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Abstract
The notion of semigroupswith apartness has been introduced recently as a constructive
counterpart of classical semigroups. On such structures, a constructive analogue of the
isomorphism theorem has been proved, and quasiorder relations and related substruc-
tures have been studied. In this paper, we extend this approach by introducing inverse
semigroups with apartness, a useful tool to describe partial symmetries in sets with
apartness. We prove a constructive analogue of the isomorphism theorem for inverse
semigroups and provide a characterisation of cocongruences on inverse semigroups.

Keywords Set with apartness · Semigroup with apartness · Inverse semigroup with
apartness · Cocongruence

1 Introduction

The concept of semigroups with apartness has been introduced in [7,8] as yet another
application of Bishop’s constructive mathematics [1,2] to algebraic structures [14,20].
In [3], Bridges and Reeves comment that “modern algebra has proved amenable to
a [...] constructive treatment”. The reason for this can be traced back to [15], where
Martin-Löf argues that “if programming is understood not as thewriting of instructions
for this or that computing machine but as the design of methods of computation [...],
then it no longer seems possible to distinguish the discipline of programming from
constructive mathematics”. These considerations, alongside Howie’s motivation for
the study of semigroups (and inverse semigroups) [10], motivate the constructive
approach to inverse semigroups which we present in this paper.
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572 A. Cherubini , A. Frigeri

In this work, we introduce the concept of inverse semigroups with apartness, and
outline some related concepts such as that of symmetric inverse semigroups and their
cocongruence pairs. We also provide constructive analogues of some classical theo-
rems for inverse semigroups.

In Sect. 2, we introduce the basic notions of apartness and a set with apartness, as
well as that of a d-partial bijection. In Sect. 3, we introduce the concept of an inverse
semigroup with apartness. Theorem 2 shows that our definition is well-founded: since
inverse semigroups are semigroups of partial one-to-one transformations of a set [18,
21], we prove that the set of d-partial bijections on a set with apartness leads to an
inverse semigroupwith apartness. Section 4 is devoted to the study of I-cocongruences
and their characterization in terms of cocongruence pairs. Lastly, Sect. 5 extends some
of the results of [8] by providing an analogue of the Isomorphism Theorem for inverse
semigroups with apartness.

In this paper, we do not include any background on constructive mathematics. The
interested reader can refer to [4–6,20] for a comprehensive introduction. A standard
reference for constructive algebra is [14], while for the classical theory of inverse
semigroups we refer to [11,13,16]. Following [7,8], we adopt the semantics based on
Kripke models with constant domains [12]. Observe that in these models the formula

∀x(A ∨ B(x)) ⇒ A ∨ ∀x B(x),

where x does not appear in A as a free variable, is deducible; we make use of this
property in the proof of Theorem 4.

2 Basic notions

Let X be a set given through an algorithm for constructing its members such that at
least one element can be constructed. Such a set is referred to as an inhabited set. Let∼=
be any equivalence relation on X , we call it an equality on X . For a given equality, we
will require that all properties P are extensional, in the sense that for all x1, x2 ∈ X ,
x1 ∼= x2 implies that P(x1) and P(x2) are equivalent. An apartness relation on X is
a binary relation � on X satisfying the following properties:

¬(x � x); (irreflexivity)

x � y ⇒ y � x; (symmetry)

x � z ⇒ (x � y ∨ y � z). (cotransitivity)

An apartness is tight if

¬(x � y) ⇒ x ∼= y (tightness)
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Inverse semigroups with apartness 573

while we say that ∼= and � are relatively decidable if

x ∼= y ∨ x � y. (decidability)

Definition 1 Let X be a set, ∼= an equality on X and � an apartness relation on X .
Then the tuple (X ,∼=, �) is a set with apartness.

Remark 1 By extensionality, in a set with apartness (X ,∼=, �) we have x � y and
y ∼= z imply x � z. Notice that in [20] apartness is named “pre-apartness”, while the
term “apartness” is used to refer to what is called a tight apartness here. Also observe
that by extensionality, tightness implies ¬(x � y) ⇔ x ∼= y.

Let (S,∼=S, �S), (T ,∼=T , �T ) be two sets with apartness. The cartesian prod-
uct S × T is a set with apartness with respect to the equality and apartness defined
respectively by

(s1, t1) ∼= (s2, t2)
def⇐⇒ s1 ∼=S s2 ∧ t1 ∼=T t2,

(s1, t1) � (s2, t2)
def⇐⇒ s1 �S s2 ∨ t1 �T t2,

where s1, s2 ∈ S and t1, t2 ∈ T .

Definition 2 Let (S,∼=S, �S), (T ,∼=T , �T ) be two setswith apartness and f : S → T
a map from S to T . Extensionality guarantees that f is well-defined, i.e., for all
x, y ∈ S, x ∼=S y implies f (x) ∼=T f (y). The map f is:

– onto if for each y ∈ T , there is x ∈ S such that f (x) ∼=T y,
– one-to-one if for all x, y ∈ S, f (x) ∼=T f (y) implies x ∼=S y,
– bijective if it is onto and one-to-one,
– injective if for all x, y ∈ S, x �S y implies f (x) �T f (y),
– strongly extensional if for all x, y ∈ S, f (x) �T f (y) implies x �S y,
– an apartness bijection if it is injective, bijective and strongly extensional (see [7]).

In the sequel, we will always deal with sets with apartness and, for brevity, a set
with apartness (X ,∼=, �) will be denoted simply by X .

By � we denote the relation between elements and subsets of X defined by

x � Y
def⇐⇒ ∀y ∈ Y (x � y).

The complement of Y in X is the subset

∼Y
def= {x ∈ X | x � Y }.

A subset Y of a set X is detachable (or a d-subset) in X if

∀x ∈ X (x ∈ Y ∨ x � Y ),
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i.e.,

∀x ∈ X (x ∈ Y ∨ x ∈ ∼Y ).

Let Y and Z be two subsets of a set X , then Y ∼= Z means that for each y ∈ Y there
exists z ∈ Z such that y ∼= z and for each z ∈ Z there exists y ∈ Y such that z ∼= y.

Definition 3 A partial apartness bijection on S is an apartness bijection from X to Y ,
where X and Y are subsets of S. As usual, the sets X and Y are called respectively the
domain and the image of f and denoted by Dom( f ) and Im( f ). A d-partial bijection
on S is a partial apartness bijection whose domain and codomain are d-subsets of S.
We denote by I S the set of all d-partial bijections on S.

