into the river bed, ranging from 13 m to 16 m in depth; each pile displays a square cross
section of 0.35 m. Above both the intermediate piers and the abutments, a RC slab of 1 m height
is placed.

Figure 3: Present downstream view of three-span Brivio bridge (1917) on river Adda; Brivio (LC) right
bank (left), Cisano Bergamasco (BG) left bank (right).

3.2 Testing and system identification of the bridge

Experimental campaigns were carried out on the bridge on 11–13 June 2014. During the tests,
several instrumentations were used (see Ferrari et al. [14,15]), including standard wired accelerome-
ters, for collecting the accelerations of the structure under current traffic load. Such accelerometers
were installed on the bridge as an integrated system composed of: (a) a 24-channel data acquisition
system, comprising of 6 NI 9234 4-channel dynamic signal acquisition modules (24-bit resolution,
102 dB dynamic range and anti-aliasing filters), interfaced to a remote PC and to its storage
unit; (b) uniaxial WR 731A piezoelectric accelerometers on the roadway deck; each WR 731A
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sensor, capable of measuring accelerations up to 0.5 g with a sensitivity of 10 V/g, was connected
with a short cable to a WR P31 power unit/amplifier. Data were collected at a sampling rate
of 200 Hz. Accelerometers were placed on both sides of the deck to capture both bending and
torsion responses, according to the two setups shown in Fig. 4. Two time series of 3600 s were
recorded per each setup, to ensure a good data quality. In this paper, measurements derived from
the span of the bridge placed on the Brivio side (hereafter referred to as first span, i.e. left span
in Figs. 3 and 4) are employed for the ensuing discussion.

(a)

(b) (c)

Figure 4: Schematic downstream front and top views of Brivio bridge (a) and accelerometer location for
the vibration-based recording with two setups (b),(c). Dimensions in meters.

For system identification in the frequency domain, a standard Frequency Domain Decomposition
(FDD) method (Brincker et al. [54]) has been used. The obtained results are represented in Fig. 5
in terms of the natural frequencies, which can be discerned from the local maxima of the first
Singular Value (SV) line. The corresponding mode shapes follow in Fig. 6. For cross-checking
the results of peak picking, a standard data-driven Stochastic Subspace Identification (SSI-data)
method (Peeters and De Roeck [55]) has also been adopted, allowing as well for the damping ratio
estimations (see also Pioldi and Rizzi [56,57], for a recent comparison of the the two OMA methods,
in enhanced forms). Table 1 summarizes the natural frequencies consistently identified from the
FDD and SSI methods, together with the damping ratios identified by the SSI method.

Table 1: Experimentally identified modal frequencies (FDD and SSI methods) and damping ra-
tios (SSI method), and mutual MAC indexes.

Mode 1 2 3 4 5 6 7 8 9

f FDD [Hz] 3.564 3.857 6.018 7.178 7.690 9.009 11.38 13.09 17.02

f SSI [Hz] 3.449 3.887 5.968 7.146 7.592 8.928 11.39 13.04 16.99

∆f exp [%] −3.23 0.78 −0.83 −0.45 −1.27 −0.90 0.11 −0.35 −0.16

ζSSI [%] 4.60 4.09 3.17 1.51 2.82 1.67 1.28 2.01 1.44

MAC 0.997 0.991 0.998 0.989 0.991 0.990 0.938 0.987 0.935

In Table 1, it can be appreciated that the modal frequencies identified by both OMA methods
match each other quite well and that there appear values above 0.93 for all the mutual MAC in-
dexes. Indeed, the absolute value of percentage discrepancy ∆f exp that exists between the frequen-
cies determined through the FDD method and the SSI method, with respect to the FDD estimates
(∆f exp = (fSSI − fFDD)/fFDD) does not exceed 3.23% (see Table 1).

12



Frequency [Hz]
0 4 8 12 16 20

SV
 [

dB
 | 

1.
0 

(m
/s

2 )2 /H
z]

-40

-30

-20

-10

0

10

20

Figure 5: SV curves resulting from classical FDD.
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Figure 6: Mode shapes corresponding to the identified modal frequencies listed in Table 1 (FDD).

Figs. 6–7 show the mode shapes of the first span of the bridge as identified by the FDD method,
represented also through polar plots in Fig. 7. From Fig. 6, it can be observed that almost all the
mode shapes exhibit regular and smooth shapes, dominated by bending and/or torsion, with the
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Figure 7: Polar plots for the mode shapes corresponding to the identified natural frequencies listed in
Table 1 (FDD). Main complex components appear only for Modes 7 and 9.

exception of the 7th mode, which is characterized by coupled bending and torsion.
Moreover, although Modes 1 and 2 are associated to different frequencies, they exhibit a practi-

cally identical experimentally obtained mode shape. This occurrence, also referred to as “frequency
splitting phenomenon” (Zonta and Modena [58]), was also pointed out in preliminary analyses
conducted on the Brivio bridge (see Ferrari et al. [15]), where this was associated to the possible
presence of damage (see Ubertini et al. [59]), such as linked to cracking of some vertical hang-
ers. As a further consideration, the observed phenomenon may also be linked to the presence of
added mass due to the transiting vehicles (consisting also on several trucks, during the prolonged
acceleration recordings, sometimes crossing at slow speed or even standing in line, with the traffic
on the bridge), leading to display a splitting of the modes as in Tuned Mass Damper (TMD)
passive vibration mitigation/control device tuning and identification (as for instance reported by
Wang and Lin [60], and in general terms about TMD tuning in Salvi and Rizzi [61–63], with
references quoted therein). Another physical interpretation could be related to the presence of
a slight coupling of the modes of the three different spans. This could have been revealed by
additional vibrational acquisitions on the other two spans, or by means of numerical simulations
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comprising the whole bridge structure. The latter choice would of course complicate the matching
between the experimental evidence and the model response, in this way merely translating the
problem to potential numerical convergence issues. However, giving right to a numerical model
interpretation, the subsequent modal analysis performed through the FEM model of the first span
of the bridge shows the presence of an additional mode close to the first one and quite similar to
that in terms of deck bending but involving also a torsional component of the whole structure (see
following Figs. 9 and 16). This has led to conduct, in the present investigation, two different model
updating procedures. The points considered on this specific aspect are outlined in Section 4.1.1.
All these interpretative conjectures may be further assessed by additional investigations, possibly
requiring further experimental campaigns on the bridge, if they would later become possible.

