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Abstract

This paper deals with the design of a switched Nonlinear Model Predictive Controller

(NMPC) for collaborative ecodrive control of railway vehicles. Relying on a discrete,

switched and nonlinear model of the train, the NMPC optimizes the handle position

while fulfilling constraints on velocity and journey time. Specifically, the optimizer

provides a set of operating modes, which the human driver is able to implement to

modulate traction or braking forces and such that the corresponding driving style is

constrained by predefined driving sequences. At network level, a Dissension based

Adaptive Law (DAL) is then proposed to adjust the parameters of the NMPC cost so as

to efficiently share the available regenerated braking energy among the trains connected

to the same substation, while negotiating between constraint satisfaction and control

aggressiveness. The effectiveness of the proposed strategy is finally demonstrated on a

realistic simulation case study.
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1. Introduction

Nowadays, while transportation is in general one of the major contributors of emis-

sions and pollution, railway remains by far the most efficient means of transportation

from the point of view of energy consumption and therefore a strategic sector. In fact,

analyzing the railway energy consumption, more than 70 percent usually corresponds5

to traction requirements while the rest to non-traction [1]. This has lead to most of the

new technologies being developed aiming at the reduction of energy consumption. In

electrical traction systems, one way to achieve this goal is to recover braking energy,

that otherwise would be lost as heat into the environment. Typically, the recovered

energy is referred as to regenerative energy while the phenomenon of energy recovery10

through braking is known as regenerative braking. During regenerative braking, the

traction motor acts as a generator and restores part of the kinetic energy into electrical

energy [2]. The principle usually involves a source pantograph, the traction motor/gen-

erator and the trains connected to the pantograph.

Historically speaking, one of the earliest examples in railways where regenerative15

braking was introduced is the Baku-Tbilisi-Batumi railway (Transcaucasus railway or

Georgian railway) in the 1930s. Usually, the generated energy can either be fed back

to the pantograph to be used instantaneously by other connected trains or saved on an

energy storage device (e.g., batteries, supercapacitors, flywheels or fuel cells [3]) for

later use. This stored energy could be used in the next acceleration phase by trains.20

While storing regenerative energy for later use can be a good option, it requires huge

changes in the present railway infrastructure and can be economically quite demand-

ing. Another direction to investigate is the instantaneous use of this regenerated energy,

for instance incorporating it into an Energy Efficient Train Control (EETC) or ecodrive

problem. EETC specifically refers to the development of control based methods with25

focus on techniques aimed at reducing traction energy consumption and emissions,

which are effected by the behavior of the train driver, without necessarily upgrading

the vehicle technology and usually involving single train control. In the literature, re-

generative energy was first introduced directly into the EETC problem in [4]. This was

followed by further developments as reported in [5, 6, 7, 8, 9, 10]. This use of regenera-30
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tion energy can be extended to energy sharing by collaboration among trains connected

to the same substation and is a relatively new concept from the point of view of EETC

or ecodrive problem. In this framework, sharing of regenerative braking energy among

trains can be quite useful to reduce the energy consumption of the whole network.

Specifically, consuming the regenerative braking energy instead of demanding energy35

from the substation not only reduces the load on the substation and overall network

energy consumption but also guarantees benefits in terms of losses during the energy

transfer from the substation to the trains. This idea has given rise to the paradigm of

collaborative ecodrive. Existing works mostly focus on optimizing the train timetables,

so as to synchronize the acceleration and deceleration of trains as much as possible to40

be able to use the available regenerated energy by the accelerating trains in the network

[2, 11, 12, 13].

