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ABSTRACT 

School buildings in Italy are outdated, in critical maintenance conditions and they often perform 
below acceptable service levels and quality standards. Nevertheless, data supporting renovation 
policies are missing or very expensive to be obtained. The paper presents a methods for 
evaluating building’s energy savings potential, using the Building Energy Certification 
(Certificazione Energetica degli Edifici - CENED) open database. The aim of the research 
concerns the development of a data-driven set of methods, based on the use of open data, 
machine learning (ML) and Geographic Information Systems (GIS) to support regional energy 
retrofit policies on school buildings. The main advantage concerns the possibility to predict the 
post-retrofit energy savings, avoiding the expensive on-site Condition Assessment (CA) phase. 
Data have been first clustered to identify the most common thermo-physical properties of the 
envelope, then three retrofit scenarios have been defined to allow the retrofit of homogeneous 
types of buildings. The energy saving potentials have been evaluated through the 
implementation of eight Artificial Neural Networks. Ultimately, data have been geolocated and 
further processed to support the definition of the energy retrofit policies for the most critical 
regional areas. The Lombardy region has been chosen as case study to test the robustness of the 
proposed methods. The results of the case study proved that school buildings energy retrofit 
policies can be defined and compared using available open data, ML and GIS. The future 
developments of the research concern the further integration of GIS for retrofit cost assessment 
and scenario analysis. 

HIGHLIGHTS 

• Open-data, machine learning and spatial analyses support regional energy policies 
• Eight Neural Networks are used to compute energy savings in three retrofit scenarios 
• Data are geolocated and processed to guide the regional retrofit policy 
• The retrofit policy is defined avoiding expensive on-site Condition Assessment 
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AECO Architecture, Engineering, Construction and Owner-operated 
AM Asset Management 
ANN Artificial Neural Network 
API Application Programming Interface  
CENED Database encompassing data about buildings energy labelling in Regione 

Lombardia 
DB Database 
DM A type of Italian Law (Decreto Ministeriale) 
EPBD Energy Performance of Buildings Directive 
EPC Energy Performance Certificates 
EPh Primary energy factor for heating 
ETh Thermal energy factor for heating 
EU European Union 
GIS Geographic Information Systems  
ICTs  Information and Communication Technologies 
ML Machine Learning 
U-value Thermal transmittance [W/K m2] 
 

1. INTRODUCTION 

School buildings in the Lombardy region, northern Italy, are obsolete and in critical 
maintenance conditions, therefore their performances are below acceptable service levels and 
quality is a very serious issue [1]. Among unsatisfactory performances, those related to thermal 
comfort are extremely critical since they are strictly connected to the pupils’ learning ability [2] 
affecting their cognitive performance [2] and to the (over)use of fossil fuels for energy supply 
[4]. Thus, under-performing buildings give rise to waste of public resources and air pollution, 
strongly contributing to climate change dynamics and increasing healthy problems for the 
citizens [5]. Moreover, high costs for data gathering and analysis often force public 
administrations to make strategic decisions on the refurbishment of the school building stock 
based on limited information and consolidated but not optimised procedures [6]. To make this 
process more efficient, additional time and resources are required: a further burden for public 
expenditure, already in a critical condition. As an example, approximatively one third of 
maintenance costs are used inefficiently as a result of improper and unnecessary maintenance 
activities at national level.  
The administration of the Lombardy region provides a public database of Energy Performance 
Certificates (EPC), in Italian the Certificazione ENergetica degli EDifici (CENED) [7], which 
encompasses data about building energy performances (i.e. both primary energy and net 
energy), geometric information (e.g. volume, gross and net surface, windows area, etc.) and 
adopted technologies (i.e. mainly the average thermal transmittance of building components 
and information about thermal plants’ global efficiency).  
These data have been used as driver for the definition of the most effective retrofit measures to 
be implemented on school buildings. Moreover, the proposed methodology, allows to make 
viable strategic decisions, not impacting on the costs needed to acquire the knowledge of the 
current energy and technical performance of buildings, since it does not employ a condition 
assessment of the physical assets, allowing consistent time and cost savings.  

