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Abstract

Wave propagation in periodic locally resonant materials (LRM) is charac-
terized by the presence of band-gaps occurring at relatively low frequencies
which can be exploited for vibration attenuation or impact absorption. In
this work we consider the dispersion properties of three-components cellular
LRM endowed with 2D (cylindrical) or 3D periodicity. Modal analyses on
the unit cell, with Bloch-Floquet periodicity conditions, are performed by the
finite element methods. For cylindrical LRM, the limits of plane analyses,
which consider uncoupled in-plane and out-of-plane modes, are highlighted.
Several different geometries for the 3D unit cells are also proposed and their
influence on the band-gap width is studied.

Keywords: metamaterial, dispersion spectrum, locally resonant, impact
absorption

1. Introduction

Locally resonant materials (LRM) are periodic media, widely studied
in view of their peculiar properties with respect to wave propagation [1].
Such materials belong to the class of metamaterials, i.e. engineered materi-
als characterized by effective properties that cannot be found or are hardly
found in natural materials. The possible applications of metamaterials are
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numerous and widespread: acoustic isolation, noise suppression, vibration
attenuation, acoustic waveguides, acoustic super-lenses, negative refraction,
acoustic cloaking, energy harvesting, see the review papers [2, 3, 4, 5]. Many
applications harness the fact that the dispersion spectrum of metamaterials
may exhibit band-gaps, i.e. frequency ranges in which wave propagation is
prohibited, that depend on the vibrational features of its components. The
mechanism behind wide [6, 7, 8] and tunable [9, 10, 11] band-gaps has been
thoroughly studied, both numerically and experimentally; to improve the
wave filtering performances, some researchers have proposed the application
of topological optimization technique [12, 13].

At difference with respect to the Bragg scattering mechanism, commonly
described for the so-called phononic crystals [14, 15], local resonance allows
the achievement of band-gaps with a central frequency which is well below
the frequency of the wave associated to the cell dimension of the periodic
arrangement. Such a behavior has been interpreted as a “negative mass”
effect that can be fruitfully exploited to get wave filters at relatively low
frequency [16, 17, 18, 19].

In most cases, the effect of local resonance is obtained by the adoption
of three-phase materials, e.g. high density inclusions with an elastic coat-
ing, embedded in a rigid matrix [20]. Such a scheme has been adopted for
the mitigation of blast and impact effect, with encouraging results: the Au-
thors of [21] have shown the results of a parametric study on the basis of a
mathematical model; a practical implementation of such a concept can be
found in [22], that contains also an experimental validation. In the frame-
work of impact absorbers for crash-worthiness of lightweight cars, Comi and
Driemeier [23, 24] have proposed the adoption of a LRM with a different
scheme: a square lattice of aluminium cells, filled by a polymeric foam, with
circular lead inclusions. In that case, the study was focused on materials
having two-dimensional periodicity and composed of long extruded cells that
can be effectively studied by means of plane models considering propagation
of pure transverse waves and planar waves separately . However, it must
be noted that, in some cases, the application of 2D simulations may lead
to misleading conclusions about the real three-dimensional case [25] and the
assumption that the complete band-gap can be obtained as the intersection
of those obtained with plane analyses can be questioned.

The purpose of this paper is twofold. Firstly, the attention is focussed
on the LRM with 2D periodicity, proposed in [24]. Such a metamaterial
is characterized by an innovative design and shows the interesting property



of overlapping band-gap for in-plane and transverse waves. A complete 3D
band-gap is thus expected, but its extension could be highly affected by the
out-of-plane thickness of the real material. Therefore, the paper presents the
detailed study of the dispersion diagram with the main purpose of critically
examining the differences between cost-effective plane models, that consider
decoupled in-plane and out-of-plane transmission modes, and more realistic
full 3D models. The objective is to understand the effect of the out-of-plane
dimension, with a broader perspective with respect to previous works [25].
To this purpose, considering the LRM with 2D periodicity proposed in [24],
various 3D models with different out-of-plane extensions are analyzed. The
3D and 2D band structures are obtained by means of finite-element modal
analysis. The dispersion analyses necessitate of specific provisions in order
to introduce the Bloch-Floquet periodicity conditions on the unit cell. The
comparative examination of the achieved results leads to new interesting con-
clusions on the interplay between in-plane and out-of-plane modes for cellular
materials with limited extrusion length. Secondly, the paper tries to open
new ways in order to improve the performances of the considered LRM, also
in view of its practical application as shock-absorbing material. To this end,
we propose, analyse and compare new designs of three-components cellular
LRM with three-dimensional periodicity. The knowledge of the mechanical
behavior of 3D LRM represents the basis for the development of new layouts,
obtained by changing the shape of the unit cell and of the inclusions.