In this paper, we focus on two main topics of interest: the single train ecodrive

control and the collaborative ecodrive. Although for electrical trains the input force is

usually continuous in nature, however, in the manual assistance scenario, where the al-45

gorithm is specifically designed to advice the driver, the train dynamics can be modeled

as switching systems due to the switching nature of the input handle. In fact, the input

handle which decides the amount of traction or braking force is enforced to belong to a

set of discrete values or operating modes (acceleration, cruising, coasting and braking)

which are implementable in practice by the driver and are constrained by predefined50

driving sequences. Since the train dynamics can be captured by a switching model

[14, 15, 16] a switched Nonlinear Model Predictive Controller (NMPC) is designed at

local level (see [17, 18, 19, 20, 21]). In fact, predictive control is a suitable approach,

thanks to its capability to deal with state and input constraints and economic objectives

[22, 23]. In particular, NMPC has already been applied to the energy efficient operation55

of trains in [24] but it has not been explored much in the context of the EETC prob-

lem. The second topic of interest explored in this paper is the collaborative ecodrive

described above. For this purpose, at network level a Dissension based Adaptive Law

(DAL), which resembles a consensus algorithm with Markov stochastic processes, is

introduced (see Figure 1). The DAL assigns the weights of the parameters constituting60

the cost function and related to normalized traction force, resistance force and jour-
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Figure 1: The proposed collaborative ecodrive NMPC based architecture

ney time. A different idea to coordinate agents in railway systems has already been

investigated in [25, 26]. More specifically, in [25], a hierarchical predictive control is

proposed for coordinating the electric traction substation energy flows at a higher level,

and on-route trains energy consumption at a lower level. In [26], instead, a distributed65

cooperative model predictive control is designed for energy-efficient trajectory plan-

ning in case of multiple high-speed trains. The cooperative optimization algorithm is

aimed at saving energy, explicitly taking into account comfort and cooperation among

the trains in the cost function. Differently, the proposed NMPC with DAL makes the

trains exploit the regenerative energy shared in the network in order to accelerate if70

they need, thus avoiding to lose it as heat in the rheostats. Future work will be devoted

to the inclusion of the grid model to explicitly take into account its energy flow, and

to the introduction of energy storage devices in the substations or on board the trains.

Finally, a realistic case study shows the effectiveness of the proposed NMPC, even in

comparison with a standalone ecodrive solution.75

The paper is organized as follows. In Section 2, some preliminaries on switched

systems and switching NMPC are introduced. In Section 3, the overall train network

model, the considered single train model and the considered ecodrive control problem

are discussed. Section 4 and Section 5 present the proposed NMPC based collaborative

ecodrive in detail, where the single train problem is recast into the switching NMPC80

framework and the DAL, respectively. In Section 6 simulation results on a realistic

scenario are illustrated and analyzed. Some conclusions are gathered in Section 7.
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2. Preliminaries

In this section some preliminary issues are introduced. Specifically, the notation

used in the paper and basics of switching model predictive control are reported.85

2.1. Notation

The notation used in the paper is mostly standard. Let N denote the set of natural

numbers, Z be the set of all integers, while R be the set of real numbers. Let x be a

vector and xi its entry and x′ its transpose. Given a signal w, then wp|w is its predic-

tion trajectory with initial condition w, so that at the current sampling time instant k,90

wk|w = w. Moreover, let w[k,k+p] be the signal w defined from k to k + p. Finally,

given two vectors a and b, the Kronecker product is denoted as a ⊗ b, while 1 is a

vector with all ones.

2.2. Switching Finite-Horizon Optimal Control Problem

Consider the discrete time switched nonlinear system

xk+1 = fsk(k, xk), ∀ k ∈ N (1)

where xk ∈ Rn is the state at time k, sk ∈ N is the switching rule and fi, i ∈ S, is

a Lipschitz continuous vector function, with S = {1, · · · , M}. The active model at

the time instant k is determined by the integer sk ∈ S. The Finite-Horizon Open-Loop

Optimal Control Problem (FHOCP) consists in minimizing at each sampling instant k

with respect to the sequence s[k,k+Np−1|k] a predefined prediction cost, i.e.,

min
s∈W

Js(x) =

k+Np−1∑
p=k

γ1`sk(xp|x) + γ2Vf(xp+Np|x)

s.t.

s[k,k+Np−1|k] = [sk|k, . . . , sk+Np−1|k]

xp+1|x = fsp(p, xp|x)

xk|x = x

xp|x ∈ Xp, ∀ p ∈ [k, k +Np]

xk+Np|x ∈ Xf ,

(FHOCP)
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where xp|x in turn depends on the predicted switching strategy s over the prediction95

horizon Np, Vf is the terminal cost, Xp ⊂ Rn is the state constraint set, the terminal

constraint set is Xf ⊂ Rn and γ1, γ2 are weights, possibly time-varying, such that