On I S we define an equality ∼= as usual: f ∼= g if and only if Dom( f ) ∼= Dom(g)

and for all x ∈ Dom( f ), f (x) ∼= g(x). We define � by

f � g
def⇐⇒∃x(x ∈ Dom( f ) ∧ x ∈ ∼Dom(g))∨

∃x(x ∈ ∼Dom( f ) ∧ x ∈ Dom(g))∨
∃x(x ∈ Dom( f ) ∧ x ∈ Dom(g) ∧ f (x) � g(x)).

Example 1 Observe that in general the apartness on I S is neither tight nor decid-
able w.r.t. ∼=. Indeed, let S be the set {0, 1, 2, 3}, let ∼= be the standard equality

on S, i.e. ∼=def= {(0, 0), (1, 1), (2, 2), (3, 3)} and let � be the apartness defined by

�
def= {(0, 1), (1, 2), (2, 3), (3, 0), (1, 0), (2, 1), (3, 2), (0, 3)}. Then let i, g : S → S

be respectively the identity map on S and the map defined by g(0)
def= 3, g(1)

def= 2,

g(2)
def= 1 and g(3)

def= 0. The maps i and g are d-partial bijections and neither i ∼= g
nor i � g. Then the relation� on I S is not empty (as, for example, the identity map on
the set {0, 2} and the identity map on S are apart) but � is neither tight nor decidable
w.r.t. ∼=.

The following result is straightforward:

Theorem 1 Let (S,∼=, �) be a set with apartness. Then (I S,∼=, �) is a set with apart-
ness.

3 Inverse semigroups with apartness

Definition 4 An I-semigroup with apartness is an inhabited set with apartness (S,∼=,

�) equipped with an associative, strongly extensional binary operation on S, denoted
by “·”, and with a strongly extensional unary operation on S denoted by “−1” such
that ∀x ∈ S(x · x−1 · x ∼= x) and (x−1)−1 ∼= x . In other words, an I -semigroup with
apartness is a tuple (S,∼=, �, ·,−1 ) where

1. (S,∼=, �) is an inhabited set with apartness,
2. “·” is a binary operation on S such that:
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(a) x · (y · z) ∼= (x · y) · z for all x, y, z ∈ S,
(b) for all x, y, z ∈ S, x · y � z · v implies x � z or y � v,

3. “−1” is a unary operation such that:

(a) (x−1)−1 ∼= x for all x ∈ S,
(b) for all x, y ∈ S, x−1 � y−1 implies x � y,

4. x · x−1 · x ∼= x for all x ∈ S.

As usual, we will write xy instead of x · y.

Remark 2 Sincewe assumed that all properties we are dealingwith are extensional, we
immediately derive that · and −1 are well defined, i.e., x ∼= z ∧ y ∼= v implies xy ∼= zv
for all x, y, z, v ∈ S, and x ∼= y implies x−1 ∼= y−1 for all x, y ∈ S. Moreover, by
extensionality and 3(a), we also derive that for all x, y ∈ S, x � y implies x−1 � y−1.
Then, in the definition of an I -semigroup with apartness, condition 3(b) can be written
as

3(b’) x−1 � y−1 ⇔ x � y for all x, y ∈ S.

Moreover, condition 3(a) implies that x−1xx−1 ∼= x−1 for all x ∈ S. Lastly, 3(a) and
extensionality of −1 give that for all x, y ∈ S

x−1 ∼= y−1 ⇔ x ∼= y. (1)

Definition 5 An inverse semigroup with apartness is an I -semigroup with apartness
(S,∼=, �, ·,−1 ) such that

5. xx−1yy−1 ∼= yy−1xx−1 for all x, y ∈ S.

Remark 3 Observe that property 5. implies that (xy)−1 ∼= y−1x−1.

An idempotent of S is an element e ∈ S such that ee ∼= e; we denote the set of the
idempotents of S by E(S).

Proposition 1 Let S be an inverse semigroup with apartness. Then e ∼= ee−1 and
e f ∼= f e for each e, f ∈ E(S).

Proof The proof is the same of the classical case and can be found in [11, Theorem
5.1.1, (1) ⇒ (2)]. �

Proposition 2 A semigroup with apartness (S,∼=, �, ·) is an inverse semigroup if and

only if the relation ι
def= {(x, y) ∈ S×S | x ∼= xyx ∧y ∼= yxy} is a strongly extensional

function from S to S.

Proof Let (S,∼=, �, ·,−1 ) be an inverse semigroup with apartness. Then for each
x ∈ S, (x, x−1) ∈ ι. Now we show that y ∼= x−1 for each (x, y) ∈ ι. From xx−1x ∼=
xyx ∼= x we get xx−1xy ∼= xy and xyxx−1 ∼= xx−1, and since xy and xx−1 are
idempotents, it follows xy ∼= xx−1. Similarly we get yx ∼= x−1x . Then y ∼= yxy ∼=

123



576 A. Cherubini , A. Frigeri

x−1xy ∼= x−1xx−1 ∼= x−1. Thus, ι is the function −1, and since −1 is strongly
extensional by definition, so is ι.

Conversely, assume that S is a semigroup with apartness such that ι is a strongly
extensional function from S to S. For (x, y) ∈ ι, put x−1 ∼= ι(x). Then it is immediate
that (x−1)−1 ∼= x . Moreover, let e, f ∈ E(S): it is easy to verify that the element

z
def= f (e f )−1e belongs to E(S). In addition, (e f )z(e f ) ∼= (e f ) and z(e f )z ∼= z.

Then, since z3 ∼= z, both (z, z) and (z, e f ) are in ι, so z ∼= e f . Whence f z ∼= z ∼= f e f
and ze ∼= z ∼= e f e, i.e., e f ∼=S f e f ∼= e f e. Similarly, we can get f e ∼= e f e ∼= f e f .
So, e f ∼= f e for all e, f ∈ E(S). Moreover, ι is strongly extensional by definition,
whence S is an inverse semigroup with apartness. �

Remark 4 The relation ι defined above is a strongly extensional function from S to S if
and only if S is equippedwith a strongly extensional unary operation f such that for all
x, x ′ ∈ X it holds that x f (x)x ∼= x , f (x)x f (x) ∼= f (x), and (xx ′x ∼= x ∧x ′xx ′ ∼= x ′)
implies x ′ ∼= f (x).

Theorem 2 Let (S,∼=, �) be a set with apartness. Then (I S,∼=, �, ◦,−1 ) is an inverse
semigroup with apartness, where “◦” is the usual product of relations and “−1”
denotes the inverse relation.

Proof By Theorem 1, (I S,∼=, �) is a set with apartness. So, we start proving that for
each f ∈ I S , the relation f −1 is a d-partial bijection from Im( f ) to Dom( f ), i.e.,
f −1 ∈ I S . Let f : X → Y be a d-partial bijection, then f −1 is defined as

f −1 def= {(y, x) | f (x) ∼= y} ⊆ Y × X .

