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Abstract

In this paper, we introduce the Pell graphs, a new family of graphs similar to the Fibonacci
cubes. They are defined on certain ternary strings (Pell strings) and turn out to be sub-
graphs of Fibonacci cubes of odd index. Moreover, as well as ordinary hypercubes and
Fibonacci cubes, Pell graphs have several interesting structural and enumerative proper-
ties. Here, we determine some of them. Specifically, we obtain a canonical decomposition
giving a recursive structure, some basic properties (bipartiteness and existence of maximal
matchings), some metric properties (radius, diameter, center, periphery, medianicity), some
properties on subhypercubes (cube coefficients and polynomials, cube indices, decomposition
in subhypercubes), and, finally, the distribution of the degrees.
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1. Introduction

The hypercubes Qn are one of the most popular architectures for interconnection net-
works for multicomputers. They are highly regular, but the fact that the number of nodes
grows very rapidly, as n increases, limits considerably the choice of the size of the networks.
To overcome disadvantages of this kind, some alternative architectures have been introduced.
One of these alternatives is given by the Fibonacci cubes Γn [11, 12]. These graphs can be
embedded in hypercubes and efficiently emulate many hypercube algorithms.

Fibonacci cubes, however, turned out to be interesting on their own [12, 24]. They have
several interesting structural, metric, combinatorial and enumerative properties [19, 25], and
many applications in theoretical chemistry [19]. Similar results can be obtained for many
other families of graphs deriving from Fibonacci cubes, such as the Lucas cubes [23], the
generalized Fibonacci cubes [17, 14], the extended Fibonacci cubes [31], the generalized Lucas
cubes [15], the extended Lucas cubes [29], the widened Fibonacci cubes [26].

In this paper, we introduce the Pell graphs Πn, a new family of graphs similar to the
Fibonacci cubes. The Fibonacci cube Γn is defined on the set of the binary strings of length
n with no consecutive 1’s, where two vertices are adjacent whenever they differ in exactly

Email address: emanuele.munarini@polimi.it (Emanuele Munarini)

Preprint submitted to Elsevier June 18, 2021



one position (i.e. when they have Hamming distance 1). Similarly, the Pell graph Πn is
defined on the set of certain strings of length n on the alphabet {0, 1, 2}, where two vertices
are adjacent whenever they differ in a suitable factor (the exact definition will be given in
Section 2). The name of these graphs derives from the fact that the strings considered as
vertices of Πn are enumerated by the Pell numbers, i.e. by the numbers pn defined by the
recurrence pn+2 = 2pn+1 + pn with p0 = 1 and p1 = 2.

Pell graphs, as well as hypercubes and Fibonacci cubes, have several remarkable proper-
ties. In this paper, we obtain some structural and metric properties, and some enumerative
properties on subhypercubes and the distribution of the degrees. Specifically, in Section
2, we recall some basic definitions on graphs, formal languages and formal series. Then,
we recall the definition of the Fibonacci cubes Γn and we define the Pell graphs Πn. In
Section 3, we determine a recursive structure for the Pell graphs by means of a canonical
decomposition and then we use such a decomposition to obtain some elementary properties,
such as the bipartiteness and the existence of maximal matchings. In Section 4, we obtain
some metric properties, such as the radius, the diameter, the center and the periphery. In
Section 5, we show that the Pell graph Πn is a subgraph of the Fibonacci cube Γ2n−1. Then,
we determine some other metric properties, such as the medianicity. In Section 6, we study
some enumerative problems concerning subhypercubes. In particular, we obtain the cube
coefficients (i.e. the number of the subhypercubes of a given order), the cube polynomi-
als, the cube indices and a decomposition in hypercubes. Finally, in Section 7, we obtain
the distribution of the degrees. In particular, we obtain the maximum, the minimum and
the medium degree, the chromatic index, and the generating series for the degrees and the
medium degrees.

2. Basic definitions

Here, we consider only finite undirected simple graphs. Specifically, a graph is a pair
G = (V,E), where V = V (G) is a finite set of vertices and E = E(G) is a finite set of edges
consisting of unordered pairs of vertices. We write v adj w when the vertices v and w are
adjacent, i.e. when they are connected by an edge, i.e. when {v, w} ∈ E(G). A subgraph of
G is a graph S = (X, Y ) where X ⊆ V (G) and Y ⊆ E(G). In this case, we write S ⊆ G. If
X ⊆ V (G), then we denote by 〈X〉 the induced subgraph of G, i.e. the subgraph with vertex
set X and with edge set consisting of all edges of G having both endpoints in X.

The Cartesian product of two graphs G and H is the graph G2H with vertex set V (G)×
V (H) where (v1, w1) adj (v2, w2) whenever v1 adj v2 and w1 = w2, or v1 = v2 and w1 adj w2.

As usual, Kn denotes the complete graph on n vertices. For a general reference on graph
theory, see [3].

Now, we recall some basic definitions on formal languages. The free monoid over an
alphabetA = {`1, . . . , `r} is the setA∗ of all strings (words) α = a1 · · · an with a1, . . . , an ∈ A
and n ∈ N. In particular, for n = 0 , we have the empty string ε. The product of two strings
α = a1 · · · am and β = b1 · · · bn is the concatenation αβ = a1 · · · amb1 · · · bn, with the empty
string as the identity element. A factor of a string α ∈ A∗ is a string β ∈ A∗ such that
α = α1βα2 , with α1, α2 ∈ A∗. If α ∈ A∗ and S ⊆ A∗, then we set αS = {αβ : β ∈ S}.
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Furthermore, we write S +T to denote the disjoint union of two disjoint subsets S, T ⊆ A∗.
For instance, we have the decomposition A∗ = ε+`1A∗+ · · ·+`rA∗. A language over a finite
alphabet A is any subset L of A∗. A binary string is a word over the alphabet B = {0, 1}.
The Hamming distance between two binary strings α and β is the number of bits where α
and β differ.

The hypercube Qn is the simple graph where the vertices are the binary strings of length
n and two vertices are adjacent when they differ in exactly one position, i.e. when they have
Hamming distance equal to 1. Equivalently, we have Qn = K22 · · ·2K2 (n times).