1.1 School buildings stock in Italy 

According to the Governmental vision, the energy efficiency is a key driver for improvement 
of school buildings, in order to provide efficient and satisfactory educational facilities [8]. The 
school building stock amounts to 35% of the entire national building stock [9] and, most of the 
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cases, it requires deep refurbishment and maintenance interventions. Considering the whole 
national territory, 75% of school building dates before any Italian energy laws: 33% before Law 
373/76 [10] and 25% before Law 10/91 [11], both concerning the definition of the national plan 
for energy use and saving. Moreover, glancing at the current period, this stock must be 
compliant with more recent standards [12] and European Union (EU) Directives [13] which are 
boosting the energy renovation and promoting higher efficiency levels with advanced 
technologies and cost-optimal criteria. The school building stock counts 45,000 public schools 
out of 62,000, which overtake public housing sector with an amount of energy consumption 
reaching approximatively 1 million Tonnes of Oil Equivalent (toe) per year (70% heating and 
30% electricity). Therefore, remarkable improvement could be achieved through the 
optimisation of the energy consumptions, not only thanks to retrofitting interventions on 
buildings, but also promoting an energy behavioural awareness of the users: it had been 
estimated that a better energy behaviour, could lead to the reduction of the actual energy 
consumption by 20%, in school buildings [14]. On the other hand, improvement interventions 
on the envelope and thermal plants can heavily reduce energy consumption and associated 
running costs, though they generate additional investment costs [15]. Nevertheless, 
approximately 40% of school buildings in Italy needs refurbishment interventions, therefore 
the running cost mark-up gained thanks to energy improvements could compensate the overall 
costs for refurbishment interventions. These interventions could decrease the actual average 
energy consumption of public schools (calculated as around 180 kWh/m2year) towards those 
required for new constructions (30-40 kWh/m2year) introduced by national regulations since 
2009 and promoted at European level [16].  

1.2 Artificial Neural Networks to forecast energy demands 

Building energy management is one of the most relevant topics for the definition of an effective 
AM strategy [17]. In the scientific literature, three main approaches for addressing the issue can 
be spotted: the white-box approach corresponding to the engineering approach; the black box 
approach, namely the machine learning approach and the grey box approach [18], which can be 
intended as an hybrid solution between the former two [17]. Despite being all widely exploited, 
the black box approach allows to reach the objective of prediction in a faster and highly precise 
way compared to the other two methodologies[20], especially when the dataset to be analysed 
is rather extended and complex [19]. The availability of information is a primary driver for the 
implementation of Artificial Neural Networks (ANN) [22], a subset of ML instruments. The 
use of ICTs in management of the built environment is rapidly gaining momentum [23], thanks 
to the increasing trend concerning the digitisation of a great amount of information related to 
the physical assets. This information represent a valuable resource for the development of data-
driven tools for management of the built environment [24]. ANNs, whose behaviour is similar 
to the biological neural networks, allows to predict values with high accuracy against a low 
amount of input variables due to its ability to exploit a set of equations characterised by two 
functions: the “activation function” and the “transfer function”. These functions trigger a 
sequence of connected nodes, namely the neurons of the ANN [25]. Typically, the network is 
formed by an input layer of information to be processed, an output layer of values and a set of 
intermediate layers, called hidden, where the activation and transfer functions take place [26]. 
The number of hidden layers can vary as well as the number of artificial neurons in each layer, 
if the number of hidden layers is small then the network is called shallow, otherwise, if the 
number of hidden layers is high, the net is usually referred to as a deep neural network. The 
main advantage in the use of ANN concerns the possibility to forecast extremely reliable values 
using few input parameters without using time consuming engineering simulations. Several 
studies have been carried out for energy prediction exploiting ANN: from the first studies 
concerning the prediction of utility loads forecasting in 1990s, until more recent researches on 
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the energy saving potential of refurbished buildings [27]. Some studies demonstrate the 
possibility to predict energy consumptions, training the network on historical data series, 
demonstrating a good accuracy of the prediction carried out on a limited number of variables 
[28]. Backpropagation neural networks have been applied for the prediction of energy needs of 
buildings, according to the variation of the thickness of the insulation layer, orientation and 
transparency ratio [29]. ANNs have been used for the prediction of primary energy consumption 
in office buildings, the thermal comfort of the occupants and to develop retrofit scenarios [30]. 
ANNs have been employed for the prediction of the air-conditioning loads integrating multiple 
sensor data or related information as input for the network [31]. Moreover, ANNs have been 
employed for the development of an energy benchmarking model, including as variables 
physical properties, occupancy and climate [32] and for the identification of factors that mostly 
impact on the energy profile of buildings [33].  
These are only some of the application of the neural networks to engineering field, which are 
limited to the energy prediction tasks. Nevertheless, many other applications can be found in 
literature, especially when the scale field of analysis concerns not only the buildings [24], but 
also the built environment and the cities [34]. 