γ1 + γ2 = 1. At each sampling instant k, the optimal switching policy, denoted by

so = [so
k, . . . , s

o
k+Np−1] will be inside the set of feasible sequences F ⊆ W , withW

being the set of all possible sequences. Finally, only the first element of the resulting100

optimal control switching strategy is used at each step, while the remaining entries are

discarded. In the following sections it will be illustrated how to make the formulation

of the train dynamics under consideration fit the structure (1), and be therefore eligible

to be solved via a NMPC. The solution of the problem (FHOCP) can be computed

according to Algorithm 1.

Algorithm 1 Switching NMPC - Pseudo Algorithm
Require: k, xk

1: for each si ∈ W with index i do

2: compute Jsi through simulation of the system using the sequence si, time k and

initial state xk

3: if s is feasible then

4: add i to the set of feasible indexes IF
5: end if

6: end for

7: compute the index io optimal sequence

io = arg min
i∈IF

(Ji)

8: return the first element of the optimal sequence so = sio

105

3. Motivating application: collaborative ecodrive of trains

The proposal of this work is motivated by a real-word application under study in

collaboration with the rail transport company Alstom. More specifically, the scope of
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Figure 2: One of the Italian trains considered as case study

the work is to design a control strategy for the efficient operation of trains in a col-

laborative fashion, possibly exploiting the braking energy regenerated by the vehicles110

connected to the same substation.

3.1. Substation network modeling

Consider a network of N trains belonging to the same substation and capable to

communicate each other. The network is described through a directed graph G =

(N , E), where N = {1, . . . , N} is the set of nodes and E ⊆ N × N are the edges115

associated to communication links such that (r, s) belongs to E if and only if the train

r transmits information to train s. Moreover, let N [r]
rec = {s ∈ N : (r, s) ∈ E} be the

set of receiving neighbors of train r, while N [r]
tra = {s ∈ N : (s, r) ∈ E} be the set of

transmitting neighbors of train r.

3.2. Train modeling120

Consider now the rth electric train (see for example the one depicted in Figure 2)

controlled by a digital control unit with sampling time Ts. Let k ∈ Z be the discrete

time variable and x[r](k) =
[
x
[r]
1 (k)x

[r]
2 (k)

]′
be the state of the train, where x[r]1 is

its position and x[r]2 its velocity. Each train has to move from one station with position

x
[r]
1 = 0 to the next one with position x[r]1 = xf , in a prescribed time tf . Further-

more, assume that the track features (slopes, curvature) are known in advance. Thus,

7



in nominal conditions (i.e., with rated values of the train parameters, like its mass and

the specifications of the powertrain and braking systems), using the forward Euler dis-

cretization method, the dynamics of the train is captured by

x1(k + 1) = x1(k) + Tsx2(k)

x2(k + 1) = x2(k) + Ts

(
FT(x(k),u(k))−FB(x(k),u(k))−FR(x(k))

Mtot

) (2)

where the apex [r] is omitted for the sake of simplicity and Mtot is the total mass of

the train, FT is the traction force, FB is the braking force, FR is the resistance force

and u(k) is the input handle of the train. As for the traction and braking forces, they

are functions of the handle and velocity and their models can be captured by

FT = FTmax
(x2)uk

FB = FBmax(x2)uk ,
(3)

with FTmax
and FBmax

being the maximum allowable traction and braking forces, re-

spectively. Moreover, the resistance force FR is given as a combination of frictional

effects due to velocity, described by the famous Davis equation, and the frictional ef-

fects due to gravity and slopes of the track, i.e.,

FR(x) = Rv(x2) +Rg(x1) (4)

Rv(x2) = A+Bx2 + Cx22 (5)

Rg(x1) = Ms

(
gtan(α(x1)) +

D

rc(x1)

)
(6)

where Rv is the frictional force due to velocity, A, B, C are the Davis equation pa-

rameters, Rg is the frictional force due to slope of the track and gravity g, Ms is the

static mass of the train, rc is the radius of the curve of the track, α is the slope and D

is a train dependent parameter.