A Fibonacci string is a binary string with no two consecutive ones. If Fn is the set of
all Fibonacci strings of length n, then Fn+2 = 0Fn+1 + 10Fn and F0 = {ε}, F1 = {0, 1}. If
fn = |Fn|, then we have the recurrence fn+2 = fn+1 + fn with the initial values f0 = 1 and
f1 = 2. So, fn = Fn+2 is a Fibonacci number [28, A000045].

The Fibonacci cube Γn, [24], is the simple graph where the vertices are the Fibonacci
strings of length n and two vertices are adjacent when they differ in exactly one position,
i.e. when they have Hamming distance equal to 1. Fibonacci cubes have several interesting
properties. For instance, we have the following decomposition property. The recurrence
Fn+2 = 0Fn+1 +10Fn for Fibonacci strings can be extended to Fibonacci cubes [12]. Indeed,
the strings in 0Fn+1 generate a subgraph of Fn+2 isomorphic to Γn+1 and the strings in 10Fn
generate a subgraph of Fn+2 isomorphic to Γn. Moreover, for any string α ∈ Fn, 00α and
10α are adjacent. This is the only way in which a vertex of the first component can be
connected with an edge to a vertex of the second component. We write Γn+2 = Γn+1 ⊕ Γn
to denote this decomposition.

A Pell string is a word on the alphabet T = {0, 1, 2} where there are no maximal
blocks of 2’s of odd length. Equivalently, a Pell string is an arbitrary word on the alphabet
T ′ = {0, 1, 22}. Let Pn be the set of all Pell strings of length n and let Pn = |Pn|. Since
Pn+2 = 0Pn+1 + 1Pn+1 + 22Pn and P0 = {ε} and P1 = {0, 1}, we have the recurrence
Pn+2 = 2Pn+1 + Pn with the initial values P0 = 1 and P1 = 2. So Pn = pn and the
Pell strings of length n are counted by the Pell number pn. These numbers form sequence
A000129 in [28] and their first values are 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860,
33461.

The Pell graph Πn is the simple graph where the vertices are the Pell strings of length n
and where two vertices are adjacent whenever one of them can be obtained from the other
by replacing a 0 with a 1 (or viceversa), or by replacing a factor 11 with 22 (or viceversa).
We have Π0 = K1, Π1 = K2. See Figure 1 for Π2, Π3 and Π4.

Let L be a language over a finite alphabet A, i.e. L ⊆ A∗. A statistic on L is a map
σ : L → N. For instance, the length |α| of a string α is a statistic on L . Given a language
L , endowed with a statistic σ, we can consider the generating series

F (x, t) =
∑
α∈L

xσ(α)t|α| =
∑
n,k≥0

Fn,k x
ktn

where x marks the value of the statistic, t marks the length and Fn,k is the number of strings
α ∈ L with length n and σ(α) = k. For more details on languages and formal series, see
[8].
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Figure 1: The Pell graphs Π2, Π3 and Π4.

A Riordan matrix [27] is an infinite lower triangular matrix R = [rn,k]n,k≥0 = (g(t), f(t))
whose columns have generating series

rk(t) =
∑
n≥k

rn,k t
n = g(t)f(t)k ,

where g(t) =
∑

n≥0 gn t
n and f(t) =

∑
n≥0 fn t

n are formal series with g0 = 1, f0 = 0 and

f1 6= 0. The associated row polynomials are the polynomials defined byRn(x) =
∑n

k=0 rn,kx
k.

For instance, the Delannoy numbers Dn,k, [7, p. 81] [28, A008288], are defined as the
entries of the Riordan matrix

D = [Dn,k]n,k≥0 =

(
1

1− t ,
t+ t2

1− t

)
.

This means that we have the generating series

∑
n≥k

Dn,k t
n =

1

1− t

(
t+ t2

1− t

)k
=

(t+ t2)k

(1− t)k+1
.
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The row polynomials of D are the Delannoy polynomials dn(x) =
∑n

k=0 Dn,kx
k, with gener-

ating series ∑
n≥0

dn(x) tn =
∑
n,k≥0

Dn,k x
ktn =

1

1− (1 + x)t− xt2 . (1)

The row-sums of the matrix D are the Pell numbers, i.e.
∑n

k=0 Dn,k = pn.
The incremental ratio of a formal series f(t) =

∑
n≥0 fnt

n is defined by

Rf(t) =
∑
n≥0

fn+1t
n =

f(t)− f0

t
. (2)

In particular, if we apply this operator two times, then we have

R2f(t) = R
(
Rf(t)

)
=
∑
n≥0

fn+2t
n =

f(t)− f0 − f1t

t2
. (3)

3. Canonical decomposition

As Fibonacci cubes, also Pell graphs admit a recursive decomposition. Indeed, we have
Pn+2 = 0Pn+1 + 1Pn+1 + 22Pn. The strings in 0Pn+1 generate a graph isomorphic to Πn+1.
Similarly, the strings in 1Pn+1 generate a graph isomorphic to Πn+1. Finally, the strings in
22Pn generate a graph isomorphic to Πn. Every string 0α in 0Pn+1 is adjacent to the string
1α in 1Pn+1. Every string 11α in 11Pn ⊆ 1Pn+1 is adjacent to the string 22α in 22Pn. The
strings in 0Pn+1 are never adjacent to the strings in 22Pn. Then Πn+2 decomposes into two
disjoint copies of Πn+1 and a copy of Πn. We say that this is the canonical decomposition of
Πn+2 and we write Πn+2 = Πn+1 ⊕ Πn+1 ⊕ Πn. See Figure 2 for a schematic representation
of such a decomposition and see Figure 3(a) for a concrete example.

Clearly, the canonical decomposition is not the unique recursive decomposition. Indeed,
a similar decomposition can be obtained by the identity Pn+2 = Pn+10 + Pn+11 + Pn22.
Notice that this is due also to the fact that the Pell graph Πn is symmetric (see Figure 3).
Indeed, for every Pell string α = a1a2 · · · an, the reverse string α∗ = an · · · a2a1 is still a Pell
string and adjacency is preserved under this operation.

Notice that the strings in 0Pn+1 ∪ 1Pn+1 generate a subgraph of Πn+2 isomorphic to
K22Πn+1. So, we also have the decomposition Πn+2 = (K22Πn+1)⊕Πn. This is the second
form of the canonical decomposition. Notice also that 〈11Pn ∪ 22Pn〉 = K22Πn. See again
Figure 2.