The modal properties (frequencies and mode shapes) estimated from the FDD algorithm are
here assumed as the identification target for the model updating process that follows. This is
because they are felt as readily visible and accessible (Fig. 5), and as rather reliable, in both
frequencies and mode shapes, also after sample consistent validations with separate refined FDD
evaluations (Pioldi et al. [10–12]), providing a higher comfortable level of personal confidence for
the following purposes of model updating. Despite, the alternative predictions from SSI OMA
identification could also be assumed for the following model updating analysis.

3.3 FEM model of the bridge

Brivio bridge (first span) has been modeled through a linear elastic FEM model, first implemented
within ABAQUS (Froio and Zanchi [53], Ferrari et al. [17]), and later transported into a separate
FEM MATLAB implementation. It consists of a 3D frame structure with beam elements, mutually
connected at the nodes. It is obtained as an assembly of four main sub-structures, namely deck,
arches, hangers and upper transverse beams. The FEM model of the bridge is shown in Fig. 8;
in such a sketch, the x-, y- and z- axes represent the longitudinal axis, the vertical axis and the
horizontal transverse axis of the bridge, respectively.

X

Y

Z

Figure 8: FEM model of Brivio bridge (single span, with rendering of the beam profiles).

The geometry of the FEM model has been carefully deciphered based on available design draw-
ings of the bridge. Since it has been preferred not to consider geometry characteristics within
the updating procedure, a very careful attention has been paid on this. The cross-sectional area
and the moments of inertia have been calculated based on the design drawings. In case of lack of
information about dimensions, reasonable guesses have been made, also based on a local inspection
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and photographing. The deck is modeled as a framework of 254 beams, the arches are made of
70 elements, whereas 24 elements constitute the upper beams. The deck-hanger and the hanger-
arch joints are modeled by using rigid links. A non-structural component referring to the asphalt
layer is also included in the model, as an added mass, as uniformly distributed along the deck of
the bridge.

Concerning the boundary conditions, the model is considered as simply supported at one ex-
tremity of the deck and four different types of linear springs are considered to be located as follows:
two z -axis rotational springs are placed at both extremities; two translational springs, one hor-
izontal (x -axis) and one vertical (y-axis), are located at the second extremity. These rotational
and translational springs are inserted for modeling the possible interaction of span 1 with the
neighboring span and for compliance with the presence of the concrete pier at the extremity of the
beam, respectively.

The final 3D FEM model of the bridge counts for 380 beam elements, 280 structural nodes and
1680 degrees of freedom (nodal displacements and rotations, after assembly) and is implemented
as fully symmetric with respect to the vertical longitudinal plane of the structure.

4 FEM model updating of Brivio bridge

4.1 Parametrization of the updating problem

To parametrize the updating problem here refers to define the characteristic parameters to be
considered as “eligible” variables for the problem itself, namely the parameters that can be se-
lected as variables of the optimization procedure that such problem implies (see Section 2). This
selection precedes SA, under which, however, the effective parameters that will be updated during
the optimization process are selected among all the variables that characterize (parametrize) the
updating problem. SA for the Brivio bridge is treated in following Section 4.1.1.

For the present case study, a total of 14 variables is outlined at this stage to parametrize the
updating procedure. In particular, 10 variables refer to 5 Young’s moduli and 5 mass densities of the
five substructures in which the FEM model of the bridge is subdivided (Section 3.3), based on the
morphological and topological characteristics of the structure (i.e., deck, main longitudinal girders,
parabolic arches, hangers, upper transverse beams); 4 additional variables refer to the stiffness
coefficients of the springs considered for modeling the bridge’s boundary conditions (Section 3.3).

In a first stage of the study, the asphalt layer originally included in the model was considered
for the parametrization of the updating problem, since it was supposed to be important for a
successful optimization procedure. Preliminary runs of the code were then processed considering
an added mass for simulating the asphalt layer and thus, considering the density of such a mass as an
additional parameter to be updated. Simulations returned specific values of the problem’s variables,
based on which the modal characteristics of the (updated) FEM model were then determined. At a
later stage, additional simulations were performed without considering added masses for modeling
the asphalt layer. In this case, the optimization process updated the density of the deck, by making
the final mass of the latter equal to the mass obtained in the prior simulations, as the sum of the
mass of the deck and the mass of the asphalt layer. At this second stage of analysis, results equal
to those obtained in the first simulations were obtained in terms of the modal characteristics of
the bridge. On that basis, and in order to avoid an over-parametrization of the updating problem,
the uniformly distributed added mass on the deck of the bridge was thus removed from the FEM
model, leaving the optimization process in charge to modify (update) the density of the deck, in
order to cover the increment of mass provided by the asphalt layer. No variables were thus added
on that for the parametrization of the updating problem.