Besides the prescribed arrival time tf and position xf , additional state constraints

pertaining to the maximum allowed velocity must be fulfilled. Let x2(x1) be the max-

imum velocity depending on the position x1, as imposed for the sake of safety by the

authority according to the track features. Letting kf :=
⌊
tf
Ts

⌋
be the terminal step, with

8



b·c being the flooring operation to the closest integer, the state constraints are

x(0) = [0 0]′

x(kf) = [xf 0]′

x2(k) ≥ 0, k = 0, . . . , kf

x2(k) ≤ x2(x1(k)), k = 0, . . . , kf .

(7)

3.3. The ecodrive control problem125

We are now in a position to formulate the control objective which is to maximize

the energy efficiency of each train of the network while satisfying the constraints pre-

viously introduced in a collaborative way. This aim is translated into the minimization

of a cost, representing the discretized integral of the square value of the traction power.

Hence, the ecodrive problem is generally defined as

min
uk

J =

kf∑
k=0

(
FT(xk, uk)x2(k)

η(xk, uk)

)2

s.t. xk+1 = f̄(k, xk, uk)

x(0) = [0 0]′

x(kf) = [xf 0]′

x2(k) ≥ 0, k = 0, . . . , kf

x2(k) ≤ x2(x1(k)), k = 0, . . . , kf .

(EcoCP)

with f̄(xk, uk) being the system dynamics (2) and η(xk, uk) being the energy effi-

ciency. Note that there are different possibilities to take into account the constraint

on journey time, for instance relaxing it with an additional term in the cost function

pursuing a receding horizon approach or implementing a shrinking horizon strategy as

introduced e.g., in [27] and [28], respectively.130

4. Recasting the ecodrive problem into the NMPC framework

In this section the previous collaborative ecodrive problem (EcoCP) is recast ac-

cording to the NMPC formulation previously presented.
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4.1. The switching train model

Since we are working with electric trains, the input handle uk ∈ [1, −1], which135

represents the allowed traction (positive) and braking (negative) force that the train can

use at a particular instant, is continuous in nature. However, in this case, since we

have in mind the manual assistance scenario, that is an algorithm to assist the driver,

only discrete values which are easily implementable by the latter, defining m = 4

different operational modes of the train, are considered and described hereafter: in140

acceleration (AC) the handle can assume three values, i.e., uk ∈ {0.5, 0.75, 1}; in

coasting (CO) the engine is switched off, i.e., uk = 0; in cruising (CR) the train

maintains a constant velocity, i.e., the corresponding handle uk = uCR is chosen such

that FR = FT for positive slopes and FR = FB for negative slopes; in braking (BR),

due to safety reasons, whenever this mode is activated, it is preferred to use maximum145

braking force, i.e., the handle is chosen such that uk = −1.

Hence, letting usk(k, xk) ∈ {−1, 0, 0.5, 0.75, 1, uCR} be the switching input,

this makes our system, which is actually continuous, switching in nature, i.e., perfectly

fitting structure (1),

fsk(k, xk) = f̄(k, xk, usk(k, xk)) (8)

where sk ∈ {1 , . . . , 6} is the externally updated switching signal. For example, sk =

1 implies that u1(k, xk) = −1 is chosen to be applied to the system at the sampling

instant k. Also, due to the nature of traction, braking and resistance forces described

above, the considered train model is nonlinear.150

Now, we are in a position to formulate the (FHOCP) as previously stated, with

Xp as the constraints in (EcoCP) and Xf unused. In our case, since energy efficiency

as well as journey time constraints need to be ensured while adopting a driving style

which is compliant with the requirements of the ecodrive, the cost function for the

rth train of the network is chosen as a combination of line energy, the energy losses

due to resistance and horizon space error, which represents the equivalent horizon time

term. More specifically, with reference to FHOCP, for each train r belonging to the

10



substation, the terms of the cost function are defined as

`[r]sp

(
x
[r]

p|x[r]

)
=


FT

(
x[r]
p ,u[r]

sp

)
ηp

− FR

(
x
[r]
p

)
FTmax


2

(9)