Several properties of the Pell graphs can be obtained by their canonical decomposition,
as we will see in the next two propositions and in the following of the paper.

An independent set of a graph G is a subset X ⊆ V (G) with no adjacent vertices. A
graph G is bipartite when the vertex set can be decomposed into two disjoint non-empty
independent subsets V1 and V2. In this case, the pair (V1, V2) is a bipartition of G. A proper
2-coloring of a graph G is a map χ : V (G)→ {0, 1} satisfying the property: if v, w ∈ V (G)
and v adj w, then χ(v) 6= χ(w). A graph is bipartite if and only if admits a proper 2-
coloring. In this case, the bipartition is (V0, V1), where Vk = {v ∈ V (G) : χ(v) = k}, for
k = 0, 1.
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〈0Pn+1〉 ' Πn+1 〈1Pn+1〉 ' Πn+1

〈22Pn〉 ' Πn

〈0Pn+1 ∪ 1Pn+1〉 ' K22Πn+1

〈11Pn ∪ 22Pn〉 ' K22Πn

Figure 2: Canonical decomposition: Πn+2 = Πn+1 ⊕Πn+1 ⊕Πn.

Proposition 1. For every n ∈ N, the Pell graph Πn is bipartite.

Proof. We proceed by induction on n. First, we have that Π0 = K1 and Π1 = K2 are
bipartite. Now, we assume that Πk is bipartite for every k ≤ n + 1 and we prove that this
is true also for Πn+2. By the canonical decomposition, we have Πn+2 = Πn+1 ⊕ Πn+1 ⊕
Πn. We choose a proper 2-coloring χ of the first component Πn+1. Then, we consider the
complementary proper coloring χ′ = 1 − χ for the second component Πn+1. The coloring
χ′ induces a proper 2-coloring of the subgraph isomorphic to Πn contained in the second
component Πn+1. Finally, we consider the coloring χ restricted to the third component Πn.
In this way, we obtain a proper 2-coloring of the whole Πn+2.

Remark 2. Theorem 1 can also be proved directly. Indeed, we can define an order relation
on the set Pn of Pell strings of length n. For every α = a1 · · · an and β = b1 · · · bn in Pn,
we set α ≤ β whenever ai ≤ bi, for all i ∈ {1, 2, . . . , n}. The poset Pn = 〈Pn,≤〉 has
a minimum 0̂ = 00 · · · 0 and an element α is covered by β if and only if α = ξ10ξ2 and
β = ξ11ξ2 or α = ξ111ξ2 and β = ξ122ξ2. The Hasse diagram of Pn is the Pell graph Πn.
Moreover, Pn is ranked and the rank function is defined by r(α) = ω1(α) + 3

2
ω2(α), where

ωx(α) denotes the number of occurrences of the letter x in the string α. Indeed, r(0̂) = 0
and α is covered by β if and only if r(β) = r(α) + 1. So, Πn is a bipartite graph, with
bipartition (En, On) where En is the set of all vertices with even rank and On is the set of
all vertices with odd rank. In particular, the map χ, defined by χ(α) = r(α) mod 2, is a
proper 2-coloring of Πn.

A matching of a graph G is a set of independent edges. A perfect matching, or 1-factor,
is a matching covering all vertices of G. A semi-perfect matching, or near 1-factor, is a
matching covering all vertices of G except one.

Proposition 3. For every n ∈ N, Π2n+1 admits a perfect matching and Π2n admits a semi-
perfect matching.

Proof. We proceed by induction on n. First, we have that Π1 = K2 has exactly one perfect
matching. Now, we assume that Π2n+1 has a perfect matching and we prove that this is true
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Figure 3: (a) canonical decomposition of the Pell graph Π3, (b) a perfect matching of Π3, (c) the subgraph
induced by the center of Π3, isomorphic to Γ3.

also for Π2n+3. By the canonical decomposition, we have Π2n+3 = (K22Π2n+2)⊕Π2n+1. The
first component K22Π2n+2 admits a perfect matching consisting of the edges connecting a
vertex 0α with the corresponding vertex 1α. The second component Π2n+1 has a perfect
matching, by hypothesis. The union of these two matchings is a perfect matching of Π2n+3.
See Figure 3(b) for an example. In a similar way, we can prove that Π2n has a semi-perfect
matching.

4. Basic metric properties

We recall some definitions for a connected simple graph G [5, 6]. The distance d(v, w)
between two vertices v and w of G is the length of a shortest path connecting them. The
eccentricity e(v) of a vertex v of G is the distance to a node farthest from v, i.e. e(v) =
maxu∈V (G) d(u, v). The radius rad(G) of G is the smallest of its eccentricities, and the di-
ameter diam(G) is the largest, i.e. rad(G) = minv∈V (G) e(v) and diam(G) = maxv∈V (G) e(v).
A vertex v is central when e(v) = rad(G) and is peripheral when e(v) = diam(G). The
center Z(G) is the set of all central vertices of G, and the periphery P (G) is the set of all
peripheral vertices of G.

Proposition 4. For every n ∈ N, we have rad(Πn) = n and diam(Πn) = n+ bn
2
c.

Proof. First, we notice that e(1n) = n. Indeed, since we can change a 1 in 0 or a pair 11 in 22
the maximum distance can be reached changing each 1 in 0. Now, we prove that e(α) ≥ n,
for every Pell string α ∈ Pn. Suppose that α contains 2k letters 2, and consequently n− 2k
letters 0 or 1. A single letter 0 (or 1) can be changed to 1 (or 0) with a single move. A
factor 22 can be changed to 00, with 3 moves, for instance 22  11  01  00. So
e(α) ≥ (n− 2k) + 3k = n+ k ≥ n. Hence, the minimum eccentricity is n, i.e. rad(Πn) = n.

To have a vertex with maximum eccentricity we need a string with a maximum number
of factors 22. So, if n = 2m, we have the string (22)m with eccentricity 3m = n + n/2.
If n = 2m + 1, we have the string (22)m1 with eccentricity 3m + 1 = n + bn/2c. So, the
maximum eccentricity is n+ bn/2c, i.e. diam(Πn) = n+ bn/2c.
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Proposition 5. For every n ∈ N, the subgraph of Πn induced by the center Z(Πn) is
isomorphic to the Fibonacci cube Γn.