1.3 Geographic Information Systems supporting strategic decisions  

Geographic Information Systems (GIS) are software platforms capable to handle a great amount 
of data, coupling quantitative and qualitative information with geographic one [35]. These 
system have been exploited for the analysis of georeferenced data since 1960s when they have 
been employed by the Canadian Government for the implementation of the Canadian Land 
Inventory [36]. Moreover, being traditionally considered tools for strategic decisions, they are 
suitable for synthesis, representation and location-based analysis. Different applications of GIS 
can be found in literature [24]. Some of the primary advantages enabled by the use of these 
tools concerns the advanced data management functionalities that they allow and the possibility 
to effectively represent the outcomes of the data processing [37]. These capabilities can be 
exploited for energy modelling and planning, especially at the urban scale. Some application in 
this field concern topics as energy performance simulation [38], renewable energy modelling 
and planning [39], optimisation of urban energy systems and smart grid management [40].  
In Italy, and in particular in the Lombardy region, urban planning decisions at the municipal 
and regional level must be taken considering the support of geographic information compliant 
with directive INSPIRE [41], therefore according to an homogeneous and harmonised 
framework for information management [18]. GIS database for the Lombardy region is rather 
developed and rich [43] and can be considered as a crucial resource for analysis and 
representation of phenomena at the regional level. Among data provided by Regione 
Lombardia, energy performance data of buildings within the region can be downloaded freely, 
despite they do not belong to datasets available through the GIS portal, therefore they are not 
compliant with specifications of directive INSPIRE [41].  
More recently, the use of GIS coupled with prediction capabilities provided by the ANN is 
increasing, despite a knowledge gap can be identified for what concerns the application of GIS 
and ANN for supporting energy retrofit policies. Some applications of GIS and ANN for energy 
modelling concern the definition of a decision support tool to select the most suitable areas for 
the installation of large ground-mounted Photovoltaic Plants (PV) [44] and the development of 
a tools for site location of urban energy supply plants [45]. 

1.4 Aim of the research work 

The research sits in the wider context of the digitisation of the Asset Management (AM) 
processes, specifically related to the sustainability and energy management: the proposed set of 
methods aim at leading strategic decisions on retrofitting interventions on school buildings, 
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harnessing innovative Information and Communication Technologies (ICTs) for management 
of the built environment and optimisation of digital based AM processes. Indeed, ML 
approaches and GIS tools are well documented in scientific literature, despite a knowledge gap 
has been identified concerning their joint use for supporting portfolio energy retrofit policies. 
Therefore, a Machine Learning (ML) approach has been coupled with the spatial analysis 
allowed by Geographic Information Systems (GIS). ANNs predictions, GIS representations and 
analyses for energy saving estimations at the regional level has seldom been adopted to develop 
an energy policy. The proposed methodology has been employed for supporting the 
development of a portfolio management strategy for school buildings energy retrofit in 
Lombardy Region in Italy. 

2. METHODS 

The implementation of the set of methods proposed through this research, starts from a specific 
dataset: the CENED DB provided by Regione Lombardia. This DB includes all the energy 
labels provided by accredited professional in the Lombardy Region. The process of the energy 
certification in Italy is often carried out without the necessary in-depth studies and verifications 
and there is not an extensive or automated assessment of reliability of input data about building 
certifications in the DB. Therefore, as a first step it is appropriate to implement a screening on 
the data collected by CENED in order to identify prominent discrepancies from reliable data 
and exclude the inconsistent values, before the analysis of the significant sample. After this first 
step of data cleaning, data have been processed and clustered to acquire a good knowledge of 
the building stock. After this process they have been used to train a set of multi-layer feed-
forward ANN [26], that proved to be reliable instruments to forecast energy performance of 
school buildings [27]. Database cleaning is an operation with primary importance, because of 
the huge number of clearly wrong data in the DB: almost half of the energy labels in the DB 
has been discarded for evident inconsistency.  
School buildings have been analysed and classified according to their age (in an overall time 
span of more than one century) and the performance of their envelope. This process gave as 
outcome the definition of homogeneous classes of comparable school buildings. For each class, 
specific retrofit strategies, suitable with their characteristics, have been defined and the potential 
energy savings have been computed through the trained ANN. The output data have been 
imported in a GIS environment, through which it has been possible to carry out a spatial analysis 
for the whole Lombardy Region territory. Figure 1 represents the main steps carried out in the 
research. The results of this analysis are presented, highlighting how a low-cost analysis can 
affect decisions on more than 1,500 school buildings.  
Although there is a gap between actual and ANN-computed performance, the proposed process 
balances the reliability of energy savings forecasts, with the necessity of saving time and 
resources to carry out the estimation. A more precise energy demand estimation method would 
be certainly too expensive to be applied on a such extended school buildings stock. Moreover, 
the proposed method allows to easily spot the most convenient retrofit strategy for the whole 
portfolio, even in the very early stage of the decision-making process.  
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Figure 1: Framework of the research methodological steps. 