The 14 variables above selected to parametrize the updating problem are listed in Table 2,
along with their baseline values (reference values) assigned to such variables in order to check
the similarity between experimental and (initial) FEM model behavior. The baseline values have
been set by trying to minimize, through a “manual tuning” process, the discrepancies between the
first two, numerical and experimental, modal frequencies. Moreover, in view of implementing the
updating procedure, lower and upper bound values have been set to define the solution domain
of the optimization process. The bounds have been outlined based on engineering judgment,
allowing for the natural frequencies of the FEM model of the bridge to reasonably vary, but not to
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Table 2: Input parameters of the FEM base model.

Parameter Bounds
No. Description Symbol Lower Upper Ref. value Units

P1 Deck elastic modulus Ed 24.4 45.4 34.9 GPa
P2 Main longitudinal girders elastic modulus Elg 24.4 45.4 34.9 GPa
P3 Parabolic arches elastic modulus Ea 25.0 46.4 35.7 GPa
P4 Hangers elastic modulus Eh 25.0 46.4 35.7 GPa
P5 Upper transverse beams elastic modulus Eub 25.0 46.4 35.7 GPa

P6 Deck mass density ρd 1.71 3.17 2.44 t/m3

P7 Main longitudinal girders mass density ρlg 1.71 3.17 2.44 t/m3

P8 Parabolic arches mass density ρa 1.71 3.17 2.44 t/m3

P9 Hangers mass density ρh 1.71 3.17 2.44 t/m3

P10 Upper transverse beams mass density ρub 1.71 3.17 2.44 t/m3

P11 I-support translational (x-axis) spring stiffness k1 10−7 10−3 10−5 kN/m
P12 I-support translational (y-axis) spring stiffness k2 108 1012 1010 kN/m
P13 I-support rotational spring stiffness k3 10−7 10−3 10−5 kN m
P14 II-support rotational spring stiffness k4 10−7 10−3 10−5 kN m

diverge much from the identified ones. Specifically, a variation range of the values of the variables
between −30% and +30% has been considered. Given the uncertainty in evaluating the boundary
conditions, wide ranges of variation of spring stiffnesses are allowed, by four orders of magnitude,
and simply referring to values in terms of orders of magnitude, with a reference value right in
the middle of the considered orders of magnitude (see also hints from the literature, e.g. Aktan
et al. [64], and experience gained in previous trials by Froio and Zanchi [53] and Ferrari et al. [17]).

This quite large variation range of the parameters has been considered due to the considerable
age of the structure of interest and to the lack of further information linked to the mechanical
parameters of the bridge that may arise from direct detailed inspections on the bridge or from
other approaches apt to handle these issues, e.g. Non-Destructive Testing. Also, the wide range is
accounted for to inspect the authentic potentialities and effectiveness of the optimization process.
Of course, such a range could then be a-posteriori reduced, around the target values, or varied, by
further refinements of the proposed updating procedure.

Table 3: Comparison between experimental (identified) and numerical (FEM base model) modal proper-
ties.

Mode Description Identified freq. FEM base model ∆f bm Mutual MAC
(FDD) [Hz] freq. [Hz] [%]

V1 1st bending 3.564 3.785 6.20 0.9986
T1 1st torsion 3.857 4.040 4.74 0.0424
V2 2nd bending 6.018 5.914 −1.73 0.9921
T2 2nd torsion 7.178 6.523 −9.13 0.9913
V3 3rd bending 7.690 7.856 2.16 0.9951
T3 3rd torsion 9.009 8.904 −1.17 0.9340
T4 4th torsion 11.38 10.66 −6.31 0.6859
V4 4th bending 13.09 12.33 −5.84 0.9721
T5 5th torsion 17.02 15.74 −7.51 0.9627

Table 3 and Fig. 9 show the results of modal analysis performed through the FEM model of
the bridge characterized by the reference values listed in Table 2 (hereinafter referred to as FEM
base model). Specifically, in Table 3 the natural frequencies from the FEM base model and the
correlation between the dynamic characteristics of the base model and the experimental results
are reported, showing the relative frequency discrepancy (∆fbm = (fbm − fFDD)/fFDD) and the
mutual MAC value.

From the obtained results it is possible to note that Mode 1 and Mode 2 present modal fre-
quency values close to each other. However, contrary to what was obtained from the experimental
results, such modes differ in mode shapes; in fact, the first mode shape appears dominated by
bending, while the second one by torsion (see Fig. 9), being almost orthogonal. This is also re-
ported by the only abnormal (almost vanishing) MAC value obtained for the second (first torsion)
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Figure 9: Natural frequencies fbm
i and mode shapes of the FEM base model (bm) of the bridge (not

updated) corresponding to the nine identified modes.

mode (T1) (Table 3). Moreover, for the nine modes, the relative errors in the natural frequencies
reasonably range between 1.17% and 9.13%, thus they are all below a 10% discrepancy. With
the exception of mode T1, the first five numerical modes display MAC values higher than 0.99;
further, modes T3, V4 and T5 display MAC values higher than 0.93. In addition to the second
mode, there appears only one mode with a MAC lower than 0.70, namely 7th mode T4, endowed
with complex components if Fig. 7. The MAC paring matrix between experimental and computed
mode shapes of the FEM base model of the bridge before updating is depicted in Fig. 10, already
showing a rather good correlation. Overall, the modal features generally show a fairly good corre-
lation between experimental data and numerical results from the FEM base model; the accuracy
paid to the initial definition of the FEM base model definitely played a crucial role in reaching
such a result. This constitutes the basis of the subsequent model updating process.

In the present model updating study, analyses were then conducted for two main cases:

• (A) excluding Mode 2 from the procedure (use of 8 modes);

• (B) including both Mode 1 and Mode 2 into the optimization routine as a target for the
updating procedure (use of 9 modes).