V
[r]
f

(
x
[r]

p+Np|x[r]

)
=

(
Sh − x[r]1

Sh

)2

, (10)

where γ1 = γ
[r]
k and γ2 = 1 − γ[r]k , with 0 ≤ γ

[r]
k ≤ 1 being a scalar weight. The

horizon Sh is the distance that the train needs to cover in a specific prediction horizon

in order to ensure the prescribed arrival time, constrained to speed limits and track fea-

tures. A heuristic procedure based on the knowledge of the final distance, journey time

and resistance force is adopted to compute Sh. Furthermore, the reason for including155

losses due to the resistance energy in the cost is to provide a solution which takes into

account the acceleration of the system, in order to favor cruising operation mode for

reducing energy consumption. The cruising mode ucr is suitably computed by an inner

control loop in order to have FR = FT for positive slopes and FR = FB for negative

slopes.160

Remark 1. Note that, another important aspect in the ecodrive problem is that of com-

fort in order to ensure the adequate speed profiles from the passengers’ point of view

(see e.g., the solutions proposed in [26, 29]). In the proposed NMPC algorithm, since

the term in (9) represents the acceleration of the train, in this way we also take into165

account the comfort issue explicitly in the cost function. Indeed, acceleration (or its

derivative, i.e., the jerk) is an index of comfort. Moreover, the latter is implicitly en-

sured also by the control sequences, selected according to the ecodrive style.

4.2. Simplification of the proposed NMPC

In this section, a simplification of the proposed solution is introduced in order to170

improve the NMPC performance. Specifically, we introduce a modification to reduce

the computational complexity of the algorithm. This was in accordance to the require-

ment of our industrial partner Alstom. Moreover, an adaptation strategy is introduced

11
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x2 [m/s]
NpTs

TBR
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Figure 3: Graphical representations of the prediction times TrBR and TBR needed for braking time precom-

putation

in order to deal with braking dynamics which is very difficult to capture with a receding

horizon approach.175

4.2.1. Reduction of computational complexity

The cardinality of W , which is strictly related to the computational complexity

of solving the NMPC problem, is equal to card(W) = MNp . Due to the exponen-

tial growth, this number can become very large for longer prediction horizon. Yet, by

virtue of the predictive braking approach discussed in the following, the prediction180

ahead does not need to capture the braking dynamics, so that Np may be set as short

as possible, while considering the track features. Given the prediction horizon Np, we

set card(W) = 15 as reported in Table A.2. Note that, the choice of the sequences

has been provided by our industrial partner Alstom, following the requirements im-

posed for current field driver assistance systems, which also take into account energy185

saving according to the ecodrive style, e.g., by avoiding to brake immediately after

acceleration.

4.2.2. Braking time precomputation

A predictive braking approach which adapts to the samples so that the train stops

at the arrival station is also included. The adaptive precomputation is adopted not just

for capturing braking dynamics but also to capture the track characteristics such as

the slopes and the curvature which are a function of the space as well as the changing
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velocity limits. At any step k, the braking time TBR(k) needed for the train to stop

based on the current velocity x2(k) can be computed through the following equation

with input usk = −1, i.e.,

0 = x2(k) + TBR

(
−FB(x(k), u(k))− FR(x(k))

Mtot

)
. (11)

Let TrBR be the remaining time to be covered by the train to reach the arrival station

(see Figure 3 as an illustrative example), then one can compute

∆TBR = TrBR − TBR . (12)

If ∆TBR is greater than zero, then Algorithm 1 is used, otherwise braking mode is

forced posing sk = 1, that is u1 = −1.190

5. Dissension based regenerative braking

The aim of the proposed approach is also to make the trains of the network coop-

erate in order to exploit the regenerative braking energy when at least one of the trains

is in braking operation mode. In this case the other trains are allowed to accelerate if

they need, while fulfilling all the constraints. The main idea underlying this work is to195

induce this behavior through the tuning of the weights γ[r] of the NMPC cost function.

More specifically, in order to tune these parameters, we introduce a dissension strategy

so as to induce the trains which are not braking to accelerate. The proposed control

scheme is reported in Figure 1.