Proof. If α ∈ Pn has 2k letters 2, with k > 0, then e(α) ≥ n + k > n and α 6∈ Z(Πn).
Moreover, if α ∈ Pn is a binary string with at least one factor 00 (which can be transformed
to 22 in three moves), then e(α) ≥ n + 1 > n and α 6∈ Z(Πn). So, if α ∈ Z(Πn), then α is
a binary strings with no adjacent 0’s, i.e. it is equivalent to a Fibonacci string. To obtain a
string at maximum distance from a string of this kind, we can only change a single letter 0
(or 1) in 1 (or 0) with a single move. So, their eccentricity is at most n, and consequently is
exactly n. Then Z(Πn) ' Fn. Moreover, two strings in Z(Πn) are adjacent when they differ
exactly in one position. This means that 〈Z(Πn)〉 ' Γn. See Figure 3(c) for an example.

Proposition 6. For n = 2m, the periphery P (Πn) consists of the 2m strings Y1Y2 · · ·Ym
where Yi ∈ {00, 22} for every i ∈ {1, 2, . . . ,m}. For n = 2m+1, the periphery P (Πn) consists
of the (m+1)2m+1 strings XY1Y2 · · ·Ym−1Ym, Y1XY2 · · ·Ym−1Ym, . . . , Y1Y2 · · ·Ym−1XYm and
Y1Y2 · · ·Ym−1YmX where X ∈ {0, 1} and Yi ∈ {00, 22} for every i ∈ {1, 2, . . . ,m}.

Proof. A peripheral vertex of Πn is a string α with e(α) = diam(Πn), and the maximum
distance can be reached when α contains the maximum number of factors 00 or 22.

5. Pell binary strings

Since all binary strings are Pell strings, the binary strings of length n generate a subgraph
of Πn isomorphic to Qn. So, we have the inclusions Γn ⊆ Qn ⊆ Πn. Moreover, the Pell
graph Πn can be viewed as a subgraph of a Fibonacci cube, as proved in the next theorem.

Theorem 7. For n ≥ 1, we have the inclusion Πn ⊆ Γ2n−1.

Proof. Every Pell string decomposes uniquely in the product of the factors 0, 1 and 22. This
allows us to define the map ψ : Pn → F2n by setting ψ(0) = 10, ψ(1) = 00 and ψ(22) =
0100. For instance, ψ(122010022221) = ψ(1)ψ(22)ψ(0)ψ(1)ψ(0)ψ(0)ψ(22)ψ(22)ψ(1) =
000100100010100100010000. Notice that ψ(α) is a Fibonacci string of length 2n ending
with 0 (for n ≥ 1). Let n ≥ 1 and define the map ψ : Πn → Γ2n−1 as before, except
for the fact that the last 0 is removed. ψ is a graph map, i.e. preserves adjacency. Let
α adj β. If α = ξ10ξ2 and β = ξ11ξ2, then ψ(α) = ψ(ξ1)10ψ(ξ2) and ψ(β) = ψ(ξ1)00ψ(ξ2),
and so ψ(α) adj ψ(β). If α = ξ111ξ2 and β = ξ122ξ2, then ψ(α) = ψ(ξ1)0000ψ(ξ2) and
ψ(β) = ψ(ξ1)0100ψ(ξ2), and again ψ(α) adj ψ(β). Finally, ψ is an injective map. So, in
conclusion, the Fibonacci cube Γ2n−1 contains a subgraph isomorphic to the Pell graph
Πn.

The binary strings in ψ(Pn) ⊆ F2n will be called Pell binary strings. Let F∗2n be the set
of Fibonacci strings of length 2n with no factors 0101 and without a final 1. Let Γ∗2n be the
Hamming graph generated by F∗2n.

Theorem 8. The graphs Πn and Γ∗2n are isomorphic.
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Proof. Any string α ∈ F∗2n decomposes uniquely as a product of 00, 10 and 01. Since we
cannot have the factors 0110 and 0101, and since 1 cannot be in final position, then 01 is
necessarily followed by 00. Hence, α decomposes uniquely as a product of 00, 10 and 0100,
and this means that F∗2n = ψ(Pn). By Theorem 7, we have the claim.

A median of three vertices of a connected graph is a vertex that lies simultaneously
on geodesics between any two of them. A graph G is a median graph when every triple
of (not necessarily distinct) vertices of G has a unique median [9, 13]. Median graphs
are characterized as retracts of hypercubes [13, p. 76]. All hypercubes Qn are median.
Furhtermore, S. Klavžar proved [18] that Fibonacci and Lucas cubes are median graphs by
using the following property due to Mulder.

Theorem 9 (Mulder [22]). A connected graph G is a median graph if and only if it is an
induced graph of an n-cube such that for any three vertices of G their median in the n-cube
is also a vertex of G.

Such a proof can be extended to Pell graphs, as proved in the next Theorem.

Theorem 10. For any n ∈ N, the Pell graph Πn is median.

Proof. By Theorem 8, the Pell graph Πn is isomorphic to the graph Γ∗2n, which is an induced
subgraph of Q2n. We prove that Γ∗2n is a median closed subgraph of Q2n. Let α = a1 · · · a2n,
β = b1 · · · b2n and γ = c1 · · · c2n be three arbitrary vertices of Γ∗2n and let µ = m1 · · ·m2n

be their median in Q2n. Then µ is obtained by the majority rule, which says that the
i-th coordinate of µ is equal to the element which appears at least twice among the i-th
coordinates ai, bi, ci. We write mi = maj(ai, bi, ci). First, we have that µ is a Fibonacci string
[18]. Indeed, if mi = 1 and mi+1 = 1, i.e. maj(ai, bi, ci) = 1 and maj(ai+1, bi+1, ci+1) = 1,
then in at least one of the vertices α, β and γ there are two consecutive 1’s, which is
impossible. Moreover, in µ there are no substrings 0101. Indeed, if µ2i+1 = 1 and µ2i+3 = 1,
then (as before) in at least one of the vertices α, β and γ there is a substring 0101, which
is impossible. Finally, since a2n = b2n = c2n = 0, we have m2n = 0. In conclusion, Γ∗2n is a
median closed subgraph of Q2n and consequently is a median graph by Mulder’s Theorem
9.