 

2.1 Database cleaning 

The first operation carried out on the DB concerns the cleaning, namely the removal of 
incomplete or clearly wrong records. It should be considered that in Italy energy assessors have 
very different backgrounds and work experiences (e.g. architects, civil and building engineers 
but also chemical engineers, naval engineers, etc.), which may lead to non-standardised in-
depth analysis on the buildings. Therefore, not all the records in the CENED DB have a 
sufficient reliability. On the contrary, often the DB presents wrong or inconsistent data and, in 
the worst case, incomplete records which do not allow the application of the proposed set of 
methods for the computation of the energy savings. The DB cleaning phase allowed to avoid 
massive errors in the following steps of the research.  
The CENED DB includes a very extensive set of information concerning energy performances 
of buildings in Lombardy Region. Therefore, the first operation that was accomplished 
concerns the filtering of records only related to school buildings. For each building 47 
parameters are recorded in CENED DB. Some of them are needed to identify the building 
(address, cadastre data, type of buildings, …), others to assess the dimensions of the building 
and its parts (volume, surface, façade and windows area, …), to describe components and 
systems characteristics (thermal transmittance of building envelope components, type of 
heating system, photovoltaic energy production, …) and to understand building overall energy 
performances (primary energy for heating, for cooling and for the production of domestic hot 
water, energy label, …). Incomplete records (i.e. records in which some of the 47 values were 
missing), have been deleted, since they do not fully describe the energy behaviour of the 
buildings. After these two very first operations, the database has been further refined, according 
to the parameters listed in Table 1 [26].  
 

Table 1. Constraints to spot unreliable data in the CENED database. 
N° CENED database parameter U.M. Threshold 
1 Heated gross surface m2 < 250 
2 Heated gross volume / heated gross surface m < 2.5 
3 Building envelope surface m2 < 5 
4 Walls or Roofs thermal transmittance W/m2K < 0.05 or > 17 
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5 Windows thermal transmittance W/m2K < 0.1 
6 EPh/ETh  - < 0.5 or >1.5 

 
The first parameter in Table 1 has been selected to limit the research scope to entire buildings. 
This operation allowed to exclude schools located inside large residential buildings: a rather 
frequent situation in Italy. The threshold value set to 250 m2 assures that small school inside 
other buildings are excluded. The second (Heated gross volume / heated gross surface) and the 
third (Building envelope surface) parameters are used to exclude records that are surely wrong 
because they describe a school with an average floor height lower than 2.5 m (in Italy the minimum 
floor height for a school is 2.7 m) or school with an envelope surface smaller than 5 m2 (i.e. the 
sum of roofs surface, windows surface and external walls surface is lower the 5 m2). The thresholds 
set for thermal transmittance (U-values) of components of the envelop (fourth and fifth 
parameters), allow to exclude records where the characteristics of components exceed the 
minimum or maximum most likely values found on the Italian market. Eventually, the ratio 
Primary Energy factor for heating divided by Thermal Energy factor for heating (EPh/Eth) 
excludes buildings where the heating system has an efficiency too high or too low according to the 
Italian standards. 
After the DB cleaning step, almost 50% of the whole database related to school buildings has been 
removed. Form the initial number of 2,915 rows representing the school buildings, a reduced DB 
of 1,632 rows has been obtained and further analysed.  
The following step of the research concerns a set of analyses carried out to acquire a deep 
knowledge of the DB. Buildings in the CENED DB are organised by construction year, the 
representation of the energy labels by construction year shows a peak for classes 1961-1976 and 
1977-1992, as showed in Figure 2. These two classes are characterised not only by the high 
number of buildings belonging to them, but also by low performances in terms of EPh 
consumption and U-values of walls, windows and roofing systems (Figure 3). Noteworthy, 
before 1976 there was no Law in Italy on energy performances of buildings. Therefore, these 
two classes are likely to be the ones of buildings which need the heaviest retrofitting 
interventions. 
 

 
Figure 2. Labels groups according to the year of construction (7 groups). 