5.1. Dissension based adaptive law200

Consider that each train r ∈ N of the substation can assume two possible states:

state 1 indicates the braking (BR) operation mode; state 2 indicates all the other pos-

sible modes (AC, CR, CO). Specifically, hereafter we assume that the state of the net-

work is detected by a supervisor or each train r has full knowledge of the actual state

of the other ones. Moreover, the communication graph is symmetric and complete, i.e.,205

N [r]
tra = N [r]

rec = N and N [r] = N \ r, respectively.
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Having in mind a dissension behavior of the trains in the network, since the real

train dynamics is continuous, we define the following Dissension based Adaptive Law

(DAL) in order to determine the weights γ[r], i.e.,

π̇[r](t) =
(
Q[r]′ +A[r]′

)
π[r](t) (DAL)

where π[r](t) =
[
γ[r](t) (1− γ[r](t))

]′
, Q[r] is a Metzler matrix satisfying 1′Q[r] = 0,

while the matrix A[r] represents the interaction with neighbors with entries

a
[r]
ij (t) =

λi
N − 1

∑
κ∈N\r

I [κ](t) (13)

I [κ](t) =

1 i = 1, (i.e., BR)

0 otherwise
(14)

with λi > 0 being the influence strength intensity, while I [κ] being an indicator func-

tion equal to one when the κth train is braking, zero otherwise. Furthermore, by defin-

ing

a
[r]
ii (t) = −

S∑
j=1, j 6=i

a
[r]
ij (t) (15)

with S = 2 equal to the number of states, also the matrix A[r] is Metzler. This model

describes the desired dissension behavior, namely the transition rate to state 2 (AC,

CR, CO) undergo an increase which is proportional to the number of neighbors that

are in state 1 (i.e., they are braking). Note that matrices Q[r] may be different each

other according to the train characteristics imposed by the authority. Furthermore, we

assume that λ2 = 0, that is trains cannot be induced to brake if the other ones are

accelerating. Moreover, simultaneous state jumps are not allowed. Finally, the discrete

value of γ[r](t) is given by

γ
[r]
k = γ[r](t), ∀t ∈ [kTs, (k + 1)Ts] . (16)

Remark 2. Note that, in principle the case λ2 > 0 could be possible. In fact, if

for some reason, the authority decided to force some delayed trains to accelerate, it

could exploit also the regenerative energy of trains which are on time and accelerating,

making them brake. Hence, with λ2 > 0 the transition rate to state 1 (BR) undergo an210
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increase which is proportional to the number of neighbors that are in state 2 (i.e., AC,

CR, CO) becomes possible.

5.2. Interpretation of trains as stochastic agents

The proposed adaptive strategy (DAL) resembles a consensus algorithm charac-

terized by time-homogeneous Markov stochastic processes (see [30]). More specifi-

cally, a train r could be considered as a Markov stochastic process where the matrix

Q[r] ∈ R2×2 describes the behavior of the train when is not connected to the regen-

erative line, such that π̄[r]′Q[r] = 0, with π̄[r] = [γ̄[r] (1 − γ̄[r])]′ being the unique

unit-sum Frobenius left eigenvector of Q[r] associated with the Perron-Frobenius null

eigenvalue (see Chapter 2 of [31]). Hence, the entries q[r]ij represent the transition rates

between SN states σ[r](t), with σ[r](t) ∈ M, while the weights γ[r] are the probabili-

ties of being in state 1 (i.e., in braking mode) at time t, i.e.,

γ[r] = P
{
σ[r](t) = 1

}
. (17)

Analogously, the probability distribution would obey the differential equation (DAL)

with entries of the Metzler matrix A[r] such that

a
[r]
ij (t) =

λi
N − 1

∑
k∈N\r

Iσ[κ](t) (18)

Iσ[κ](t) =

1 σ[κ](t) = 1

0 otherwise
(19)

with λ1 > 0 and λ2 = 0. In this case, the model describes a dissension behavior,

namely the transition rate to state j undergo an increase which is proportional to the215

number of neighbors that share opinion i.