Let y ∈ Y , then, as f is onto, there exists x ∈ X such that f (x) ∼= y, and so
(y, x) ∈ f −1. Let y, y′ ∈ Y be such that y ∼= y′, and suppose (y, x), (y′, x ′) ∈ f −1.
Then f (x) ∼= y, f (x ′) ∼= y′ and, by extensionality, f (x) ∼= f (x ′). Since f is one-
to-one, we have x ∼= x ′, i.e., (y, x) ∼= (y′, x ′). Hence, we have proved that f −1

is an extensional function from Y to X and we can write f −1(y) ∼= x instead of
(y, x) ∈ f −1. Now let x ∈ X ; clearly f (x) ∈ Y and ( f (x), x) ∈ f −1, so f −1 is onto.

Now, suppose f −1(y) ∼= f −1(y′), and let x, x ′ ∈ X be such that x ∼= f −1(y)

and x ′ ∼= f −1(y′). Then (y, x), (y′, x ′) ∈ f −1, so f (x) ∼= y and f (x ′) ∼= y′. By
extensionality we have x ∼= x ′, then f (x) ∼= f (x ′) and y ∼= y′, so f −1 is one-to-one.
Now, suppose f −1(y) � f −1(y′) and, as above, let x, x ′ ∈ X be such that x ∼= f −1(y)

and x ′ ∼= f −1(y′) from which f (x) ∼= y and f (x ′) ∼= y′. By extensionality, we have
x � x ′ and, since f is injective, it follows f (x) � f (x ′) and then y � y′, so f −1

is strongly extensional. Finally, suppose y � y′ and, as usual, let x, x ′ ∈ X be such
that x ∼= f −1(y), x ′ ∼= f −1(y′), f (x) ∼= y and f (x ′) ∼= y′. By extensionality, we
have f (x) � f (x ′), and since f is strongly extensional it follows x � x ′ and then
f −1(y) � f −1(y′), so f −1 is injective. Thus we have proved that f −1 ∈ I S .
Now, let f : X → Y and g : U → V be two d-partial bijections in I S . The product

f ◦ g is the usual product of relations, hence (x, y) ∈ f ◦ g if and only if there is
z ∈ Y ∩ U such that z ∼= f (x) and y ∼= g(z). Then

Dom( f ◦ g)
def= {x ∈ X | f (x) ∈ U }
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and

Im( f ◦ g)
def= {y ∈ V | g−1(y) ∈ Y }.

Having inmind that the intersection of d-subsets is again a d-subset, it is easy to observe
that Dom( f ◦ g) and Im( f ◦ g) are also d-subsets. The fact that f ◦ g belongs to I S

follows from a direct calculation similar to that we have performed for the inverse.
The fact that the composition is associative directly follows by definition, so we only
have to check that composition is strongly extensional.

Let f , g, h, k ∈ I S and assume that f ◦ g � h ◦ k. By definition we have that

∃x
(
x ∈ Dom( f ◦ g) ∧ x � Dom(h ∧ k)

) ∨
∃x

(
x � Dom( f ◦ g) ∧ x ∈ Dom(h ◦ k)

) ∨
∃x

(
x ∈ Dom( f ◦ g) ∧ x ∈ Dom(h ◦ k) ∧ ( f ◦ g)(x) �S (h ◦ k)(x)

)
.

So, suppose x ∈ S is such that x ∈ Dom( f ◦g)∧x�Dom(h◦k). Then x ∈ Dom( f ),
f (x) ∈ Dom(g) and for all y ∈ S, if y ∈ Dom(h) and f (y) ∈ Dom(k), then
x � y. Since Dom(h) is a d-subset, it follows that x ∈ Dom(h) or x � Dom(h). If
x � Dom(h), since we have supposed x ∈ Dom( f ), we obtain f � h, so suppose
x ∈ Dom(h). Since also Dom(k) is a d-subset, it follows that f (x) ∈ Dom(k) or
f (x) � Dom(k). If f (x) � Dom(k), since we have supposed f (x) ∈ Dom(g), we
obtain g � k, so suppose f (x) ∈ Dom(k). This last case implies x ∈ Dom(h ◦ k) and
x � Dom(h ◦ k), which gives a contradiction. The case in which there exists x ∈ S
such that x � Dom( f ◦ g) ∧ x ∈ Dom(h ◦ k) works analogously, so let us consider
the case in which there exists x ∈ S such that x ∈ Dom( f ◦ g), x ∈ Dom(h ◦ w)

and g( f (x)) � k(h(x)). Then x ∈ Dom( f ), x ∈ Dom(h) and f (x) ∈ Dom(g).
Since Dom(k) is a d-subset, hence either f (x) � Dom(k) or f (x) ∈ Dom(k). In the
former case we get g � k. In the latter, let us consider the element k( f (x)) ∈ S. Then,
by cotransitivity, from g( f (x)) � k(h(x)) it follows g( f (x)) � k( f (x)), and then
g � k, or k( f (x)) � k(h(x)), and then f � h.

Now, let us consider inversion. The map −1 : I S → I S sending each f in its inverse
f −1 is clearly an unary strongly extensional operation on I S and ( f −1)−1 ∼= f for each
f ∈ I S . Moreover, it is straightforward to prove that f −1◦ f is the identity function on
Dom( f −1) and that f ◦ f −1 is the identity function on Dom( f ), and hence f ◦ f −1 ◦
f ∼= f for each f ∈ I S . Lastly, for all f , g ∈ I S , the function ( f ◦ f −1)◦ (g ◦ g−1) is
the identity function on Dom( f )∩Dom(g), while (g ◦g−1)◦ ( f ◦ f −1) is the identity
function on Dom(g)∩Dom( f ), and so ( f ◦ f −1)◦ (g ◦g−1) ∼= (g ◦g−1)◦ ( f ◦ f −1).

�

Definition 6 Let (S,∼=, �) be a set with apartness. The semigroup

(I S,∼=, �, ◦,−1 )

is called the symmetric inverse semigroup with apartness on S.

Lemma 1 Let (S,∼=, �, ·,−1 ) be an inverse semigroup with apartness. Then:
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1. Se ∼= S f ⇒ e ∼= f and eS ∼= f S ⇒ e ∼= f for all e, f ∈ E(S);
2. (Se ∩ S f ) ∼= S(e f ) and (eS ∩ f S) ∼= (e f )S for all e, f ∈ E(S);
3. S(aa−1) ∼= Sa−1, S(a−1a) ∼= Sa, (aa−1)S ∼= aS and (a−1a)S ∼= a−1S for all

a ∈ S.