 
Nevertheless, the most critical class concerns the schools built before 1930. This is rather easy 
to understand, since it is likely that those buildings, due to the typology of systems installed, 
the effects of time, the constant use of the facilities and the spaces and the inherent degradation 
of their components, show a low energy performance level.  

 
a) b) 
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c) 

 

 

d) 

 

 
Figure 3. Average EPh (a) and thermal transmittance of building envelope components (b - 

walls, c - roofs, d - windows) according to the year of construction. 
 
Finally, Figure 4 represents the heating demand of primary energy consumptions (EPh) related 
to the U-value of the three main technological units of the envelope: windows, roof and walls. 
The representation in Figure 4 is quite effective for the description of the overall trend of the 
whole filtered and cleaned database. 
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Figure 4. EPh according to thermal transmittance of walls, windows and roofs. 

2.2 Clustering building technologies 

For the definition of an appropriate retrofit strategy, it is necessary to identify homogeneous 
classes of buildings, on which to implement retrofit interventions. The aim of this step is to 
classify objects in the same class when they are as similar as possible, whereas in different 
classes when they are as dissimilar as possible. For this purpose, many different clustering 
methods can be employed. Clustering is an unsupervised learning [46] task that aims at 
decomposing a given set of objects into subgroups based on similarity. The most known 
methods to identify clusters are Hierarchical, K-means, K-medoid, etc. In this research most of 
the cluster have been identified using K-means method [47], i.e. a partitioning methods [48] 
consisting in moving instances from one cluster to another, starting from an initial partitioning.  
For the identification of homogeneous groups of elements, according to the U-value for each 
of the three main technological units (i.e. walls, roofs and windows), a clustering algorithm has 
been run. This gave as output, in most of the cases, a clusterisation of U-values in three groups. 
In Figure 5 are described clusters obtained for the technological unit walls according to the 
construction year. The U-value thresholds identified for the clusterisation can change according 
to the sample taken into account, thus colours only represent the belonging to a specific cluster 
and not the width of the cluster. Figure 5 represents only data concerning walls, since the 
representation and the description of 21 clusterisation analysis for the three main technological 
units would have been redundant in this article. The lower cluster, for all the components and 
classes of construction years is considered as the best performing situation, especially for those 
buildings belonging to the older construction year classes. Nevertheless, Table 2 shows the 
mean of each cluster for the three components of the school building envelope. As it can be 
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seen, roofs are responsible for the largest energy flows, thus their U-Values are highly affecting 
buildings’ energy demand. 
 

 
Figure 5. Clusters of walls' thermal transmittance according to construction year. 

Table 2. Mean U-values for each cluster and for the three components of the envelope. 
  Before 

1930 
1930-

45 1946-60 1961-76 
1977-

92 1992-06 After 2006 

Walls 
Cluster 1 2.063 2.898 2.180 1.978 2.504   1.224 
Cluster 2 1.314 1.426 1.229 1.224 1.283 1.761 0.569 
Clustre 3 0.600 0.651 0.702 0.606 0.666 0.731 0.273 
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Windows 
Cluster 1 4.888 5.064  5.214 5.200 4.760 4.967 
Cluster 2 3.608 3.630 6.751 3.630 3.640 3.520 3.186 
Clustre 3 2.211 2.152  3.596 2.097 2.257 2.346 1.736 

Roofs 
Cluster 1 2.832  1.935 3.133 2.597  1.621 
Cluster 2 1.518 1.274 1.397 1.524 1.528 1.463 0.679 
Clustre 3 0.563 0.254 0.587 0.669 0.668  0.562 0.257 

 

2.3 Computing savings with Artificial Neural Networks  

Once analysis employed for achieving the knowledge of the database have been carried out, the 
energy savings have been predicted through the ANNs. In the following paragraphs the steps 
for achieving these results are described. 
 