Now, let Σ(t) ∈ MN , M = {1, 2}, be the state of the network and π(t) =

⊗Nr=1π
[r](t) denote the probability distribution of Σ(t). The entries of π(t) represent

the condition at time t of a given configuration of the train states in the substation. The

dynamics of π(t) in absence of interaction due to the network obeys the differential

equation

π̇(t) = Q′0π(t) (20)
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with

Q0 =

N∑
r=1

IMr−1 ⊗Q[r] ⊗ IMN−r . (21)

Given the interaction model (DAL), the whole dynamics is given by

π̇(t) = (Q′0 +A′0)π(t) , (22)

where A0 is the matrix which takes into account the substation topology and the inter-

action among vehicles.

Example 1. As an example, consider a substation with three trains (N = 3) and let us

compute the matrix A0, given by

−3λ1 λ1 λ1 0 λ1 0 0 0

0 −λ1 0 λ1

2 0 λ1

2 0 0

0 0 −λ1 λ1

2 0 0 λ1

2 0

0 0 0 −λ1 0 0 0 λ1

0 0 0 0 −λ1 λ1

2
λ1

2 0

0 0 0 0 0 −λ1 λ1 0

0 0 0 0 0 0 −λ1 λ1

0 0 0 0 0 0 0 0



.

Note that, for instance the first row represents the transition starting from Σ(t) =

[1 1 1]′, that is when all the trains are in braking and only one train at time is allowed220

to accelerate if the other ones are braking. Conversely, the last row is zero because

it corresponds to transitions starting from Σ(t) = [2 2 2]′, that is all the trains are in

acceleration, cruising or coasting mode. Analogously, the bottom left 4 × 4 block is

also zero.

6. Assessment of the collaborative ecodrive NMPC225

In this section, simulation results on a realistic scenario are presented in order to

assess the proposed collaborative NMPC.
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Figure 4: Evolution of the velocity profiles x[r]2 with respect to space x[r]1 , r = 1, 2, 3 over all the track

and velocity limits

Figure 5: Time evolution of the states, inputs and cost weights for each train over the first four stops. From

the top: velocity profiles x[r]2 , handle u[r] and cost weights γ[r], r = 1, 2, 3
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6.1. Description of the scenario

Simulations have been carried out by considering three trains (N = 3), with the

total track having 20 stops. The route has a total length of 22.4 km. The parameters of230

the track, which are curve radius, slope and velocity limit, have been provided by the

company Alstom on the basis of real data and these are shown in Figure A.7 in the ap-

pendix. All the trains have identical parameters, provided by the company Alstom and

reported in Table B.3 and Figure A.6, where the maximum traction and braking forces

are illustrated. They refer to Italian trains like that depicted in Figure 2. Furthermore,235

in the considered scenario the consecutive trains run shifted in time by 48 s and 80 s,

respectively with respect to the first one. The sampling time is Ts =0.4 s and the initial

weights for each train are chosen as γ[r]0 = γ̄[r] with γ̄[r] = 0.5 being the first entry of

the Frobenius left eigenvector associated to Q[r] (r = 1, 2, 3), with qij = 1.

6.2. Performance of the proposed collaborative NMPC240

The performance of the proposed NMPC are now discussed. The prediction hori-

zon has been set Np = 3 and the DAL is activated in order to make the system behave

in a collaborative way. Figure 4 shows the evolution of the train speed over all the track.

It can be observed that the velocity limits are always fulfilled and sometime trains be-

have in different way depending on the weights γ[r] used in the cost function. More245

specifically, the effect of the DAL can be better appreciated in Figure 5, where for the

sake of clarity only the first four stops (5 km) are illustrated. Figure 5, in fact, reports

the time evolution of the velocity x[r]2 for all the trains, the corresponding inputs u[r]

and weights γ[r], r = 1, 2, 3. As expected, after 48 s the second train (dashed line)

starts to run and analogously the third train (dotted line) after 80 s. While initially all250

the profiles are identical, the effect of DAL is visible at 70.8 s when the second train is

induced to accelerate by virtue of the braking energy provided by the first train (solid

line). The same situation occurs at the time instant 115.2 s when the second train starts

to brake and the third one accelerates. At the time 214 s the first train instead accel-

erates thanks to the braking energy provided by the second one. In correspondence of255

these events the values of γ[r] of the braking trains decrease from 0.5 to 0.3. Note also

that γ[r] is reset equal to 0.5 after each stop.
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Table 1: Performances when using the proposed NMPC with (w/) and without (w/o) DAL

r DAL J [-] ET [kWh] EB [kWh]