2. Description of the computational technique

LRM are represented by the periodic repetition along the lattice axes ey,
ey and ez of a unit cell, generally composed of two or more materials (solid
or, possibly, fluid). The problem of wave propagation is governed by the
elasto-dynamic equations for inhomogeneous media:
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where p is the material density, A and p are the Lame’s coefficients, u =
[wy, uy, u,] is the displacement vector with its Cartesian components and V
denotes the gradient vector. The material parameters are periodic in space,
according to any scheme that could be used to describe crystalline materials
(see e.g. [26]). In that case, the Bloch-Floquet theorem states that the
solutions of the periodic dynamic equations (1) are Bloch waves of the form:

u(r,t) = a(r)e™r e (2)

where r = [x,y, 2] is the position vector, @(r) is a periodic function with the
same periodicity of the LRM, k is the wave vector and w is the angular wave
frequency.

The wave propagation in the LRM can be studied by considering a unit cell,
with the application of suitable boundary conditions in order to comply with
the Bloch-Floquet theorem. In this study, the finite element (FE) method
has been adopted in order to obtain a numerical solution, through the use of
the commercial software ABAQUS. The unit cell is divided into 3D elements
and the FE discretization yields the governing equation for wave propagation:

(K — w?M) w(k) = 0 (3)

K and M are the assembled global stiffness and mass matrices, w(k) is
the global vector of unknowns containing the displacements components of
each node. The periodic boundary conditions are enforced on corresponding
surfaces, here generically denoted by ') and T',,, where n is referred to one
vector in the lattice basis e,;:

wrt = wp- e = wi_ [cos(k - e,) +isin(k - e,)] (4)
The boundary conditions can be expanded as:

Re (wpt) = Re (wp-) cos(k - €,) — Im (wp- ) sin(k - e,,) (5a)
Im (wp+) = Re (wp- ) sin(k - e,,) 4+ Im (wp- ) cos(k - e,,) (5b)

The solution is then obtained by considering two identical meshes, one for
the real part and the other for the imaginary part of the displacement vector,
linked by the boundary conditions (5). Equation (3) is solved, along with
boundary conditions (5), in order to find eigenvalues w?, eigenvectors w and
the associated dispersion relation at varying k. It is important to notice that,
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Figure 1: Cellular periodic material with cylindrical resonators, representative
unit cells and first Brillouin zones. (a) Square lattice, (b) hexagonal lattice.

since the governing matrices are Hermitian, all the eigenvalues are real. Due
to the symmetries of the unit cell, the description of the dynamic behavior
of the LRM for all the possible wave vectors can be obtained by focusing
the attention on a particular regions of the reciprocal space, called first Ir-
reducible Brillouin Zone (IBZ). Many authors (see e.g. [27]) claim that the
essential features of the dispersion diagram can be determined focusing the
attention on the k vectors along the boundary of the first IBZ, following the
paths indicated in the next Sections.



3. Band-gap in cylindrical locally resonant materials

Consider a three-component composite material consisting of a cellular
periodic metallic frame, filled by a soft light material with heavy inclusions
of cylindrical shape (see Figure 1). We will refer to this 2D-periodic material
as ”cylindrical” locally resonant material. Two geometries of the metallic
frame will be considered: square shape, with edge a (Fig. 1a) and hexagonal,
honeycomb, shape , with edge L (Fig. 1b). In the first case the lattice vectors
are orthogonal, while in the second they are at 7/3. Figure 1 also shows the
unit cell and the first Brillouin zone; e} and €} denote the reciprocal lattice
vectors and the shaded area is the irreducible Brillouin zone (IBZ) which
accounts for the symmetries. The vectors of the direct and reciprocal lattices
are related by:

e; e; =2 51']' (6)

In the numerical simulations we will consider the material constituents
listed in Table 1.

Table 1: Elastic properties and density of the constituent materials

Constituents E [MPa] | v | p [kg/m?]

Aluminum alloy 70000 | 0.34 2600

Material of the inclusion 40800 0.37 11600

Foam 10 0.45 115

If the out-of plane dimension h is very large with respect to the periodicity
length a or L, it is common to consider separately in-plane polarized waves
and out-of-plane polarized waves and to evaluate the dispersion diagrams for
in-plane and out-of-plane modes. We will follow this approach in section 3.1
while in section 3.2 we will consider a full three-dimensional analysis.