Theorem 11. The Pell graph Πn is an isometric subgraph of the hypercube Q2n−1 (n ≥ 1).

Proof. By Theorem 10, we have that Πn is a retract of the hypercube Q2n−1. Since any
retract of a graph G is an isometric subgraph of G, we have the claim.

Remark 12. The number of Pell binary strings of length 2n with k 1’s is the Delannoy
number Dn,k. Indeed, if D is the set of all Pell binary strings and D(x, t) is the associated
generating series, where x marks the number of 1’s and t the semi-length, then we have the
decomposition D = ε+ 10D + 00D + 0100D and consequently the equation

D(x, t) = 1 + xtD(x, t) + tD(x, t) + xt2D(x, t)

whose solution is the generating series (1) of the Delannoy numbers.
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6. Subhypercubes

Given a graph G, the cube coefficient qk(G) of G is the number of subgraphs of G
isomorphic to the hypercube Qk. In particular, q0(G) is the number of vertices of G, q1(G)
is the number of edges of G and q2(G) is the number of 4-cycles of G. The cube polynomial
of G is defined [4, 20] by

q(G;x) =
∑
k≥0

qk(G)xk .

The cube number q(G) of G is the total number of subhypercubes, i.e. q(G) = q(G; 1) =∑
k≥0 qk(G). For simplicity, let qn,k = qk(Πn), qn(x) = q(Πn;x) and qn = q(Πn).

6.1. Cube coefficients

Let δm,n be the Kronecker delta, defined, as usual, by δm,n = 1 when m = n and δm,n = 0
otherwise.

Theorem 13. The numbers qn,k satisfy the recurrence

qn+2,k+1 = 2qn+1,k+1 + qn,k+1 + qn+1,k + qn,k (4)

with the initial values qn,0 = pn, q0,k = δk,0 and q1,k = 2δk,0 + δk,1. Moreover, we have the
generating series

Qk(t) =
∑
n≥0

qn,k t
n =

(t+ t2)k

(1− 2t− t2)k+1
(5)

and

Q(x, t) =
∑
n,k≥0

qn,k x
ktn =

1

1− (2 + x)t− (1 + x)t2
. (6)

Proof. Consider a subgraph S of Πn+2 isomorphic toQk+1, and consider the canonical decom-
position Πn+2 = Πn+1⊕Πn+1⊕Πn = (K22Πn+1)⊕Πn. We have the following possibilities.

1. S is contained in one of the two copies of Πn+1 or in the copy of Πn.

2. S = K22Qk is contained in K22Πn+1, with the first copy of Qk contained in Πn+1 =
〈0Pn+1〉 and the second copy of Qk contained in Πn+1 = 〈1Pn+1〉.

3. S = K22Qk is contained in K22Πn, with the first copy of Qk contained in Πn = 〈11Pn〉
and the second copy of Qk contained in Πn = 〈22Pn〉.

This analysis immediately implies recurrence (4). Now, consider the seriesQk(t) =
∑

n≥0 qn,k t
n.

From recurrence (4), we have the equation

R2Qk+1(t) = 2RQk+1(t) +Qk+1(t) +RQk(t) +Qk(t) .

By identities (2) and (3), this equation becomes

Qk+1(t)− q0,k+1 − q1,k+1t

t2
= 2

Qk+1(t)− q0,k+1

t
+Qk+1(t) +

Qk(t)− q0,k

t
+Qk(t) .

10



Since we have the initial conditions q0,k = δk,0 and q1,k = 2δk,0 + δk,1, the above equation
simplifies in

Qk+1(t)− δk,0t = 2tQk+1(t) + t2Qk+1(t) + tQk(t)− δk,0t+ t2Qk(t) ,

that is
(1− 2t− t2)Qk+1(t) = (t+ t2)Qk(t) .

Hence, we have

Qk+1(t) =
t+ t2

1− 2t− t2 Qk(t)

and consequently

Qk(t) =

(
t+ t2

1− 2t− t2
)k
Q0(t) .

Since qn,0 = pn, we have Q0(t) = p(t) = 1
1−2t−t2 and then we have series (5). From this

identity we obtain straightforwardly series (6).

Remark 14. The first values of the cube coefficients are reported in the matrix

Q = [qn,k]n,k≥0 =



1
2 1
5 5 1
12 18 8 1
29 58 40 11 1
70 175 164 71 14 1
169 507 601 357 111 17 1
408 1428 2048 1550 664 160 20 1
985 3940 6632 6106 3346 1112 218 23 1
· · ·


.

Notice that, being Q(−1, t) = (1− t)−1, we have the identity∑
k≥0

(−1)kqn,k = 1 .

So, the difference between the number of subhypercubes with even order and the number of
subhypercubes with odd order is exactly 1.

In particular, for the number `n of edges, whose first few values are: 0, 1, 5, 18, 58, 175,
507, 1428, 3940, 10701, 28705, 76230, 200766, we have

Proposition 15. The numbers `n satisfy the recurrence

`n+2 = 2`n+1 + `n + pn+1 + pn (7)
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with the initial values `0 = 0 and `1 = 1. Moreover, they have generating series

`(t) =
∑
n≥0

`n t
n =

t+ t2

(1− 2t− t2)2
=

1

2
tp′(t) =

1

2

∑
n≥0

npn t
n (8)

and consequently

`n =
n

2
pn . (9)

Proof. Since qn,0 = pn and qn,1 = `n, recurrence (4) with k = 0 reduces to recurrence (7)
and series (5) reduces to series (8).

Similarly, for the numbers cn = qn,2 of 4-cycles, whose first few values are: 0, 0, 1, 8, 40,
164, 601, 2048, 6632, 20680, 62633, 185352, 538272, it is possible to prove

Proposition 16. The numbers cn satisfy the recurrence cn+2 = 2cn+1 + cn + `n+1 + `n with
the initial values c0 = c1 = 0, and can be expressed as

cn =
1

16

(
n(2n− 3)pn + (n+ 1)pn−1

)
.