1
w/ 50572 545.46 401.54

w/o 50610 511.29 372.22

2
w/ 37455 581.82 415.13

w/o 44886 503.58 349.26

3
w/ 43126 557.93 397.42

w/o 47971 500.09 349.26

Numerical results for the performances in terms of value of the cost function (J),

traction energy (ET) and braking energy (EB), both expressed in kW h, are reported

in Table 1. Notice that the computed value of traction energy ET includes the energy260

from the main grid and the one regenerated by the other trains in the network. As a

consequence of the DAL mechanism, the traction energy of all the trains is higher with

respect to the case without DAL, thus implying shorter arrival time. Therefore, it can

be observed that the values of the cost function, which include both the energy term

and the one related to arrival time, are reduced for all the trains when the proposed265

NMPC with DAL is adopted. As a further consequence of the regenerated energy

shared among the trains, higher braking energy is required. Then, by virtue of this

strategy a better grid utilization is achieved.

Finally, the NMPC strategy standalone has been successuflly tested on the Alstom

simulator CITHEL, featuring coupled mechanical, electric and thermal calculations270

of the full train with its electro-mechanical back-end (including detailed models of

the drives and electric motors), able to provide accurate time and energy consumption

predictions. NMPC was compared with the “all-out” solution (i.e., the one giving the

shortest arrival time compatible with the system parameters and speed constraints) and

with Alstom current ecodrive strategy. The results have shown that the proposal is275

comparable with the current Alstom strategy in terms of energy, thus being in principle

eligible to field implementation [32]. Moreover, the merit of the proposal is to provide

a valid real-time solution for the ecodriving task as alternative to the computationally
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onerous current ecodrive approach.

7. Conclusion280

This work considered the problem of energy efficient train operation with ecodrive

in a collaborative way. To address this problem, an optimal control solution to predict

the velocity profile of a train by using switching NMPC algorithm in a collaborative

fashion was proposed. For the purpose, a DAL was introduced to manage all the trains

governed by the same substation and tune the NMPC law in order to use the braking285

energy, while taking into account constraints on velocity and journey times. Results

show that the proposed NMPC is able to minimize the traction energy, which depends

on the input handle and on the characteristics of the track while fulfilling all the con-

straints. Moreover, the DAL allows trains to effectively use the regenerated energy

which is available in the substation when regenerative braking occurs.290

Appendix A. NMPC settings

The sequences of modes belonging to the set W and selected to improve the per-

formance of the proposed NMPC, as described in Section 4.2, are hereafter reported in

Table A.2.

Appendix B. Scenario settings295

The parameters of the single train, maximum traction and braking forces profile

and track features (velocity limits, slope and curve radius) are reported in Table B.3,

Figure A.6 and Figure A.7, respectively.
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Table A.2: Selected sequences belonging to the set W

s[k,k+Np−1|k]

p|k

# k k + 1 . . . k +Np − 1

1 -1 -1 -1 -1

2 0 0 0 0

3 uCR uCR uCR uCR

4 1 1 1 1

5 0.5 0.5 0.5 0.5

6 0.75 0.75 0.75 0.75

7 uCR uCR 0 0

8 uCR uCR -1 -1

9 uCR uCR 0.5 0.5

10 uCR 0.5 0.5 0.5

11 uCR -1 0 0

12 0 -1 -1 -1

13 -1 -1 0 0

14 -1 0 0 0

15 -1 0.5 0.5 0.5

Table B.3: Parameters of the train

Mtot 267 464 kg

Ms 255 200 kg

A 3597.6N

B 119.5N sm−2

C 6.97N sm−2
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Figure A.6: Maximum traction and braking forces as functions of velocity

Figure A.7: Model of the track given by speed limit, slope and curve radius
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