Proof The proof is analogous to the classical case ( [11], Lemma 5.1.6). �

Proposition 3 Let (S,∼=, �, ·,−1 ) be an inverse semigroup with apartness and sup-
pose that e ∼= f or e � f for all e, f ∈ E(S), i.e., ∼= and � are relatively decidable
in E(S). Then, for each a ∈ S, the sets Sa, aS, Sa−1 and a−1S are detachable.

Proof First observe that x ∈ Sa if and only if xa−1a ∼= x . Indeed, suppose x ∈
Sa, i.e., x ∼= sa for some s ∈ S. Since sa ∼= saa−1a, we have immediately x ∼=
xa−1a. Conversely, it is obvious that if x ∼= xa−1a, then x ∈ Sa. Now we can
prove that Sa is a d-subset. Let x ∈ S: as x−1x and a−1a are idempotents, then
x−1x ∼= x−1xa−1a or x−1x � x−1xa−1a. By extensionality, the former condition
implies xx−1x ∼= xx−1xa−1a, i.e., x ∼= xa−1a, and then x ∈ Sa. Now suppose
that x−1x � x−1xa−1a. By cotransitivity w.r.t. the product, we get x−1 � x−1

or x � xa−1a, and, by irreflexivity, it follows x � xa−1a. So, let y ∈ Sa, by
the cotransitivity of apartness we get x � y or y � xa−1a. In the last case, since
y ∈ Sa, we have y ∼= ya−1a, and then, by extensionality, ya−1a � xa−1a, so, by
cotransitivity, y � x , and hence x � Sa. Thus we have proved that Sa is a d-subset,
and similarly we obtain the same result for aS, Sa−1 and a−1S. �

Definition 7 Let S and T be semigroups with apartness. A map f : S → T is a
homomorphism if f (xy) ∼= f (x) f (y). A strongly extensional homomorphism (se-
homomorphism for short) is an apartness embedding if it is one-one and injective. An
se-homomorphism is an apartness isomorphism if it is an apartness bijection.

Definition 8 Let (S,∼=S, �S), (T ,∼=T , �T ) be two semigroups with apartness. The
semigroup (S,∼=S, �S) is se-embeddable in (T ,∼=T , �T ) if there exists an apartness
embedding ϕ : S → T .

Theorem 3 Let (S,∼=, �, ·,−1 ) be an inverse semigroup with apartness and suppose
that e ∼= f or e � f for all e, f ∈ E(S), i.e., ∼= and � are relatively decidable in
E(S). Then S is se-embeddable in the symmetric inverse semigroup with apartness
(I S,∼=, �, ◦,−1 ) on the set (S,∼=, �).

Proof For each a ∈ S, let ρa be the map with Dom(ρa)
def= Sa−1 defined by ρa(x)

def=
xa. Clearly Im(ρa) ∼= Sa and so, by Proposition 3, the domain and the image of ρa

are d-subsets. Obviously, the map ρa is extensional. It is onto, since sa ∼= ρa(saa−1)

for each s ∈ S. Now let x, y ∈ Sa−1, by definition x ∼= sa−1 and y ∼= ta−1 for
some s, t ∈ S. If ρa(x) ∼= ρa(y), i.e., (sa−1)a ∼= (ta−1)a, by extensionality we have
sa−1aa−1 ∼= ta−1aa−1, whence x ∼= sa−1 ∼= ta−1 ∼= y, as so ρa is one-to-one. If
x � y, we have sa−1 � ta−1 and then sa−1aa−1 � ta−1aa−1. Then xaa−1 � yaa−1

and, by extensionality w.r.t. the product, xa � ya, or equivalently ρa(x) � ρa(y), and
thus ρa is injective. The fact that ρa is strongly extensional follows directly from the
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Inverse semigroups with apartness 579

fact that the product in S is strongly extensional. Therefore ρa is a d-partial bijection
on S.

Let ϕ : S → I S be the map defined by ϕ(a)
def= ρa for each a ∈ S. Then, as in the

classical case, ϕ is one-to-one. Indeed, assume that ϕ(a) ∼= ϕ(b), then Dom(ρa) ∼=
Dom(ρb) and so, by property 3 of Lemma 1, we get S(aa−1) ∼= S(bb−1). Hence,
by property 1. of Lemma 1, we obtain aa−1 ∼=S bb−1, and then a ∼= aa−1a ∼=
ρa(aa−1) ∼= ρb(aa−1) ∼= ρb(bb−1) ∼= b.

Now, we show that ϕ is strongly extensional. Assume that ϕ(a) � ϕ(b). Since
Dom(ρb) is a d-subset of S, then a−1 ∈ Dom(ρb)∨a−1 �Dom(ρb), and analogously
b−1 ∈ Dom(ρa) ∨ b−1 � Dom(ρa).

If a−1�Dom(ρb) then, since b−1 ∈ Dom(ρb), we get a−1 �S b−1. Analogously, if
b−1 �Dom(ρa) then, since a−1 ∈ Dom(ρa), we get a−1 �S b−1. In both cases, from
the strong extensionality of inversion, we get a �S b. Then assume a−1 ∈ Dom(ρb)

and b−1 ∈ Dom(ρa). Hence Dom(ρb) ∼= Sb−1 ∼= Sa−1 ∼= Dom(ρa). Since ϕ(a) �

ϕ(b), we get that there is x ∈ Dom(ρa) ∼= Dom(ρb) such that ρa(x) �S ρb(x), i.e.,
x · a �S x · b, and, by strong extensionality, it follows a �S b. So, we have proved
that ϕ is a d-partial bijection.

It is routine to prove thatρa◦ρb ∼= ρa·b and (ρa)−1 ∼= ρa−1 , soϕ is an se-embedding,
as required. �


Notice that Theorem 3 is stated under the assumption that ∼= and � are relatively
decidable on the set of idempotents. In general, an inverse semigroup with apart-
ness (S,∼=, �, ·,−1 ) cannot be embedded into the symmetric inverse semigroup with
apartness (I S,∼=, �, ◦,−1 ), as the next example shows.

Example 2 Let S
def= {0, 1, 2} be the semilatticewith the followingmultiplication table.