2.3.1 Artificial Neural Network training 
All the records in the CENED DB are divided in 7 classes according to the year of construction 
or major refurbishment of the building. The time span goes from before 1930 (class 1) to after 
2006 (class 7). Accordingly, seven ANNs have been trained on each CENED construction year 
class. In addition, one ANN has been trained on the whole cleaned CENED DB. The depth of 
the network (number of layers) and the type of each layer (type of equations implemented by 
the artificial neurons) have been chosen according to a trial-based process, which allowed to 
define the most suitable parameters. The number of neurons (in Table 3 the number below the 
type of function) of each layer has been optimised with an automatic process. Figure 6 shows 
the performance of the Total network, the one trained on the whole CENED dataset, according 
to the number of neurons on the layers. Being a black box, the ANN does not need input 
parameters directly related to the physical model in order to make reliable previsions. 
Therefore, input parameters have been defined empirically, as the ones that help the net to better 
interpolate the EPh values in the training phase. For instance, though the EPh takes into account 
also the building’s systems, among the selected parameters the efficiency of the system is not 
considered. Parameters selected for the total ANN are:  

1. winter degree days; 
2. construction year; 
3. gross surface [m2]; 
4. gross volume [m3];  
5. dispersant surface [m2];  
6. ratio between glazing surface and dispersant surface; 
7. ratio between opaque surface and dispersant surface; 
8. average U-value of walls [W/m2 K] 
9. average U-value of roof [W/m2 K] 
10. average U-value of windows [W/m2 K] 
11. average U-value of basement [W/m2 K]. 

Obviously, the construction year has been used as input parameter only in the net trained on the 
whole dataset. In Table 3, the main characteristics of the eight ANNs are presented. 
Functions employed for the computation process can be classified as: 
 
 

• Linear is the function characterising the layers with dense connections computing 
w.x+b; 

• Tanh – net layer applies a unary function f to every element of the input tensor, in this 
case the function is the hyperbolic tangent; 
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• Ramp – net layer applies a unary function f to every element of the input tensor, in this 
case the function, gives x if x ³ 0 otherwise 0. 

 
Table 3: ANNs characteristics 

 <1930 1931-45 1946-60 1961-76 1977-92 1993-06 >2006 Total 

Layer 1 Linear 
9 

Linear 
9 

Linear 
9 

Linear 
9 

Linear 
9 

Linear 
9 

Linear 
9 

Linear 
10 

Layer 2 Linear 
126 

Linear 
406 

Linear 
196 

Linear 
412 

Linear 
158 

Linear 
68 

Linear 
236 

Linear 
476 

Layer 3 Tanh 
126 

Tanh 
406 

Tanh 
196 

Tanh 
412 

Tanh 
158 

Tanh 
68 

Tanh 
236 

Tanh 
476 

Layer 4 Linear 
126 

Linear 
406 

Linear 
196 

Linear 
412 

Linear 
158 

Linear 
68 

Linear 
236 

Linear 
476 

Layer 5 Tanh 
126 

Tanh 
406 

Tanh 
196 

Tanh 
412 

Tanh 
158 

Tanh 
68 

Tanh 
236 

Tanh 
476 

Layer 6 Linear 
63 

Linear 
203 

Linear 
98 

Linear 
206 

Linear 
79 

Linear 
34 

Linear 
118 

Linear 
238 

Layer 7 Ramp 
63 

Ramp 
203 

Ramp 
98 

Ramp 
206 

Ramp 
79 

Ramp 
34 

Ramp 
118 

Ramp 
238 

Layer 8 Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Layer 9 Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

Linear 
1 

 
 

 
Figure 6. ANN performance according to the number of neurons (total dataset). 

The best forecasts are provided by the mean of the prediction given by the ANN for the specific 
time span and the forecast by the net trained on the whole DB, using this mean the correlation 
between CENED data and predicted values is equal to 0.948329. Figure 7 compares predicted 
EPh to the actual one in the CENED DB. 
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Figure 7. Correlation between the CENED Energy Demand and the one forecasted by the ANN. 
 
2.3.2 Use of Artificial Neural Networks to compute energy savings 
Once the ANNs have been defined and trained, they have been employed for the prediction of 
energy savings, according to the three retrofit strategies described in Table 4. The prediction 
provides as outcome the energy consumption of buildings, after the improvement of the 
performance of the envelope’s components, within the parameters defined in Table 4. The 
parameters (U-values for walls, roofs and windows) used for the characterisation of the three 
retrofit cases have been chosen according to the clusterisation process represented in Figure 5.  
For the Retrofit case 1, U-values, respectively, for walls, roofs and windows are set to 1.0, 1.0, 
and 3.5 W/m2K. These values represent the thresholds between the worst class, i.e. the one 
including components with the highest U-values, and the intermediate class of the clusterisation 
(Figure 5). The aim is not to retrofit school buildings already performing well, but to address 
the most part of interventions on those which sit in a worst energy performance condition. 
Retrofit case 3 has been defined in order to refurbish the whole amount of schools whose 
envelope has a thermal transmittance higher than the threshold set by Italian and regional Laws. 
Italian Decreto Ministeriale (DM) 26/06/2015 [49] defines, for the Lombardy region, limits of 
transmittance values for walls, roofs and windows. These limits are set to 0.26, 0.22 and 1.4 
W/m2K for buildings in climate zone E and to 0.24, 0.2 and 1.1 for buildings in climate zone F. 
[49]. Retrofit case 2 has been defined to provide an intermediate scenario between the two 
described above. Table 4 summarises key values for the three retrofit scenarios. Although 
retrofit cases are described by parameters that do not consider the plants, ANNs have been 
trained from a database where buildings with low levels of transmittance have efficient plants, 
thus prediction of energy savings already embed an improvement of the plants. 
 