Whereas results for Case (A) turned out rather satisfactory, results for Case (B) were not. This
has lead to support the conjecture that the second mode identified from the experimental tests
performed on the bridge may actually correspond to a splitting of the first mode or to an uncor-
rect identification of its torsion component (see extensive discussion at the end of Section 3.2).
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Figure 10: MAC paring matrix between considered eight experimental and computed mode shapes before
model updating (FEM base model).

Nonetheless, the presence of an “additional” mode reported by the FEM base model of the bridge
corresponding to the second experimentally identified frequency leaves the door open for further
studies that may be conducted on this specific issue, possibly based on further experimental out-
comes, if they may become available.

In light of the considerations above, in the paper only consistent model updating results for
Case (A), based on eight modal properties, and revealed in appearance on nine FEM modes, are
consistently reported, as detailed in subsequent Section 4.2 (see later final updated Table 8 vs. Ta-
ble 3, and Fig. 16 vs. Fig. 9).

4.1.1 Sensitivity Analysis results

Following the preliminary modal analysis, a Sensitivity Analysis on the variation of the natural
frequencies has been performed with respect to the 14 parameters that characterize the updating
problem. Sensitivities have been calculated as explained in Section 2.4. First, the LHS method
has been applied to select 20 combinations of the parameters in the ranges within the bounds
listed in Table 2; then, the average normalized relative sensitivity matrix (Eqs. (10) and (11))
has been calculated over the sensitivities for the 20 combinations. The recorded dispersion of the
local sensitivities with respect to the average ones is similar to that discussed below (end of the
subsection), for the differences evaluated between the local sensitivities on the initiation points
and the average values. A graphical representation of the average sensitivity matrix is provided in
Fig. 11.
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Figure 11: Sensitivity of the eigenvalues of the FEM model on Young’s moduli, mass densities and spring
coefficients.

The normalized relative sensitivities show that most of the chosen parameters really affect
the modal response of the structure. In particular, the plots show that: (i) the parameters that
most influence the overall variation of the frequencies are the Young’s modulus of the arches (P3),
with normalized sensitivity coefficients of six modes over 0.4, and the concrete mass density of the
arches (P8), with sensitivities higher than 0.3 for almost all the considered frequencies; (ii) concern-
ing the concrete mass density of the deck (P6), it affects about all the frequencies, with normalized
sensitivity coefficients of four modes over 0.3; (iii) the Young’s modulus of the deck (P1) is mostly
effective on the fourth mode, while the other modes are less influenced; (iv) the elastic modulus of
the hangers (P4) essentially influences the frequency of the first mode; (v) the Young’s modulus
and the mass density of the main longitudinal girders, (P2) and (P7) respectively, the Young’s
modulus of the upper transverse beams (P5) and the mass density of the hangers (P9) slightly
influence about all the modes; moreover, the sensitivities on these parameters are higher than those
referred to the mass density of the upper transverse beams (P10); (vi) very small sensitivities are
associated to the stiffness coefficients of the springs, despite for the wide assumed range of four
orders of magnitude. It shall mean that the latter may display a marginal effect on the frequencies
of the bridge, within the present analysis. Despite, additional refined trails may be considered for
other values of the spring coefficients apt to set any possible influence on the updating process.
This is not here further inspected, while focus is then placed on the intrinsic structural parameters,
also considering that a single bridge span has been modelled. Further analyses on the effects of
the boundary conditions may be assessed in future investigations.

In light of the obtained results, the first 9 structural parameters (5 Young’s moduli and 4 mass
densities) listed in Table 2 have been finally selected to be varying during the updating procedure.
The outcomes from the automated updating procedure are discussed in following Section 4.2.

In order to test the efficiency of the implemented SA-based LHS method, a SA has also been
assessed just on the initiation point representing the parameters of the FEM base model. Hence,
variations of the normalized sensitivity coefficients S between those determined through this latter
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procedure (hereinafter Sbm) and those determined implementing LHS (hereinafter SLHS) have
been inquired. As expected, consistent variations have been recorded. In particular, percentage
discrepancies ∆S = (Sbm − SLHS)/SLHS have resulted to exceed 10% for Mode 1, Mode 5 and
Mode 8, by referencing to the Young’s modulus of the upper truss beams (P3) (for Mode 8, ∆S has
resulted in the order of 45%); for Mode 8, ∆S has also turned out to exceed 10%, by referencing
to the Young’s modulus of the arches (P3), and to the mass densities of the arches (P8), the
hangers (P9) and the upper truss beams (P10), reaching the value of about 63% for the latter.
It should be noted that Sbm values would have still led to consider in the updating procedure of
the Brivio bridge the same parameters selected after the SA-based LHS implementation, namely
selected on the basis of values SLHS. This may however be considered as strictly related to the
present case study and thus it should not overshadow the consistent percentage discrepancies
resulted from the comparison between a one-point-evaluated SA and a complete SA-based LHS.

4.2 FEM model calibration

The procedure for updating the FEM model of Brivio bridge has been conducted involving 200 ini-
tiation points, as described in Section 2.2. The number of start points has been chosen as being
high enough to obtain a quite dense partitioning of solution domain D ⊆ R

9 (Sections 2.1 and 4.1).
Maximum interval dmax between two close points along each dimension of domain D is reported in
Table 4. Recall that the generation of the initiation point by LHS is fully automated (Section 2.1).

Table 4: Structural properties of the FEM base model (Ref. value) and maximum point distance dmax in
solution domain D obtained after LHS application, along each space dimension.