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

Let ∼= be the standard equality, i.e., ∼=def= {(0, 0), (1, 1), (2, 2)}, and let � be the
relation {(0, 1), (1, 0), (1, 2), (2, 1)}. It is easy to prove that (S,∼=, �, ·,−1 ) is an
inverse semigroup with apartness. The d-subsets of S are ∅, {1}, {0, 2} and S. Then
the d-partial bijections on S are: the identity maps on ∅, {1}, {0, 2} and S, denoted

respectively by i∅, i{1}, i{0,2} and iS , the map f : {0, 2} → {0, 2} defined by f (0)
def= 2

and f (2)
def= 0, and themap g : S → S defined by g(0)

def= 2, g(1)
def= 1 and g(2)

def= 0.
The composition table for I S is
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◦ i∅ i{1} i{0,2} iS f g
i∅ i∅ i∅ i∅ i∅ i∅ i∅
i{1} i∅ i{1} i∅ i{1} i∅ i{1}
i{0,2} i∅ i∅ i{0,2} i{0,2} f f
iS i∅ i{1} i{0,2} iS f g
f i∅ i∅ f f i{0,2} i{0,2}
g i∅ i{1} f g i{0,2} iS

The relation ∼= on I S is the standard equality, while � is the standard inequality. As
E(S) = S, then the image of any se-homomorphism from S to I S is contained in the

set E(I S)
def= {i∅, i{1}, i{0,2}, iS}. Then there are only two one-to-one homomorphisms

from S to I S , namely the map ρ defined by ρ(0)
def= i∅, ρ(1)

def= i{0,2} and ρ(2)
def= iS ,

and the map σ defined by σ(0)
def= i∅, σ(1)

def= i{1} and σ(2)
def= iS . Nevertheless,

neither ρ nor σ is injective as i∅ � iS but ¬(0 � 2). Hence, S is not se-embeddable
in I S , since the apartness on S is not compatible with the apartness on the set I S .

4 I-cocongruences

Congruences play a central role in many of the structure theorems of semigroups, so it
is quite natural to study their constructive counterparts. Cocongruences are introduced
in [7], where the prefix “co” suggests that they cooperate with classical equivalences
in order to contemplate the presence of the apartness relation. Cocongruences are then
defined as follows.

Definition 9 A binary relation κ on a semigroup with apartness S is a cocongruence
if

1. it is consistent with respect to the apartness, i.e., κ ⊆�,
2. it is cotransitive, i.e., (x, y) ∈ κ implies (x, z) ∈ κ or (z, y) ∈ κ ,
3. it is symmetric, i.e., (x, y) ∈ κ implies (y, x) ∈ κ ,
4. it is cocompatible w.r.t. the semigroup multiplication, i.e., (ax, by) ∈ κ implies

(a, b) ∈ κ or (x, y) ∈ κ .

Lemma 2 Let κ be a consistent and cotransitive binary relation on a semigroup with
apartness S. Then κ is cocompatible w.r.t. the semigroup multiplication if and only if
for all a, b, c ∈ S

4’. (ac, bc) ∈ κ implies (a, b) ∈ κ and (ca, cb) ∈ κ implies (a, b) ∈ κ .

Proof Let κ be cocompatible w.r.t. the multiplication of S, and a, b, c ∈ S. Then
(ac, bc) ∈ κ implies either (a, b) ∈ κ or (c, c) ∈ κ . As κ is consistent, then¬((c, c) ∈
κ), and then actually (a, b) ∈ κ . The case (ca, cb) ∈ κ is identical.

Now, let κ be a consistent and cotransitive binary relation that satisfies condition
4’.
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Let a, b, x, y ∈ S be such that (ax, by) ∈ κ . By cotransitivity, it follows either
(ax, ay) ∈ κ or (ay, by) ∈ κ , and, by condition 4’, either (x, y) ∈ κ or (a, b) ∈ κ , as
required. �


In the case of inverse semigroupswith apartness, we have to add the cocompatibility
with respect to the inversion.

Definition 10 A binary relation κ on an inverse semigroup with apartness (S,∼=, �,

·,−1 ) is an I-cocongruence if it is a cocongruence on (S,∼=, �, ·) and it is cocompatible
w.r.t. the inversion, i.e., (a−1, b−1) ∈ κ implies (a, b) ∈ κ for all a, b ∈ S.

Proposition 4 Let κ be an I-cocongruence on an inverse semigroup with apartness S.
Then for all a, b ∈ S,

(a−1, b−1) ∈ κ if and only if (a, b) ∈ κ, (2)

(a−1, b−1) � κ if and only if (a, b) � κ. (3)

Proof Property (2) follows directly from the cocompatibility with respect to the inver-
sion and condition 3(a) of Definition 4. To prove property (3), let (a, b) � κ and
let (c, d) ∈ κ . Then also (c−1, d−1) ∈ κ , and so (a, b) � (c−1, d−1). Thus either
a � c−1 or b � d−1. From condition 3(b’) of Definition 4, it follows either a−1 � c
or b−1 � d, thus (a−1, b−1) � (c, d) and then (a−1, b−1) � κ . The other part of the
implication follows in the same way. �


Following a common notation, for an I-cocongruence κ on S and for a ∈ S we
denote by κ(a) the set of all b ∈ S such that (a, b) ∈ κ .

Definition 11 An I-cocongruence κ is called conormal if for all a ∈ S and for all
e, f ∈ E(S), (a−1ea, a−1 f a) ∈ κ implies (e, f ) ∈ κ .

Strictly related to I-cocongruences, we can define some special substructure of
inverse semigroups.

Definition 12 A subset M of an inverse semigroup S is an inverse antisubsemigroup
if

1. xy ∈ M implies x ∈ M ∨ y ∈ M ,
2. x−1 ∈ M implies x ∈ M .

We say that an inverse antisubsemigroup M is

1. cofull if e � M for all e ∈ E(S);
2. coself-conjugate if x−1ax ∈ M implies a ∈ M for all a, x ∈ S;
3. conormal if it is cofull and coself-conjugate.

In [21],Wagner proved that every congruence on an inverse semigroup is completely
determined by its idempotent classes. The advancesmade in [9,17,19] lead to a general
result describing the congruences on an inverse semigroup, see [13, Theorem2, p. 135]:
for an inverse semigroup S, there exists a bijection between the set of congruences on
S and the set of congruence pairs (namely, a pair consisting of a normal subsemigroup
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and a normal congruence satisfying some special conditions) on S. Along the same
line, we want to give a characterization of I-cocongruences on an inverse semigroup
with apartness in terms of “cocongruence pairs”.

Definition 13 A cocongruence pair (M, κ) on an inverse semigroup with apartness S
consists of a conormal inverse antisubsemigroup M and a conormal I-cocongruence
κ on E(S) such that

1. ae ∈ M ∨ (e, a−1a) ∈ κ for all a ∈ M and for all e ∈ E(S);
2. (aa−1, a−1a) ∈ κ implies a ∈ M for all a ∈ S.

Definition 14 Let κ be an I-cocongruence on an inverse semigroup with apartness S.
The cokernel of κ is defined as

coker(κ)
def=

⋂

e∈E(S)

κ(e),

while the trace of κ is the restriction of κ to E(S), i.e.,

tr(κ)
def= κ∣∣(E(S)×E(S))

.

Theorem 4 Let S be an inverse semigroup with apartness and let κ be an I-

cocongruence on S. Let M
def= coker(κ) and ν

def= tr(κ). Then (M, ν) is a cocongruence
pair.