 
 
 
 
 

Table 4: Retrofit cases. 
 Case 1 Case 2 Case 3 
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Walls 1 58% 0.5 82% 0.26/0.24 95% 
Roofs 1 52% 0.5 78% 0.22/0.2 92% 

Windows 3.5 49% 2 87% 1.4/1.1 97% 

3. RESULTS  

The computed energy savings are presented below for each retrofit case, highlighting the total 
energy consumption pre-retrofit interventions, total energy consumption post-retrofit and total 
savings for the whole school building stock. To assure a more homogeneous comparison 
between pre and post-retrofit energy demands,  even the pre-retrofit values have been computed 
using the ANNs. This approximation does not affect the results since the difference between 
the computed values and the CENED values is small (Figure 7). 
Table 5, Table 6 and Table 7 present the total savings, the average savings and the number of 
retrofitted schools according to the type of retrofit needed. The type of retrofit intervention has 
been named according to main building components refurbished (Complete retrofit, Walls & 
Roof, Walls & Windows, etc.).  

3.1 Retrofit case 1 

Results obtained running the ANN on the whole school building stock are: 
• total energy consumption in current status (pre-retrofit interventions): 8.9712*105 

MWh/y;  
• total energy consumption post-retrofit: 5.25874*105 MWh/y; 
• 1,216 refurbished schools, out of 1,634 in the database for a total saving of 3.57953*105 

MWh/y. In average, for each school a saving of 294.370 MWh/y has been computed. 
 
Table 5: Number of retrofit schools, total and average savings by type of intervention (Case 1). 
Type of 
retrofit 

Complete 
retrofit 

Walls & 
Roofs 

Walls & 
Windows 

Roofs & 
Windows 

Only 
walls 

Only 
Roofs 

Only 
windows 

Number 
of retrofit 

462 227 153 68 98 88 120 

Tot. 
savings 
[MWh/y] 

185,228.92 57,387,267 53,250.59 25,433.07 9,107.18 8,153.68 19,392.92 

Average 
savings 
[kWh/y] 

400,928.40 252,807.34 348,043.07 374,015.67 92,930.41 92,655.45 161,607.68 

3.2 Retrofit case 2 

Results obtained running the ANN on the whole school building stock are: 
• total energy consumption in current status (pre-retrofit interventions): 8.9712*105 

MWh/y; 
• total energy consumption post-retrofit: 4.19596*105 MWh/y; 
• 1,487 refurbished schools, out of 1,634 in the database for a total saving of 3.93793*105 

MWh/y. In average, for each school a saving of 264.824 MWh/y has been computed. 
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Table 6: Number of retrofit schools, total and average savings by type of intervention (Case 2). 

Type of 
retrofit 

Complete 
retrofit 

Walls & 
Roofs 

Walls & 
Windows 

Roofs & 
Windows 

Only 
walls 

Only 
Roofs 

Only 
windows 

Number of 
retrofit  

1,166 38 118 56 19 14 76 

Whole 
savings 
[MWh/y] 

366,628.14 3,343.63 13,315.08 5,635.82 484.47 297.08 4,088.77 

Average 
savings 
[kWh/y] 

314,432.37 87,990.37 112,839.63 100,639.62 25,498.61 21,219.80 53,799.58 

 

3.3 Retrofit case 3 
Results obtained running the ANN on the whole school building stock are: 

• total energy consumption in current status (pre-retrofit interventions): 8.9712*105 

MWh/y; 
• total energy consumption post-retrofit: 3.44654*105 MWh/y; 
• 1,620 schools refurbished, out of 1,634 in the database for a total saving of 3.94719*105 

MWh/y. In average, for each school a saving of 243.654 MWh/y has been computed 
 
Table 7: Number of retrofit schools, total and average savings by type of intervention (Case 3). 