No. Parameter Symbol Ref. value dmax Units

P1 Deck elastic modulus Ed 34.9 0.206 GPa
P2 Main longitudinal girders elastic modulus Elg 34.9 0.197 GPa
P3 Parabolic arches elastic modulus Ea 35.7 0.210 GPa
P4 Hangers elastic modulus Eh 35.7 0.203 GPa
P5 Upper transverse beams elastic modulus Eub 35.7 0.207 GPa

P6 Deck mass density ρd 2.44 0.014 t/m3

P7 Main longitudinal girders mass density ρlg 2.44 0.014 t/m3

P8 Parabolic arches mass density ρa 2.44 0.014 t/m3

P9 Hangers mass density ρh 2.44 0.014 t/m3

Before proceeding with the optimization procedure, the FEM model calibration of the bridge
has been attempted without involving the global optimization-based LHS, namely by means of a
local TR optimization routine, starting from the FEM base model as the only reference initiation
point. This conceptually traces what has been done for SA at the end of Section 4.1.1. Results from
this preliminary checking are reported in Tables 5–6. Therein, it is possible to note that such results
have turned out unsatisfactory, signaling a frequency discrepancy ∆fFEM = (fFEM−fFDD)/fFDD

to range between 2% and 8% (over 6% for four out of eight modal frequencies), thus endorsing
the need for a consistent implementation of a global optimization procedure based on different
automatically selected initiation points, specifically conceived and tuned on the refinement of the
eigenfrequency estimations (MAC values appear rather satisfactory, except for Mode 7, i.e. T4).
Characteristic parameters are varied, most of them by two-digit percentages above 10%, with
maximum deviations in the order of 15%.

4.2.1 Algorithmic and computational aspects

As a matter of fact, the parameters describing the characteristic mechanical properties of a struc-
ture may be considered to be independent from each other; initiation points characterized by
parameters which are actually to be proportionally incremented (or reduced) may therefore be
considered as representative of unrealistic situations, within a structural context. In particular,
this easily holds true for cases corresponding to the maximum (or minimum) values for all the
parameters in the considered ranges, i.e. when the initiation points are located on the edges of the
parametric (solution) domain. In light of the evidence that the closer to the authentic optimum
solution one may place the initiation point, the higher the recorded probability not to fall on a
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Table 5: Comparison between the structural properties of the FEM model before updating (Ref. value)
and after updating (Updated value) by means of a local TR optimization routine (i.e. without involving
the global optimization-based LHS).

No. Parameter Symbol Ref. Updated ∆par Units
value value [%]

P1 Deck elastic modulus Ed 34.9 39.5 13.27 GPa
P2 Main longitudinal girders elastic modulus Elg 34.9 40.3 15.46 GPa
P3 Parabolic arches elastic modulus Ea 35.7 31.8 −11.01 GPa
P4 Hangers elastic modulus Eh 35.7 38.4 7.68 GPa
P5 Upper transverse beams elastic modulus Eub 35.7 30.6 −14.16 GPa

P6 Deck mass density ρd 2.44 2.36 −3.34 t/m3

P7 Main longitudinal girders mass density ρlg 2.44 2.73 12.00 t/m3

P8 Parabolic arches mass density ρa 2.44 2.26 −7.21 t/m3

P9 Hangers mass density ρh 2.44 2.80 14.85 t/m3

Table 6: Comparison between experimental (identified) and numerical modal characteristics of the FEM
model updated by means of a local TR optimization routine (i.e. without involving the global optimization-
based LHS).

Mode Description Identified freq. FEM freq. ∆f FEM Mutual MAC
(FDD) [Hz] [Hz] [%]

V1 1st bending 3.564 3.820 7.19 0.9986
T1 1st torsion 3.857 4.046 4.90 0.0423
V2 2nd bending 6.018 5.918 −1.67 0.9932
T2 2nd torsion 7.178 6.638 −7.52 0.9913
V3 3rd bending 7.690 7.935 3.19 0.9942
T3 3rd torsion 9.009 8.836 −1.92 0.9374
T4 4th torsion 11.38 10.70 −6.02 0.6862
V4 4th bending 13.09 12.59 −3.83 0.9861
T5 5th torsion 17.02 15.68 −7.88 0.9634

local minimum, points located very close to the edges of the parametric domain should not be
really considered in the procedure for updating the FEM model of the structure, since they are
unlikely to become close to a potential (local) optimum (see discussion in the Introduction with
reference to this subject). Thanks to being based on the criterion of the so-called Latin Square
rule (see Section 2.1), the LHS strategy, herein adopted as a way to properly select the initiation
points of the updating procedure, automatically considers this aspect. Fig. 12 graphically inspects
and returns the evidence of this allegation.

In the plot illustrated in Fig. 12, the horizontal axis depicts the reference number of each
Start Point (SP) automatically defined by the LHS procedure, which is an indicator of the cor-
responding following optimization path; the left vertical axis reports the SP normalized distance
in solution domain D, from the point representing the parameters of the FEM base model of the
bridge, hereinafter called Base Point (BP). Such a distance is calculated to be equal to Euclidean
norm d =

√

∑

d2i , where di is the non-dimensional point distance along each space dimension, de-
fined as di = (pari − parBP

i )/parBP
i , where pari indicates the value of parameter i associated to a

specific SP, and parBP
i indicates the value of parameter i referred to the BP (namely the Ref. value

in Table 2). Moreover, the right axis also represents the distance in term of percentage of the wide-
ness of the solution domain, ranging here from 0.70 to 1.30 of the reference parameter on each space
dimension. From Fig. 12 it is possible to note that there appear no points located on the upper part
of the plot; this means that the LHS implementation automatically controls the distribution of the
initiation points, so that they do not get close to the edges of solution domain D, being all included
on a hyper-sphere of a radius d at about 0.7, i.e. nearly 25% of the wideness of the parametric
space. This holds true also in controlling that SPs do not get too close to the BP, to explore ranges
of updating parameters that may drill positions of the parametric space somehow diverging from
the BP, in seeking for a possible improvement of the model. Indeed, Fig. 12 depicts that there
appear no points located on the bottom part of the plot as well, about below 0.3. Still in light of
the above-mentioned evidence referred to the relation between SP and Local Minimum (LM), this
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Figure 12: Start Point (SP) normalized distance from Base Point (BP) (left axis) and percentage wideness
distance of solution domain (right axis) for each SP.

conceptually means that also cases that might lead to a final (updated) FEM model very similar
to the base one are reported as to be unprivileged.