Proof Obviously ν is a conormal I-cocongruence on E(S). Let us prove that M is
an inverse antisubsemigroup of S. Let xy ∈ M , then for all e, f ∈ E(S) we have
xy ∈ κ(e f ), i.e., (xy, e f ) ∈ κ . By the cocompatibility w.r.t. the product, it follows
that (x, e) ∈ κ ∨ (y, f ) ∈ κ . From Kripke semantics, this entails that either (x, e) ∈ κ

for each e ∈ E(S), and so x ∈ M , or (y, f ) ∈ κ for all f ∈ E(S), and so y ∈ M .
Now suppose x−1 ∈ M . Then (x−1, e) ∈ κ for all e ∈ E(S) and, since e ∼= e−1 and
κ is cocompatible w.r.t. the inversion, we have (x, e) ∈ κ , and so x ∈ M . We now
prove that M is cofull. Let e ∈ E(S) and x ∈ M . Then x ∈ κ(e), i.e., (x, e) ∈ κ .
As κ is consistent, this implies x � e, and then, for the generality of x ∈ S, we get
e � M . Now, to prove that M is coself-conjugate, let x−1ax ∈ M . We have that for
all e ∈ E(S), the element x−1ex belongs to E(S), and then (x−1ax, x−1ex) ∈ κ .
Property 4’ of Lemma 2 implies (a, e) ∈ κ , i.e., for the generality of e ∈ E(S), that
a ∈ M . So M is a conormal inverse antisubsemigroup of S.

Lastly, we prove that (M, ν) is a cocongruence pair. Let a ∈ M , e, f ∈ E(S).
As M is the cokernel of κ , by definition we have (a, f ) ∈ κ . Considering the ele-
ment ae ∈ S, by cotransitivity of κ , we get either (a, ae) ∈ κ or (ae, f ) ∈ κ . In
the former case, we also have (aa−1a, ae) ∈ κ , and by Lemma 2, property 4’, we
obtain (a−1a, e) ∈ κ and then (a−1a, e) ∈ ν. Thus, by the symmetry of ν, we have
(e, a−1a) ∈ ν. In the latter case, we have ae ∈ κ( f ) and, for the generality of f , it
follows that ae ∈ M . Now, suppose (aa−1, a−1a) ∈ ν. Then, for each e ∈ E(S), we
get (aa−1, e) ∼= (aa−1, ee−1) ∈ ν ⊆ κ or (e, a−1a) ∼= (e−1e, a−1a) ∈ ν ⊆ κ , then,
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Inverse semigroups with apartness 583

by the cocompatibility of κ w.r.t. the product and inversion and symmetry, we have
(a, e) ∈ κ . �


Before proving that Theorem 4 can be in some sense inverted, we need a technical
lemma.

Lemma 3 Let S be an inverse semigroup with apartness, (M, ν) a cocongruence pair
on S, a, b ∈ S and e ∈ E(S). Then

1. if ab ∈ M, then aeb ∈ M or (e, a−1a) ∈ ν;
2. if aeb ∈ M, then ab ∈ M.

Proof Assume ab ∈ M , since (M, ν) is a cocongruence pair and b−1eb ∈ E(S),
we have ab(b−1eb) ∈ M or (b−1eb, (ab)−1ab) ∈ ν. In the former case we have
ab(b−1eb) ∼= ae(bb−1)b ∼= aeb ∈ M ; in the latter case, by property 4’ of Lemma 2,
we have (e, a−1a) ∈ ν, and then the first claim is proved.

Now let aeb ∈ M . Then aeb ∼= aebb−1b ∼= abb−1eb ∈ M . From the definition of
inverse antisubsemigroup it follows ab ∈ M or b−1eb ∈ M . The second case gives a
contradiction, as M is cofull, and then also the second statement is proved. �


Weare now able to prove that each cocongruence pair implicitly defines a (minimal)
I-cocongruence on an inverse semigroup with apartness.

Theorem 5 Let (M, ν) be a cocongruence pair on an inverse semigroup with apartness
S. Define the relation κ(M,ν) on S in the following way:

κ(M,ν)
def={(a, b) ∈ S × S | ab−1 ∈ M ∨ a−1b ∈ M∨

(a−1a, b−1b) ∈ ν ∨ (aa−1, bb−1) ∈ ν∨
(a−1 f a, b−1 f b) ∈ ν ∨ (a f a−1, b f b−1) ∈ ν for some f ∈ E(S)}.

Then κ(M,ν) is the smallest I-cocongruence on S having M as its cokernel and ν as
its trace.

Proof Let (M, ν) be a cocongruence pair. The relation κ(M,ν) is consistent because ν is
consistent and M is cofull. It is symmetric because ν is symmetric and M is an inverse
antisubsemigroup. We now prove that κ(M,ν) is also cotransitive. Let x, y ∈ S such
that (x, y) ∈ κ(M,ν) and let z ∈ S. Note that z−1z ∈ E(S). If xy−1 ∈ M , then from
Lemma 3 we have xz−1zy−1 ∈ M or (z−1z, x−1x) ∈ ν. In the former case, from the
definition of inverse antisubsemigroup, we have either xz−1 ∈ M or zy−1 ∈ M , and
then either (x, z) ∈ κ(M,ν) or (z, y) ∈ κ(M,ν). In the latter case, it follows directly from
the definition of κ(M,ν) that (z, x) ∈ κ(M,ν), and by symmetry, also (x, z) ∈ κ(M,ν). The
case x−1y ∈ M is identical, so consider the case (x−1x, y−1y) ∈ ν. By cotransitivity
of ν, we have either (x−1x, z−1z) ∈ ν or (z−1z, y−1y) ∈ ν, and then directly from the
definition of κ(M,ν), it follows that either (x, z) ∈ κ(M,ν) or (z, y) ∈ κ(M,ν). The case
(xx−1, yy−1) ∈ ν is clearly identical, so consider the case (x−1 f x, y−1 f y) ∈ ν for
some f ∈ E(S). Again, by cotransitivity of ν, we have either (x−1 f x, z−1 f z) ∈ ν

or (z−1 f z, y−1 f y) ∈ ν, and then directly from the definition of κ(M,ν), it follows
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that either (x, z) ∈ κ(M,ν) or (z, y) ∈ κ(M,ν). The case (x f x−1, y f y−1) ∈ ν for some
f ∈ E(S) is identical, so we have proved that κ(M,ν) is cotransitive.
Now we prove that κ(M,ν) is cocompatible w.r.t. the product showing that it sat-

isfies condition 4’ of Lemma 2. Let a, b, c ∈ S. First suppose (ac, bc) ∈ κ(M,ν).
If ac(bc)−1 ∼= acc−1b−1 ∈ M , then, as cc−1 ∈ E(S), by Lemma 3 it follows
ab−1 ∈ M and so (a, b) ∈ κ(M,ν). If (ac)−1bc ∼= c−1a−1bc ∈ M , then, as M is coself-
conjugate, it follows a−1b ∈ M and so (a, b) ∈ κ(M,ν). If ((ac)−1ac, (bc)−1bc) ∼=
(c−1a−1ac, c−1b−1bc) ∈ ν, then, by conormality of ν, it follows (a−1a, b−1b) and
so (a, b) ∈ κ(M,ν). If (ac(ac)−1, bc(bc)−1) ∼= (acc−1a−1, bcc−1b−1) ∈ ν, then, as
cc−1 ∈ E(S), it follows directly by definition that (a, b) ∈ κ(M,ν).