3.1. Decoupled in-plane and transversal analyses

For the two-dimensional analysis of the cylindrical periodic solid, infinite
in the out-of-plane direction, the wave vector k is confined to the x — y plane
and the modes are decoupled into in-plane modes, described by displacement
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vectors of the form w,(z,y)i, + uy(x,y)i, and out-of-plane, pure transverse
modes, described by displacement vectors of the form u,(z, y)i,, with i,,1,, 1,
denoting the unit vectors of the Cartesian reference frame. To determine the
band structure the eigenvalue problem (3) is solved numerically for k be-
longing to the boundary I' — X — M —I" of the IBZ. The reduced frequency
wa /27 of each mode is then plotted as a function of the arc length along the
boundary I' — X — M — I'. The diagrams thus obtained are called dipersion
diagrams and characterize the transmission properties of the LRM. The in-
tervals of frequencies where no real solutions exist define the band-gaps.
The dispersion diagrams thus obtained are shown in Figs. 2 and 4 for the
square and hexagonal lattices, different gray are used to distinguish the dif-
ferent modes. The two lattices have the same cell area i.e. a? = %LQ and
they are characterized by the same volume fraction of the aluminium frame
(defined as cross area of the frame divided by the cross area of the cell) and
of the lead inclusion (defined as cross area of the inclusion divided by the
cross area of the cell); these volume fractions are equal to 0.15 and 0.44,
respectively. The dispersion plots for in-plane modes are obtained by plane
strain analyses and, for the square and hexagonal lattice, they are reported
in Figs 2a and 4a, respectively, in terms of reduced frequency. Both are
characterized by the presence of a band-gap, shaded in the figures, opening
between the third and fourth mode.
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Figure 2: Band diagrams for 2D in-plane (a) and out-of-plane (b) modes in the
LRM with square lattice and infinite value of h
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The values of the opening and closing frequencies, corresponding to points
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[ and II in Figs 2a and 4a, are reported in Table 2. The relative amplitude,
defined as the bandwidth divided by the central band-gap frequency, is sim-
ilar for the two lattices, 110.9% for the square lattice and 114.8% for the
hexagonal one. For out-of planes modes the gap appears between the first
and the second mode, see Figs 2b and 4b.

Table 2: Opening, closing and central reduced frequencies wa/27m of the first
band-gap for the different configurations

Unit cell opening [mm/s| | closing [mm/s] | central [mm/s]
square in — plane 44380. 154872. 99626.
square out — of — plane 19580. 73116. 46348.
hexagonal in — plane 42077. 155373. 98725.
hexagonal out — of — plane 18142. 67750. 42946.
cubic open 37643. 117344. 77494.
cubic walls 42379. 60523. 51451.
cubic closed 43055. 97281. 70168.
prismatic open 38589. 108516. 73553.
prismatic walls 41669. 60986. 51328.
prismatic closed 44888. 117394. 81141.

Figures 3 and 5 report the opening and closing modes for the square
and hexagonal lattices that are marked by I, II, IIT and IV in Figures 2
and 4, respectively. The opening and closing modes correspond to different
symmetry points of the IBZ, as common for band-gaps generated by a local

resonant mechanism.
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Figure 3: Opening and closing modes for the in-plane (I-IT) and the out-of-plane
(ITI-IV) analyses in the LRM with square lattice and infinite value of h
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Figure 4: Band diagrams for: 2D in-plane (a) and out-of-plane (b) modes in the
LRM with hexagonal lattice and infinite value of h
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(ITI-IV) analyses in the LRM with hexagonal lattice and infinite value of h



Keeping fixed the LRM components and the volumetric fraction of the
frame and of the inclusion, the reduced frequency wa/2m of the band-gap is
fixed and one can easily shift the real frenquency by changing the size of the
unit cell: a smaller lattice length leads to band-gaps at higher frequency.
For the sake of comparison, we also consider 2D analyses in plane-stress con-
ditions. The opening and closing modes are similar to those shown in Figure
3(I-IT) and Figure 5(I-IT), but the values of the corresponding frequencies are
generally lower than the plane strain case: as an example, for the square lat-
tice the opening and closing reduced frequencies are 32009 mm/s and 107014
mm/s, respectively.

3.2. Three-dimensional analysis

To compute the band structure of a cylindrical LRM with a finite thick-
ness h, one has to perform a three-dimensional eigenvalue analysis. However,
being the periodicity of the material two-dimensional, the reciprocal lattice
is also two-dimensional and the Block-Floquet conditions should be imposed
only on the faces of the unit cell with normal laying in the x — y plane.
Therefore the IBZ is still that is shown in Figure 1 and also in the three-
dimensional dispersion analyses one can consider only wave vectors belong
to the boundary I', X, M, T".