In other words, it is possible to state that the present LHS implementation acts like ad-hoc
constraints imposed onto the solution domain of the optimization problem, without any demanding
additional computational strategy, in this way providing benefits in terms of computational efforts
devoted to the whole FEM model updating procedure.

As stated above in Section 2.2, global minimum θ̄
∗
has been selected among set of solutions E

as the point characterized by the least (minimum) between the worst (maximum) errors on the
frequencies over all the local minima recorded along the different optimization paths started from
the various initiation points. Such type of judgment is related to the higher reliability and precision
of the frequency data retrieved from the identification process, with respect to the components of
the mode shapes, and to the specific goal of refining the frequency estimations by the updated
model. Hypothetically, such an assertion would be taken into account by appropriately modifying
weighting coefficients αm in Eq. (3), namely by shifting the importance of the updating information
on the frequencies. However, runs conducted operating in that way returned rather unsatisfactory
results, thus leading to consider as really necessary also the information coming from the M mode
shapes, as a whole, and actually as equally weighted with that from the frequencies toward the
identification process (αm =1/(2M)). This has lead to produce rather reasonable and convenient
results, as reported in the following.

Fig. 13 further provides a representative description of the adopted selection criterion (Sec-
tion 2.2.1) for locating global minimum θ̄

∗
, among all local optima θ∗. In the plot represented

in Fig. 13, the horizontal axis again depicts the reference number of each SP (Fig. 12); the left
vertical axis now reports the maximum absolute value of the various entries of frequency residual
vector rf (see Eq. (4)), calculated at the end of each optimization path; the additional right vertical
axis reports a direct reading in terms of the arising absolute percentage error on the estimated
frequencies (∆fFEM

m , as defined in Section 4.2). Therefore, in Fig. 13 it is possible to identify
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Figure 13: Maximum absolute value of frequency residual vector components rfm (see Eq. (4)) and associ-
ated maximum absolute percentage error on frequencies ∆fFEM

m , calculated at the end of each optimization
path from each Start Point (SP). Wide red circle identifies the selected global minimum (criterion stated
in Section 2.2.1).

the global optimum, among all the local ones obtained from the various (200) LHS automatically-
placed start points, as the point displaying the minimum value of maximum residuals

∣

∣rfm
∣

∣, as well

as the minimum value of quantities
∣

∣∆fFEM
m

∣

∣. In the plot, the global optimum is marked through
a wide circle, as obtained in correspondence of a specific start point, namely SP 22.

Observing Fig. 13, it is possible to appreciate how the (final) local maximum residuals and
errors on the frequencies vary through the 200 optimization paths departing from the various
LHS-placed SPs, forming the whole optimization procedure. In particular, the major part of the
obtained local minima (about 71%) recorded an absolute value of percentage discrepancy

∣

∣∆fFEM
m

∣

∣

between 7% and 10%; about 28% of the local minima recorded a
∣

∣∆fFEM
m

∣

∣ over 10%; only two

local minima recorded a
∣

∣∆fFEM
m

∣

∣ lower than 7%. The quite consistent dispersion of the local end
points represented in the plot of Fig. 13, surely shows the impending initiation point-localization
dependence of the optimization problem and the pertinent outcomes. The contribution of the
implemented procedure, in terms of localizing the achieved global optimum, is here demonstrated
in overriding this problem. Indeed, the updating methodology has been able to identify a global
minimum among all the local ones, despite for their dispersion, really corresponding to an effective
model updating of the FEM model of the bridge, starting from a given FEM base model and
providing a best improved estimation in the considered range of structural parameters.

This consistent outcome is related to the following considered main aspects, referring to the
whole optimization procedure, as key points for the effectiveness of the scheduled model updating
LHS implementation in complying with the quest of locating a system realization of the under-
lying numerical model at best suiting the experimental reality (here in terms of recorded modal
properties):

• efficiency of the prodromal implemented SA-based LHS method, in inspecting the sensitivities
all around the base point, within the parametric space around it;
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• consequent appropriate definition of the main parameters to be involved in the solution
domain and of its extension around the base reference;

• further and most important effectiveness of the LHS strategy in automatically defining useful
initiation points, un-clustered within the parametric domain, so as to allow for effectively
drilling the parametric space and achieving a meaningful global optimization of the whole
structural updating process.
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Figure 14: Maximum absolute value of frequency residual vector components rfm (see Eq. (4)) and
associated maximum absolute percentage error on frequencies ∆fFEM

m of the computed Local Minima (LM),
ordered according to an increasing range of variation (from 5% to 30%) of the structural parameters
obtained after model updating with regard to the initial ones (Ref. value in Tables 5 and 7). Wide red
circle identifies the selected global minimum (criterion stated in Section 2.2.1).