6.2. Cube polynomials and cube numbers

The subhypercubes of Πn can be represented as the strings of the language Q over
the alphabet H = {0, 1, 2, X, Y } where the maximal blocks of 2’s and the maximal blocks
of Y ’s are of even length. The factors X and Y Y have to be considered as variables:
X ∈ {0, 1} and Y Y ∈ {11, 22}. For instance, the string 221X0Y Y 1 generates the square
with vertices 22100111, 22110111, 22110221 and 22100221. Every string α ∈ Q admits a
standard decomposition α = ξ1ξ2 · · · ξk, where each factor ξi ∈ {0, 1, 22, X, Y Y }. The order
of the corresponding subhypercube is given by the number of factors X and Y Y in this
decomposition. Moreover, we have the equation

Q = ε+ 0Q+ 1Q+ 22Q+XQ+ Y YQ . (10)

Theorem 17. The cube polynomials qn(x) satisfy the recurrence

qn+2(x) = (2 + x)qn+1(x) + (1 + x)qn(x) (11)

with the initial values q0(x) = 1 and q1(x) = 2 + x. Moreover, they have the generating
series

Q(x, t) =
∑
n≥0

qn(x) tn =
1

1− (2 + x)t− (1 + x)t2
(12)

and can be expressed in terms of the Delannoy polynomials:

qn(x) = dn(1 + x) =
n∑
k=0

Dn,k(1 + x)k . (13)

Consequently, we have

qn,k =
n∑
i=k

(
i

k

)
Dn,i =

n∑
i=k

(
i

k

) n∑
j=0

(
i

j

)(
n− j
i

)
. (14)
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Proof. Let Q(x, t) =
∑

n,k≥0 qn,k x
ktn be the generating series of Q, where x marks the

numbers of the factors X and Y Y in the standard decomposition (giving the order of the
corresponding subhypercube) and t marks the length. Then, by identity (10), we have the
equation

Q(x, t) = 1 + tQ(x, t) + tQ(x, t) + t2Q(x, t) + xtQ(x, t) + xt2Q(x, t)

or
(1− (2 + x)t− (1 + x)t2)Q(x, t) = 1

from which we have generating series (12). From series (1) and (12), we have at once identity
(13).

Proposition 18. The matrix Q = [qn,k]n,k∈N generated by the cube coefficients is a Riordan
matrix. More precisely, we have

Q =

(
1

1− 2t− t2 ,
t+ t2

1− 2t− t2
)
. (15)

Moreover, if D = [Dn,k]n,k≥0 is the Riordan matrix generated by the Delannoy numbers and
B = [

(
n
k

)
]n,k≥0 is the Riordan matrix generated by the binomial coefficients, then we have the

decomposition Q = DB.

Proof. By series (5), we have at once Riordan matrix (15). Then, by identity (14), we
immediately have the decomposition Q = DB.

Let p(x) and q(x) be two real polynomials with degree n and n + 1, with real distinct
roots. Let r1 < · · · < rn be the roots of p(x) and let s1 < · · · < sn+1 be the roots of q(x).
The polynomials p(x) and q(x) strictly interlace if s1 < r1 < s2 < r2 < · · · < sn < rn < sn+1.

A standard polynomial is a real polynomial which is identically zero or with positive
leading coefficient. A sequence {pn(x)}n∈N of standard polynomials is a Sturm sequence [16]
when every pn(x) has degree n and pn−1(x0)pn+1(x0) < 0 whenever pn(x0) = 0 and n ≥ 1.
These sequences can be characterized as follows: {pn(x)}n∈N is a Sturm sequence if and
only if every polynomial pn(x) has degree n, has n real distinct roots and strictly interlaces
pn+1(x).

Theorem 19. The cube polynomials qn(x) form a Sturm sequence.

Proof. Let q−1(x) = 0 and

fn(x) =

∣∣∣∣qn+1(x) qn(x)
qn(x) qn−1(x)

∣∣∣∣ .
By recurrence (11), we have fn+1(x) = −(1 + x)fn(x) and consequently fn(x) = (−1 −
x)nf0(x). Since q0(x) = 1 and q1(x) = 2 + x, we have f0(x) = −1 and then fn(x) =
−(−1− x)n, that is

qn−1(x)qn+1(x)− qn(x)2 = −(−1− x)n .

13



Hence, if x0 is a root of qn(x), then we have qn−1(x0)qn+1(x0) = −(−1 − x0)n. Since
qn(x) = dn(1 + x) and dn(x) is a polynomial with positive coefficients (n ≥ 1), then 1 + x0

is a root of dn(x) and 1 + x0 < 0. So qn−1(x0)qn+1(x0) < 0 for every n ≥ 1. Since the
polynomials qn(x) have degree n, they form a Sturm sequence.

Remark 20. Similarly, also the Delannoy polynomials form a Sturm sequence.

A sequence {a0, a1, . . . , an} of (positive) real numbers is unimodal when there exists an
index k such that a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an, while it is log-concave when
ak+1ak−1 ≤ a2

k for every k ∈ {1, 2, . . . , n− 1}. A polynomial is unimodal (resp. log-concave)
when the sequence of its coefficients is unimodal (resp. log-concave).

Theorem 21. The cube polynomials qn(x) are log-concave and unimodal.

Proof. A real polynomial all of whose roots are real and negative is log-concave [30, p. 137].
By Theorem 19, the polynomial qn(x) has n real negative roots, and consequently is log-
concave. Moreover, a log-concave sequence of positive numbers is unimodal [30, p. 137]. So,
the polynomial qn(x) is also unimodal.

The cube numbers qn, whose first few values are 1, 3, 11, 39, 139, 495, 1763, 6279, 22363,
79647, 283667, 1010295, 3598219, form sequence A007482 in [28]. In particular, we have

Proposition 22. The cube numbers of the Pell graphs satisfy the recurrence

qn+2 = 3qn+1 + 2qn (16)

with the initial values q0 = 1 and q1 = 3. Moreover, they have generating series

q(t) =
∑
n≥0

qn t
n =

1

1− 3t− 2t2
(17)

and they can be expressed as

qn =
n∑
k=0

Dn,k2
k . (18)

Proof. For x = 1, recurrence (11), series (12) and identity (13) become recurrence (16),
series (17) and identity (18), respectively.