The band-gap position and amplitude change when changing the thickness
h of the material and the boundary conditions on the surfaces of normal
z. Figure 6 shows the complete band-gaps obtained by full 3D analyses of
prismatic unit cells with square cross section, free surfaces of normal z and
different out-of-plane thickness; the horizontal lines represent the limit of the
band-gaps obtained for the in-plane and out-of-plane modes in the previous
section for an infinite A. The intersection between these band-gaps repre-
sents the prediction of the complete band-gap, which in the present case has
a relative magnitude of 48.9%.

One can observe that the actual band-gap, represented by the blue bars in
Figure 6, is well approximated by the two-dimensional analyses for h > 2a,
however, for very high values of the thickness, the band-gap structure changes
since the frequency of some modes involving bending of the resonating cylin-
ders decreases and enters into the band-gap. This phenomenon is evidenced
in Figure 7 for h = 6a. The dispersion plot presents two smaller band-gaps
separated by the 7*" and 8*® bending modes; these modes do not exist in the
infinite solid.
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If the solid has restrained end surfaces (in z-direction), the out-of-plane
modes are inhibited and one obtains a different band stucture, as shown
in Figure 8 for the case h = 4a. Note that there is the formation of four
band-gaps all inside the frequence interval defined by the band-gap under
plane-strain conditions. There are some modes, characterized by non uniform
displacements in the z-direction, that enter into the bandgap of the ideal
plane-strain case which is only valid for a solid infinite in z.
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Figure 8: Cylindrical LRM with square lattice, h = 4a and fixed end surfaces:
dispersion diagram with four separated band-gaps within the bandgap limits for
the square 2D in-plane case (in green).

It is interesting to compare the results of 3D analyses with the 2D plane
stress case. The opening frequency coincides with that obtained with 3D
analyses with free BCs in the z-direction, in the case of small h/a. This
confirms the theoretical prediction that plane stress analyses are well suited
for thin solids. On the other hand, the intersection of in-plane (plane stress)
and out-of-plane results does not match the 3D bandgap, in view of the fact
that the decoupled analyses cannot predict the closing mode for small h/a.
Such a mode is characterized by out-of-plane motion that, owing to the small
thickness, involves some local bending of the cell. The decoupled analyses
are not able to include bending behavior.

From the above analyses we can conclude that: (i) decoupled plane strain/out-
of-plane analyses can provide a good estimate of the bandgap for large h/a;
(74) in the case of small h/a, plane stress analysis can be used to predict the
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opening frequency, but the closing one can be obtained only with a coupled
3D analysis.

Similar results are obtained for the hexagonal lattice as shown in Figure 9.
For 2L < h < 8L the first complete band-gap coincides with the one obtained
as intersection of the band-gaps for in-plane and out-of-plane waves; for lower
values of h the complete band-gap is shifted to lower frequencies, while for
h > 8L the first band-gap is interrupted by a flexural mode, similar to the
one shown in Figure 7b.
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Figure 9: Complete 3D band-gap in the cylindrical LRM with hexagonal lattice
for varying h and free end surfaces

4. Band-gap in three-dimensional locally resonant material

In this section we consider locally resonant materials endowed with three-
dimensional periodicity, we refer to these materials as 3D-LRM in contrast
with the cylindrical-LRM considered above. The unit cell, which periodically
repeats in the three directions, can have a cubic shape of edge a (see Figure
10a,b,c) or a prismatic one with L = 1.0825a(see Figure 10d,e,f). The ma-
terial has the same constituents listed in Table 1; the inclusion is a heavy
sphere of radius R = %a , immersed in a polymeric foam matrix, embedded
in aluminium structures with different geometries. Three configurations of

the aluminium structure are explored as shown in Figures 10: (a, d) cellular
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cylindrical structure such that the cell has lateral walls only, (b, e) closed
structure with walls also in the third direction, (c, f) open frame with beam
elements at each edge. In all cases the thickness of the aluminium structure
is t = 0.04a. Configurations (a) and (d) are simpler from a technological
point of view, since the aluminium structure can be extruded and the only
difference with the cylindrical-LRM is that the inclusions are spheres instead
of cylinders.

t/2

(d) (e) (f)

Figure 10: Unit cells for the cubic crystals: (a) lateral walls, (b) closed cell, (c)
open frame only; unit cells for the prismatic-hexagonal crystals: (d) lateral walls,
(e) closed cell, (f) open frame only