Of course, the implemented procedure is also related to the goodness of the starting FEM model
of the bridge adopted as base model, for the purposes of model updating. In order to appropriately
evaluate also this important aspect, Fig. 14 has further been generated for a consistent interpre-
tation and assessment of the obtained updating outcomes. The information thereby reported is
complementary to that already provided in Fig. 13. In the plot shown in Fig. 14, on the hor-
izontal axis the plot orders the SPs based on the distance in solution domain D of each Local
Minimum (LM) from point BP, i.e. the point representing the parameters of the FEM base model
of the bridge; the vertical axes still correspond to those in previous Fig. 13. On the horizontal
axis it is thus possible to count the number of LM that have fallen within a determinate distance
from BP. From the plot, it is interesting to note that LM that lay in the range 0.75 < d < 0.90
from BP (corresponding to a variation range of the values of the structural parameters of the base
model between ±25% and ±30%) are characterized by an absolute value of percentage discrep-
ancy

∣

∣∆fFEM
m

∣

∣ over 8%. This states that LM graved far away from BP do not lead to a considerable
improvement of the FEM base model of the bridge. In light of that, the parametric domain of the
optimization procedure confirmed itself to be rather appropriate for the pursued model updating
finalities.
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Figure 15: (a) 3D representation and (b)–(d) 2D sections in a 3D sub-domain of parametric domain D,
of 20 TR optimization paths (initiation points marked with a small dot and local optimum points marked
with a plus sign) and global minimum point (big red circle) obtained by the implementation of the global
optimization-based LHS routine.

For a further combined illustration of the LHS-based global optimization process within the
parametric space (a 3D subspace of it, referring to the first three elastic moduli to allow for graph-
ical representation, and relevant 2D sections), Fig. 15 also sketches the various optimization paths
departing from the automatically selected LHS initiation points and ending up on the correspond-
ing local minima, among whose the global optimum solution is located, according to the criterion
stated in Section 2.2.1. The figure allows to appreciate a number of characteristic features of the
conceived LHS-based global optimization, such as:

• desired automated and un-clustered distribution of the initiation points;

• distribution of local mimima around the global optimum and their collocation within the
parametric space;

• path and distance of each originated local minimum from source LHS-placed initiation point;
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• achieved effective filling of the parametric space in seeking the global optimum within a rea-
sonable computational time;

• “spider-net” drilling paths, effectively perforating the parametric space, while clustering and
converging toward the zone with the highest attractiveness of local minima, around the global
one.

4.2.2 Final updating results

The results obtained from the global optimization-based LHS procedure applied to the FEM base
model of Brivio bridge are finally reported in Tables 7–8 and illustrated in Figs. 16–17. In par-
ticular: in Table 7 the values of the updated parameters through the optimization procedure are
compared with the initial ones; in Table 8 the results of the updating procedure are reported in
terms of the final modal frequencies of the structure and of the mutual MAC values, along with
discrepancy ∆fFEM. Notice that, in Table 8 and in Fig. 16, Mode 2 (T1) is also shown, as it re-
sults from the updated FEM model of the bridge, although it was not involved within the updating
procedure (Section 4.1).

From the obtained results, it is possible to note that the variation between experimental modal
frequencies fFDD and numerical modal frequencies fFEM has been reduced after the updating
process. The absolute value of maximum variation ∆f has decreased from 9.13% (Table 3) to 6.42%
(Table 8). The stated goal of frequency refinement (Section 2.2.1) has been achieved.

The MAC values have been improved as well, all together, for about all of the eight modes of
vibration of the bridge considered within the updating process. In particular, MAC values higher
than 0.99 have resulted after the updating for four out of the eight considered mode shapes; only
for the 7th mode shape (T4) a MAC value less than 0.94 (around 0.7) has been obtained. It
is worth to note that such a mode shape is that characterized by the largest complex part (see
Fig. 7, Mode 7). The MAC paring matrix between experimental and computed mode shapes of the
updated FEM model of the bridge is illustrated in Fig. 17, showing again a rather good correlation,
which is quite similar to that already demonstrated in Fig. 10 by the FEM base model.

The values of the parameters of the FEM base model obtained after model updating show that
while elastic modulus of the deck Ed and elastic modulus of the main longitudinal girders Elg

have been incremented by the optimization procedure, elastic modulus of the parabolic arches Ea

and elastic modulus of the upper transverse beams Eub have been reduced (see Table 7); elastic
modulus of the hangers Eh has remained more or less unchanged (variation equal to −3.20%),
but closer to the elastic modulus of the arches and the upper transverse beams. This shall make
sense, since the stiffness of the deck and of the main longitudinal girders of the bridge should in
fact be higher than that of the other structural elements, also due to the high ratio of longitudinal
reinforcement and a retrofit of the concrete slab carried out in the 1990s. Main recorded variations
of the structural parameters are for: Ed, raising by almost 30% to a value of about 45 MPa;
Ea, lowering by nearly 10% to about 32 MPa; ρlg, decreasing by nearly 15% to about 2 t/m3.
Such results would not have been easy to be conjectured by a further manual tuning, without the
scheduled automated LHS model updating process.

Table 7: Comparison between the structural properties of the FEM model before updating (Ref. value)
and after updating (Updated value).

No. Parameter Symbol Ref. Updated ∆par Units
value value [%]

P1 Deck elastic modulus Ed 34.9 44.8 28.50 GPa
P2 Main longitudinal girders elastic modulus Elg 34.9 35.1 0.47 GPa
P3 Parabolic arches elastic modulus Ea 35.7 32.3 −9.41 GPa
P4 Hangers elastic modulus Eh 35.7 34.6 −3.20 GPa
P5 Upper transverse beams elastic modulus Eub 35.7 33.7 −5.74 GPa

P6 Deck mass density ρd 2.44 2.43 −0.23 t/m3

P7 Main longitudinal girders mass density ρlg 2.44 2.09 −14.18 t/m3

P8 Parabolic arches mass density ρa 2.44 2.39 −1.87 t/m3

P9 Hangers mass density ρh 2.44 2.26 −7.28 t/m3
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Table 8: Comparison between experimental (identified) and final numerical modal characteristics of the
updated FEM model.