Remark 23. Clearly, recurrence (11) can also be obtained by a direct combinatorial
argument. Indeed, if Q is a subhypercube of Πn+2, then we have the following possibilities.
(i) Q is contained in one of the three components of the canonical decomposition of Πn+2.
(ii) Q = Q′ ⊕ Q′′, where Q′ is a hypercube contained in the first component and Q′′ is the
corresponding hypercube contained in the second component. Q is completely determined
by Q′. (iii) Q = Q′ ⊕ Q′′, where Q′ is a hypercube contained in the second component
and Q′′ is the corresponding hypercube contained in the third component. Q is completely
determined by Q′′. Since there are no other possibilities, we have recurrence (16).
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6.3. Cube indices
The index i(G) of a graph G is the quotient between the number of edges and the number

of vertices, i.e. i(G) = |E(G)|/|V (G)|. For the hypercube Qn we have 2n vertices and n2n−1

edges, and index i(Qn) = n/2. This is true also for the Pell graphs. Indeed, by identity (9),
we have i(Πn) = `n/pn = n/2. Hence i(Πn) → +∞ as n → +∞. Such a result holds also
for Fibonacci and Lucas cubes [23]. We define the cube index of order k of a graph G as

ik(G) =
qk+1(G)

qk(G)
.

Since i(G) = q1(G)/q0(G), we have i0(G) = i(G).

Theorem 24. For every fixed k ∈ N, we have the asymptotic equivalences

ik(Qn) ∼ n

2(k + 1)
and ik(Πn) ∼ n

2(k + 1)
for n→ +∞ (19)

and, consequently, the limits

lim
n→+∞

ik(Qn) = lim
n→+∞

ik(Πn) = +∞ . (20)

Proof. For the hypercubes we have qk(Qn) =
(
n
k

)
2n−k. So, we have

ik(Qn) =
qk+1(Qn)

qk(Qn)
=

n

2(k + 1)

(
1− k

n

)
∼ n

2(k + 1)
for n→ +∞ .

For the Pell graphs, we will obtain a first-order asymptotic formula for qn,k = qk(Qn),
with k fixed, by using the following property [2, p. 252]. Given a complex number ξ 6= 0
and a complex function f(t) analytic at the origin, if f(t) = (1− t/ξ)−λψ(t), where ψ(t) is
a series with radius of convergence R > |ξ| and λ 6∈ {0,−1,−2, . . .}, then we have

[tn]f(t) ∼ ψ(ξ)

ξn
nλ−1

Γ(λ)
for n→ +∞ .

By series (5), we have

Qk(t) =
∑
n≥0

qn,k t
n =

(t+ t2)k

(1− 2t− t2)k+1
= tk(1 + t)k

(
1 +

t

α

)−k−1(
1 +

t

β

)−k−1

where α = 1 +
√

2 and β = 1−
√

2. So, the dominant singularity is ξ = −β, λ = k + 1 and

ψ(t) = (t+ t2)k (1 + t/α)−k−1 .

Since ψ(ξ) = ψ(−β) = 2+
√

2
2k+2 = α

2k+1
√

2
and αβ = −1, we have

qn,k ∼
ψ(−β)

(−β)n
nk

Γ(k + 1)
=

1

k!

(n
2

)k αn+1

2
√

2
for n→ +∞

and consequently

ik(Πn) =
qn,k+1

qn,k
∼ n

2(k + 1)
for n→ +∞ .

This is the second equivalence stated in (19).
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6.4. Decompositions in hypercubes

For the Pell numbers, we have the numerical identity

pn =

bn/2c∑
k=0

(
n− k
k

)
2n−2k .

In the next theorem, we give a combinatorial interpretation of this identity in terms of Pell
graphs and hypercubes.

Theorem 25. The Pell graph Πn can be decomposed in fn−1 hypercubes, i.e.

Πn =

bn/2c⊕
k=0

(
n− k
k

)
Qn−2k . (21)

Proof. Let [n] = {1, 2, . . . , n}, for any n ∈ N. Given a Pell string α = a1 · · · an ∈ Pn,
consider the set S(α) = {i ∈ [n] : ai = 2}. For instance, if α = 022122220122220, then
S(α) = {2, 3, 5, 6, 7, 8, 11, 12, 13, 14}. We say that S(α) is a Pell subset, i.e. a subset of [n]
where the consecutive elements form blocks of even length. Given a Pell subset S ⊆ [n], let
Pn(S) = {α ∈ Pn : S(α) = S}. In the strings of Pn(S) the 2’s are fixed and the variable
letters are 0 and 1. For instance, if S = {2, 3, 5, 6, 7, 8} ⊆ [10], the strings in P10(S) have the
form α = x122x22222x3x4, where x1, x2, x3, x4 ∈ {0, 1}. So, the set Pn(S) induces a subgraph
of Πn isomorphic to a hypercube Qn−|S|. Clearly, if S 6= T , then Pn(S) ∩ Pn(T ) = ∅, that
is the subhypercubes of Πn induced by Pn(S) and Pn(T ) are vertex-disjoint.

Now, we have to count the Pell subset S ⊆ [n] with |S| = 2k. If we represent S by
a binary string, then we have a binary string of length n with 2k 1’s where the maximal
blocks of 1’s have even length. Replacing all elementary factors 11 with 1, we have an
arbitrary binary string of length n − k with k 1’s. So, we have

(
n−k
k

)
Pell subsets S ⊆ [n]

with |S| = 2k, and, consequently, we have decomposition (21). The total number of the
hypercubes appearing in such a decomposition is given by the Fibonacci number

bn/2c∑
k=0

(
n− k
k

)
= fn−1 .

See Figure 4 for an example.

The quotient graph Π̃n associated with the decomposition (21) is the simple graph where
the vertices are the blocks (hypercubes) and two vertices are adjacent when there is at least
one edge connecting the corresponding blocks.

Theorem 26. The quotient graph Π̃n is isomorphic to the Fibonacci cube Γn−1 (n ≥ 1).