Let us first consider the lattice with cubic cells; being the periodicity 3D,
the reciprocal lattice is also 3D and the first Brillouin zone is a cube with
orthogonal reciprocal lattice vectors (Figure 11a). Considering the symme-
tries, one can restrict the analysis to the tetrahedron I' — X — R — M which
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constitutes the IBZ

The dispersion analysis is performed by solving the eigenvalue problem (3)
numerically, with k belonging to the boundary of the IBZ. The resulting dis-
persion plots for the cubic cells are shown in Figures 11b-d. On Figure 11b,
I and II indicate the opening and closing points of the first band-gap, simi-
larly on Figure 11c, III and IV indicate the opening and closing points; the
corresponding modes are shown in Figures 12 I, II, IIT and IV, respectively.
The values of the opening, closing and central band-gap reduced frequencies
are also reported in Table 2.

One can observe that the configuration with four lateral walls leads to the
smaller band-gap among the three proposed geometries of 3D-LRM. Fur-
thermore, the relative magnitude of the band-gap (35.3%) is lower that the
magnitude of the complete band-gap (48.9%) obtained with the correspond-
ing cylindrical-LRM. This is due to the lower mass of the resonating part (a
sphere instead of a cylinder of equal radius).

The use of a completely closed cell allows, instead, to widen the ban-gap
(Figure 11c) as it increases the frequency of the closure mode. Actually, as
shown in Figure 12, while the opening modes are similar for the two cells (cp.
Figures 12 I and III), the closure mode for the cell with only lateral walls
(Figures 12 II) involves a vibration of the inclusion in the third direction;
if the cell is completely closed this mode cannot occur, the closure mode
changes (see Figure 12 IV) and a wider band-gap is obtained.

The widest band-gap is obtained for the cell with an open aluminium frame
(Figure 11c) as in this case the ratio between the resonating mass and the
total mass is maximum. This is in agreement with results reported in the
literature for other LRMs [28].
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Figure 11: 3D three-components LRMs with cubic lattices: (a) first Brillouin
zone and IBZ; band diagrams for (b) cell with lateral walls, (c) closed cell, (d)
open frame only.
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Figure 12: Relevant modes for the 3D cubic crystals (I) opening mode for the cell
with lateral walls, (II) closure mode for the cell with lateral walls, (III) opening
mode for the closed cell, (IV) closure mode for the closed cell.

We consider now the hexagonal-prismatic lattice: in this case the first

Brillouin zone is also a prism with hexagonal base, Figure 13a. Exploiting
the symmetries, the analysis can be restricted to the IBZ which is the trian-
gular prism ' = X — M —A—- L — H.
The band diagrams for the three cells with different aluminium structures
are shown in Figures 13b-d. As in the case of a cubic lattice, the widest
band-gap is obtained for the case of an open aluminium frame (d), while the
configuration with an extruded aluminium structure (b) leads to the smallest
band-gap.
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5. Conclusions

This paper investigates the dispersion properties of cellular locally reso-
nant materials, with different geometries, through finite element modal anal-
yses conducted on the unit cell with imposed Bloch-Floquet boundary con-
ditions.

For LRM with 2D periodicity (or cylindrical LRM) the band structure calcu-
lated separately for in-plane and out-of-plane modes is compared with that
obtained by a three-dimensional analysis on solids with different out-of plane

19



thickness and boundary conditions. It is shown that, considering free bound-
ary conditions, the real band structure depends on the out-of-plane thickness
of the material and it can be smaller than that of the ideal infinite material,
evaluated as the intersection of those obtained by decoupled 2D analyses,
because some bending modes can enter into the stop band. On the contrary,
the width of the complete band-gap can be increased by designing LRM with
3D periodicity, with spherical inclusions. In particular, when the periodic cell
is open, with a stiff frame only, the gap-mid gap ratio reaches the unit.
These results open the way to the design of new three-components cellular
LRM to be used for vibration isolation or energy absorption. However, it
must be noted that the comparative considerations are based on the disper-
sion analyses, in the hypothesis of linear elastic behavior. The effectiveness
of LRM for specific applications must be assessed by taking into account
also the possible non-linear phenomena connected to the peculiar loading
conditions. More specifically, the elastic buckling of frame elements or the
occurrence of plastic strain in the material components might affect the ac-
tual transmission properties of the LRM. The results presented in this paper
could represent a guideline to ideate LRM with optimal performances in
terms of bandgap in the frequency spectrum, but the final design must be
accompanied by trasmission analyses, as well as safety assessment in the
ultimate and serviceability limit states.
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