Mode Description Identified freq. FEM freq. ∆f FEM Mutual MAC
(FDD) [Hz] [Hz] [%]

V1 1st bending 3.564 3.785 6.19 0.9986
T1 1st torsion 3.857 4.024 4.34 0.0422
V2 2nd bending 6.018 6.021 0.05 0.9909
T2 2nd torsion 7.178 6.769 −5.70 0.9911
V3 3rd bending 7.690 7.958 3.47 0.9921
T3 3rd torsion 9.009 9.165 1.72 0.9436
T4 4th torsion 11.38 10.91 −4.13 0.6814
V4 4th bending 13.09 12.61 −3.68 0.9874
T5 5th torsion 17.02 15.93 −6.42 0.9737

Mode 1 (V1)
fFEM
1 = 3.785Hz

Mode 2 (T1)
fFEM
2 = 4.024Hz

Mode 3 (V2)
fFEM
3 = 6.021Hz

Mode 4 (T2)
fFEM
4 = 6.769Hz

Mode 5 (V3)
fFEM
5 = 7.958Hz

Mode 6 (T3)
fFEM
6 = 9.165Hz

Mode 7 (T4)
fFEM
7

= 10.91Hz
Mode 8 (V4)

fFEM
8

= 12.61Hz
Mode 9 (T5)

fFEM
9

= 15.93Hz

Figure 16: Natural frequencies fFEM
i and mode shapes of the updated FEM model.
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Figure 17: MAC paring matrix between considered eight experimental and computed mode shapes after
model updating.

5 Conclusions

In this paper, a Latin Hypercube Sampling, Sensitivity Analysis- and global optimization-based
automated model updating self-implementation strategy has been proposed and applied with sat-
isfactory results to a comprehensive case study concerning a FEM model calibration of the historic
centennial RC arch bridge at Brivio (1917). Main phases of the outlined case study are summarized
in the synoptic scheme of Fig. 18; salient contributions may be itemized in two main points, as
detailed in the two subsections below, concerning case study and optimization methodology.

☛

✡

✟

✠

MAIN PHASES OF CASE STUDY ON BRIVIO BRIDGE (1917)

• Experimental campaign with vibrational measurements on spans of the bridge

• OMA modal dynamic identification based on experimental data (FDD + SSI)

• Assembly of linear elastic FEM base model by manual tuning

• LHS Sensitivity Analysis to select structural parameters to be updated

• LHS Global optimization based on modal properties

• Selection of updated parameters and final model-updated FEM model

Figure 18: Synopsis of main phases of case study on FEM model updating of Brivio bridge (1917).
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5.1 Case study on Brivio bridge model updating

The advantages of a Sensitivity Analysis and global optimization model updating strategy is fully
revealed by the proposed tuning procedure and a challenging model updating of a historic concrete
arch bridge is properly achieved. In particular:

• SA is first conducted to locate best-suited structural parameters for the optimization process,
among potentially selected ones for the FEM model parametrization. This is obtained through
the initiation point-localization independence of SA, automatically implemented via LHS.

• The model updating of centennial Brivio bridge is then efficiently conducted through the
implemented global optimization procedure, based on modal properties earlier identified by
OMA techniques starting from ambient vibration measurements. The procedure allows for an
automated interaction between mechanical FEM solver and numerical optimization loop.

• The structural parameters obtained after model updating are consistent with expected esti-
mates for the the bridge’s characteristics. Nine parameters are specifically identified, namely
five elastic moduli (ranging from about 32 to 45 GPa) and four densities (varying from nearly
2.1 to 2.4 t/m3), of the various structural parts, based on information coming from eight modes,
in terms of both frequencies and mode shapes, adopted within the model updating process.

• The updating procedure has reduced the discrepancy between experimental and numerical
modal frequencies to less than one half of that associated to a manual-tuned FEM base model.
Eigenfrequency estimations show consistent values, with contained larger discrepancies in the
order of 6%. MAC values on the predicted mode shapes are always consistently derived at
around 1, except for a single mode (Mode 7), characterized by coupled bending and torsion,
already showing the higher complex components after experimental OMA identification.

Such consistent outcomes make the proposed identification methodology a rather efficient ap-
proach for structural updating, in the context of the present case study and likely of similar ones.
This shall open up the scene for further investigations of the case study, in which the updated
FEM model of the bridge may be adopted for structural analysis purposes, in evaluating both
current static and dynamic performances of the structure.

5.2 Methodological approach

A methodological approach has been presented and devised for improving the potential of an opti-
mization procedure relying on a local searching method for finding the global minimum of a specific
objective function. In particular:

• The global optimization routine has been set by: (i) requiring several optimization paths to take
off from different initiation points, un-clustered and well distributed, so as to fill a user-defined
solution domain, and to allow for its effective perforation; (ii) selecting the global minimum
among all the (local) minima found at the termination of each optimization path.

• The automated selection of the initiation points is managed by a LHS method, for any located
dimensionality of the solution domain and chosen number of start points. The implementation
is straightforward and does not require adaptive routines, in association with specific optimiza-
tion algorithms; it may be adopted for a wide range of optimization problems.

• The LHS method has also been applied at the SA level, thus avoiding the possible initiation
point-localization dependence of the resulting optimization problem. Moreover, the evaluation
of the derivatives in the SA phase, before starting the optimization process, is performed in
full analytical form, allowing to contain the computational burden and to improve performance.

The presented methodology is conceptually simple and readily implementable, while proven
successful in the presented challenging case study. It may rely on different local searching methods,
other than present Trust Region. Possible additional developments might relate to refined-LHS
methods for selecting the initiation points, toward both SA and global optimization processes.
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