The cases ((ac)−1 f ac, (bc)−1 f bc) ∈ ν and (ac f (ac)−1, bc f (bc)−1) ∈ ν with
f ∈ E(S) are identical to the two previous cases. Analogously we can prove that
(ca, cb) ∈ κ(M,ν) implies (a, b) ∈ κ(M,ν). Lastly, the fact that κ(M,ν) is also cocom-
patible w.r.t. the inversion directly follows by definition, and then κ(M,ν) is actually a
I-cocongruence on S.

We now prove that the cokernel and the trace of κ(M,ν) are M and ν, respectively.
Let a ∈ M , and e ∈ E(S). Then, as (M, ν) is a cocongruence pair, we get either
ae ∼= ae−1 ∈ M or (e, a−1a) ∼= (e−1e, a−1a) ∈ ν and in both cases (a, e) ∈ κ(M,ν),
and so a ∈ coker(κ(M,ν)). Conversely, let a ∈ coker(κ(M,ν)). Then, for all e ∈ E(S)

it is (a, e) ∈ κ(M,ν), and in particular (a, a−1a) ∈ κ(M,ν).
Observe that ¬((a−1a, a−1aa−1a) ∈ ν) as (a−1a, a−1aa−1a) ∈ ν would entail

(a−1a, a−1a) ∈ ν, and, since ν is consistent, this is a contradiction.
Then one of the following five cases holds. If aa−1a ∈ M , then a ∈ M . If

a−1a−1a ∈ M , then, as M is coself-conjugate, we have a−1 ∈ M and again a ∈ M .
If (a−1a, aa−1aa−1) ∈ ν, then (a−1a, aa−1) ∈ ν, and, by definition of cocon-

gruence pair, we have a ∈ M . If (a−1 f a, a−1a f a−1a) ∈ ν for some f ∈
E(S), then it follows also (a−1 f a, f a−1a f ) ∈ ν. Let us consider the element
f aa−1 f ∈ E(S). By the cotransitivity of ν we have either (a−1 f a, f aa−1 f ) ∈ ν

or ( f aa−1 f , f a−1a f ) ∈ ν. In the former case we have (a−1 f a, f aa−1 f ) ∼=
(a−1 f (a−1 f )−1, (a−1 f )−1a−1 f ) ∈ ν, and then, as (M, ν) is a cocongruence pair,
it follows a−1 f ∈ M and, remembering that by definition f � M , also a−1 ∈ M
and a ∈ M . In the latter case we obtain ( f −1aa−1 f , f −1a−1a f ) ∈ ν, and by conor-
mality of ν, we have (aa−1, a−1a) ∈ ν and then a ∈ M . Thus we have proved that
coker(κ(M,ν)) ∼= M .

Now let e, f ∈ E(S) such that (e, f ) ∈ ν. Then (ee−1, f f −1) ∈ ν, and so
(e, f ) ∈ tr(κ(M,ν)). So, let (e, f ) ∈ tr(κ(M,ν)). In particular we have (e, f ) ∈ κ(M,ν).
As e−1 f and e f −1 are both idempotents and M is cofull, we only have to consider
the following four cases. Let (e−1e, f −1 f ) ∈ ν or (ee−1, f f −1) ∈ ν, then both
cases give (e, f ) ∈ ν, as required. If (e−1ge, f −1g f ) ∈ ν for some g ∈ E(S), then
(geg−1, g f g−1) ∈ ν and, by conormality of ν, again we have (e, f ) ∈ ν. The case
(ege−1, f g f −1) ∈ ν for some g ∈ E(S) is identical to the previous one. Thus we
have proved that tr(κ(M,ν)) ∼= ν.

Finally, we prove that κ(M,ν) is the smallest I-cocongruence on S having M and
ν as its cokernel and its trace, respectively. Let τ be a cocongruence on S such that
coker(τ ) ∼= M and tr(τ ) ∼= ν, and (a, b) ∈ κ(M,ν). If ab−1 ∈ M , then (ab−1, aa−1) ∈
τ , as M is the cokernel of τ and aa−1 ∈ E(S). As τ is an I-cocongruence, from
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condition 4’ of Lemma 2, we have (b−1, a−1) ∈ τ , and then (a, b) ∈ τ . The case
a−1b ∈ M is analogous, as it entails (a−1b, a−1a) ∈ τ and then (a, b) ∈ τ . If
(a−1a, b−1b) ∈ ν ∼= tr(τ ), then (a−1a, b−1b) ∈ τ . Let us consider the element
a−1b ∈ S, by cotransitivity of τ we have either (a−1a, a−1b) ∈ τ or (a−1b, b−1b) ∈
τ and in any case, from condition 4’ of Lemma 2, we have (a, b) ∈ τ . The case
(aa−1, bb−1) ∈ ν is identical to the previous one, when one consider the element
ba−1 ∈ S. The last two cases, namely if (a−1 f a, b−1 f b) ∈ ν or (a f a−1, b f b−1) ∈ ν

for some f ∈ E(S), are identical to the two previous case, when one consider the
elementa−1 f b ∈ S orb f a−1 ∈ S, respectively. Thus,wehaveproved thatκ(M,ν) ⊆ τ .

�

Lastly, we can show how I-cocongruences are related to congruences in an inverse

semigroup.

Definition 15 ([7, p. 409]) Let α and β be two relations defined on the set with
apartness S. Then α is associated to β if

(x, y) ∈ α ∧ (y, z) ∈ β implies (x, z) ∈ α.

Theorem 6 ([7, Theorem 2.3, pp. 409–410; Theorem 3.2, p. 412]) Let κ be a cocon-
gruence on a semigroup with apartness S. The relation

∼κ
def= {(x, y) ∈ S × S | (x, y) � κ}

is a congruence on S and κ is associated to ∼κ .

This result naturally extends to inverse semigroups with apartness.