Proof. The vertices of Π̃n correspond to the sets Pn(S), where S ⊆ [n] is a Pell subset.
Since the maximal blocks of consecutive elements are of even length, to give such a subset
is equivalent to give a sparse subset (or scattered subset) of [n], i.e. a subset of [n] with no
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Figure 4: Decomposition in hypercubes of Π4: Π4 = Q4 ⊕Q2 ⊕Q2 ⊕Q2 ⊕Q0

consecutive elements. For instance, the subset S = {2, 3, 5, 6, 7, 8, 11, 12, 13, 14} ⊆ [10] is
equivalent to the sparse subset S ′ = {2, 5, 7, 11, 13} ⊆ [10]. So, Pn(S) and Pn(T ) are two
adjacent vertices in the quotient graph exactly when the corresponding sparse subsets S ′

and T ′ differ only for one element, i.e. S ′ = T ′ ∪{∗} or T ′ = S ′ ∪{∗}. This implies that the
quotient graph is isomorphic to the graph where the vertices are the fn−1 sparse subsets of
[n] and two vertices are adjacent whenever they differ for a single element. This last graph
is isomorphic to the Fibonacci cube Γn−1.

7. Distribution of the degrees

The distribution of the degrees in Fibonacci and Lucas cubes has been studied in [21].
Here, we study the distribution of the degrees in a Pell graph. By the definition of adjacency
in a Pell graph, we have that the degree of a vertex α ∈ Πn is

d(α) = ω0(α) + ω1(α) + ω11(α) +
1

2
ω2(α) (22)

where ωξ(α) is the number of occurrences of the factor ξ in α. For instance, d(01222200111) =
3 + 4 + 2 + 2 = 11.

Proposition 27. The maximum and the minimum degree of Πn are ∆(Πn) = 2n − 1 (for
n ≥ 1) and δ(Πn) = dn

2
e, respectively. The expected degree in a random vertex of Πn is n.

Proof. The maximum degree is reached when we have the maximum number of 1’s, i.e. with
the string 1n = 11 · · · 11. Every 1 can be changed to 0 and every factor 11 can be changed
to 22. So ∆ = n + n − 1 = 2n − 1. The minimum degree is reached when we have the
maximum number of 2’s. If n = 2k, then we have the string 2n = 22 · · · 22. In this case,
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every factor 22 can be changed to 11 and δ = k. If n = 2k + 1, then we have, for instance,
the string 2n = 22 · · · 220. In this case, every factor 22 can be changed to 11 and 0 can be
changed to 1. So δ = k + 1. In conclusion, δ = dn/2e. Finally, by identity (9), the medium
degree of a vertex of Πn is 1

|Πn|
∑

v∈Πn
d(v) = 2`n

pn
= n .

The chromatic index χ′(G) of a graph G is the minimum number of colors for which
there exists a proper edge coloring [1].

Proposition 28. The chromatic index of the Pell graph Πn is χ′(Πn) = 2n− 1 (for n ≥ 1).

Proof. By König’s Coloring Theorem [1], the chromatic index χ′(G) of a bipartite graph
G is equal to the maximum degree ∆(G) of G. Since Πn is bipartite (Theorem 1) and
∆(Πn) = 2n− 1 (Theorem 27), the claim follows.

Let ∆n,k be the number of all vertices of Πn having degree k, and let ∆n(x) =
∑

k≥0 ∆n,k x
k

be the associated polynomials, with generating series

∆(x, t) =
∑
n≥0

∆n(x) tn =
∑
n,k≥0

∆n,k x
ktn .

Theorem 29. The polynomials ∆n(x) have generating series

∆(x, t) =
1 + (x− x2)t

1− (x+ x2)t− (x+ x2 − x3)t2 − (x2 − x3)t3
. (23)

and satisfy the recurrence

∆n+3(x) = (x+ x2)∆n+2(x) + (x+ x2 − x3)∆n+1(x) + (x2 − x3)∆n(x) (24)

with the initial values ∆0(x) = 1, ∆1(x) = 2x and ∆2(x) = x+ 3x2 +x3. Moreover, we have
the recurrence

∆n+3,k+3 = ∆n+2,k+2 + ∆n+2,k+1 + ∆n+1,k+2 + ∆n+1,k+1 −∆n+1,k + ∆n,k+1 −∆n,k (25)

with the initial values ∆n,0 = δn,0, ∆n,1 = 2δn,1 + δn,2, ∆n,2 = 3δn,2 + 4δn,3 + δn,4, ∆0,k = δk,0,
∆1,k = 2δk,1 and ∆2,k = δk,1 + 3δk,2 + δk,3.

Proof. Let P1 be the set of all Pell strings starting with 1, and let ∆1(x, t) be the associated
generating series. Then, we have the system{

P = ε+ 0P + P1 + 22P
P1 = 1(ε+ 0P + P1 + 22P)

from which, by using the definition of degree in a Pell graph, we obtain the system{
∆(x, t) = 1 + xt∆(x, t) + ∆1(x, t) + xt2∆(x, t)

∆1(x, t) = xt(1 + xt∆(x, t) + x∆1(x, t) + xt2∆(x, t)) .

By solving this system, we obtain series (23), and the form of this rational series implies at
once recurrences (24) and (25).
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The first values of the numbers ∆n,k appear in the matrix

F =



1
0 2
0 1 3 1
0 0 4 5 2 1
0 0 1 10 10 5 2 1
0 0 0 6 22 21 12 6 2 1
0 0 0 1 21 48 45 29 15 7 2 1
0 0 0 0 8 59 106 99 68 39 18 8 2 1
0 0 0 0 1 36 151 236 222 160 96 50 21 9 2 1
· · ·


Let ∆n = ∆n,n be the number of vertices of Πn with degree n (i.e. with medium degree).

The first few values are: 1, 2, 3, 5, 10, 21, 45, 99, 222, 503, 1148, 2636, 6082. Using Cauchy’s
integral formula to calculate the diagonal of a bivariate series [10] and employing standard
algebraic techniques on formal series, it is possible to obtain the following results.

Theorem 30. The numbers ∆n = ∆n,n have generating series

∆(t) =
∑
n≥0

∆n t
n =

1− 2t− 2t3 − t4 + (1 + t)
√

1− 2t− t2 − t4 + 2t5 + t6

2(1− 3t+ 2t2 − 2t3 + t4 + t5)

and satisfy the recurrence

(n+ 7)∆n+7 − 3(n+ 7)∆n+6 + (n+ 13)∆n+5 + (n− 5)∆n+4+

− (n− 3)∆n+3 + (3n+ 7)∆n+2 − (n+ 3)∆n+1 − (n+ 1)∆n = 0

with the initial values ∆0 = 1, ∆1 = 2, ∆2 = 3, ∆3 = 5, ∆4 = 10, ∆5 = 21 and ∆6 = 45.
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