Corollary 1 Let κ be an I-cocongruence on an inverse semigroup with apartness S.
The relation ∼κ is a congruence on S and κ is associated with ∼κ .

Proof We only need to prove that ∼κ is compatible w.r.t. the inversion. This fol-
lows from [11, Theorem 5.1.4, formula (5.1.2)]. More explicitly, we can observe that
if (a, b) ∈ ∼κ , then (a, b) � κ . By property 3 of Proposition 4, this implies also
(a−1, b−1) � κ , thus (a−1, b−1) ∈ ∼κ . �


5 The isomorphism theorem

In [7], the authors have introduced the concept of a strongly extensional homomor-
phism between semigroups with apartness and proved that the quotient set induced
by a cocongruence of a semigroup with apartness inherits the same structure (see [7],
Theorems 2.4 and 3.3). This naturally leads to the Apartness Isomorphism Theorem
for semigroups [7, Theorem 3.5].

We show that this result can be easily extended to the case of inverse semigroups
with apartness.
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Definition 16 Let S be a semigroup with apartness and κ a cocongruence. The relation
∼κ is a congruence such that κ is associatedwith∼κ . The quotient set S/∼κ is defined
by

S/∼κ
def= {[a]∼κ | a ∈ S},

where [a]∼κ is the usual ∼κ class of the element a.

Theorem 7 (Corollary of [7, Theorem 2.4, Theorem 3.3]) Let (S,∼=, �, ·,−1 ) be an
inverse semigroup with apartness, and let κ be an I-cocongruence. Define the structure
(S/∼κ,∼=, �, ·,−1 ) by

[a]∼κ
∼= [b]∼κ

def⇐⇒ (a, b) � κ,

[a]∼κ � [b]∼κ
def⇐⇒ (a, b) ∈ κ,

[a]∼κ · [b]∼κ
def= [a · b]∼κ ,

[a]−1∼κ
def= [a−1]∼κ .

Then (S/∼κ,∼=, �, ·,−1 ) is well-defined and it is an inverse semigroup with apartness.

Moreover, the natural projection π : S → S/∼κ defined by π(x)
def= [x]∼κ is an onto

se-homomorphism.

Proof The theorem in [7] is stated for semigroups with apartness, so we only need to
prove that properties 3(a), 3(b) and 4. of Definition 4 and property 5. of Definition 5
are satisfied, and this immediately follows by a direct calculation. �

Definition 17 Let (S,∼=S, �S, ·) and (T ,∼=T , �T , ·)be two semigroupswith apartness
and f : S → T an se-homomorphism. The relations ker( f ) and coker( f ) on S are
defined as by

ker( f )
def= {(x, y) ∈ S × S | f (x) ∼=T f (y)},

coker( f )
def= {(x, y) ∈ S × S | f (x) �T f (y)}.

Now we can finally state the Apartness Isomorphism Theorem for inverse semi-
groups with apartness.

Theorem 8 (Corollary of [7, Theorem 2.5, Theorem 3.4]) Let f : S → T be an
se-homomorphism between inverse semigroups with apartness. Then coker( f ) is
an I-cocongruence associated with the congruence ker( f ) ⊆ ∼ coker( f ). More-
over, (S/ ker( f ),∼=, �, ·) is an inverse semigroup with apartness and the map

� : S/ ker( f ) → T defined by �([x]ker( f ))
def= f (x) is an se-embedding such that

f ∼= � ◦ π , where π is the natural projection. Lastly, if f is onto, then � is an
apartness isomorphism.
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Proof Theorem 3.4 in [7] is stated for semigroups with apartness, so we only have to
check the properties involving inversion. First, observe thatwe cannot applyTheorem7
to prove that S/ ker( f ) is an inverse semigroup with apartness, since in general ker( f )

differs from ∼ coker( f ). Nevertheless, it is routine to prove properties 3(a), 3(b)
and 4. of Definition 4 and property 5. of Definition 5, and then that S/ ker( f ) is
actually an inverse semigroup with apartness. So, we only have to prove that the
coker( f ) is cocompatible w.r.t. the inversion and that ker( f ) is compatible w.r.t.
the inversion. Indeed, f (a−1) ∼=T f (a−1aa−1) ∼=T f (a−1) f (a) f (a−1), and then
immediately follows f (a)−1 ∼=T f (a−1). Now we can prove that coker( f ) is an I-
cocongruence. Let a, b ∈ S be such that (a−1, b−1) ∈ coker( f ). Then, by definition,
we get f (a−1) �T f (b−1) and, by the above observation, f (a)−1 �T f (b)−1.
As T is an inverse semigroup with apartness, from condition 3(b) of Definition 4, it
follows f (a) �T f (b), and then (a, b) ∈ coker( f ). Now, let a, b ∈ S be such that
(a−1, b−1) ∈ ker( f ). By definition, we have f (a−1) ∼=T f (b−1), and then, again by
the above observation, f (a)−1 ∼=T f (b)−1. From the implication (1) of Remark 2, it
follows f (a) ∼=T f (b), and then (a, b) ∈ ker( f ), as required. �


6 Conclusion

Inverse semigroups can be seen as algebraic structures between semigroups and groups
and have been proposed as a natural tool in several applications. Since a constructive
approach for both groups and semigroups has been considered and constructive math-
ematics has relevance in applications, it is timely to consider a constructive approach
to inverse semigroups as well.

Stating a constructive counterpart of Wagner–Preston Theorem has proved to be
more difficult, as we are able to only do so under conditions of relative decidability of
equality and apartness on the set of idempotents. However, as noticed in [8], Green’s
relations are fundamental tools in the classical structure theory of semigroups but
their definitions involve existential quantification which is in general problematic in
constructive mathematics. In the classical inverse semigroup theory, Green’s relations
can be defined avoiding the existential quantification but still including the equality
of idempotents. So, the condition on idempotents could be useful to introduce a good
theory of Green’s relations in this framework.
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Crvenković gave a talk on semigroups with apartness which drew our attention to constructive algebra. The
authors thank the referee for constructive comments and recommendations which helped to improve the
readability and quality of the paper.

References

1. Bishop, E.A.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
2. Bishop, E.A., Bridges, D.S.: Constructive Analysis, Grundlehren der mathematischenWissenschaften,

vol. 279. Springer, Berlin (1985)

123



588 A. Cherubini , A. Frigeri

3. Bridges, D.S., Reeves, S.: Constructive mathematics in theory and programming practice. Philosophia
Mathematica 7(3), 65–104 (1999)

4. Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society
Lecture Notes, vol. 97. Cambridge University Press, Cambridge (1987)

5. Bridges, D.S., Vîţă, L.S.: Techniques in Constructive Analysis. Universitext. Springer, Berlin (2006)
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