Type of 
retrofit 

Complete 
retrofit 

Walls & 
Roofs 

Walls & 
Windows 

Roofs & 
Windows 

Only walls Only Roofs Only 
windows 

Number of 
retrofit 

1,497 20 25 36 4 12 26 

Whole 
savings 

[MWh/y] 

390,862.86 948.02 751.22 808.34 80.60 603.90 664.68 

Average 
savings 
[kWh/y] 

261,097.43 47,400.81 30,048.61 22,453.93 20,151.04 50,324.96 25,564.48 

 
Figure 8 shows a comparison between the number of retrofit interventions in each retrofit 
scenario and the corresponding average savings per school. The graph shows that increasing 
the number of buildings to be refurbished, the average savings decrease (Retrofit case 3). This 
trend is due to the fact that lowering the thresholds of retrofitting parameters (walls, roof and 
windows transmittance), the ANN produces more complete retrofit forecasts than in the other 
two cases. Therefore, also schools with better energy performances are included in the retrofit 
scenario. These buildings are the ones where lower savings can be achieved. The retrofit case 
1 can be considered the most viable among the three, presenting higher average post-retrofit 
savings, though the percentage of total retrofit is much lower than in case 2 and case 3. This 
suggests that the average retrofit cost will be the lowest among the three cases. Despite the 
highly precise forecasting provided by the ANN, it must be considered that the database on 
which savings have been calculated is the cleaned one, therefore, some school buildings might 
not be present.  
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Figure 8. Number of retrofit works divided by type compared to the potential average savings. 

4. GOGRAPHIC INFORMATION SYSTEM INTEGRATION FOR PORTFOLIO 

MANAGEMENT 

Results of the previous phases have been imported and processed in GIS. GIS analysis and 
representations are here presented only for one of the three retrofit scenarios: case 1. In order 
to integrate energy savings computed with the ANNs with spatial information it has been 
necessary to run a geocoding script [50]. The address field in the CENED cleaned DB has been 
corrected according to the format required by the Google Application Programming Interface 
(API), since the geocoding process has been carried out exploiting the online open geocoding 
service provided by Google. The geocoding process, gave as outcome a point layer, whose 
attribute table contain values obtained as outcome of the three retrofit cases. This process gave 
an error log of 47 addresses not found, corresponding to 2.9% of the whole cleaned database. 
Values in the map have been categorised and represented according to the predicted energy 
demands (dimension of the marker) and according to the type of intervention for achieving the 
energy retrofitting strategy (colour of the marker). Figure 9 represents the school buildings 
retrofitted according to the Case 1.  
The geographic representation of data obtained through ANN prediction allows to spot most 
critical areas in the Lombardy region, namely where through the retrofitting interventions it is 
possible to achieve the highest energy saving. These data, combined with other concerning, for 
instance, cost for retrofit interventions, age of the assets, demographic trends etc. can be 
exploited by the public administrations for making informed decisions on the school building 
portfolio.  
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Figure 9. ANN computed energy savings by type of intervention in the Lombardy region (Case 1). 

5. DISCUSSION AND CONCLUSIONS 

In a period of public spending review, the public administration needs cost-effective methods to 
find the way to address energy related issues of buildings stocks. This research demonstrated that 
the integrated use of open-data, ANN and GIS satisfies this need providing efficient methods to 
set regional energy policy. The primary advantage of the proposed approach concerns the 
possibility to compute buildings’ post-retrofit EPh without an on-site inspection and using 
parameters which are easily retrieved or computed. The second important outcome of the research 
is that it is further demonstrated the feasibility and usefulness of employing GIS tools in energy 
policies. Focusing on the case study, a third result of the research is that it is demonstrated that 
increasing the number of retrofitted buildings (selecting a lower U-value retrofit threshold for the 
envelope), average energy savings decrease. This suggests that the retrofit of the whole school 
buildings stock in Lombardy region is not cost-effective.  
Energy savings are rather important for the development of an effective asset and portfolio 
management strategy [51], though when dealing with school buildings, other parameters related 
to the learning performance should be taken into account [52]. For this reason, in order to prioritise 
retrofitting interventions, it is relevant, for instance, to take into account also compliance of the 
building to the contemporary standards (e.g. flexibility of the spaces, dimensions of the 
classrooms, fire safety codes etc.). Thus, the proposed methodology should be encompassed in a 
wider framework.  
Moreover, it must be considered that the methods presented in this article are not the only tools to 
be adopted in decision making. The demographic trends, for instance, have not been considered in 
the analysis. Nevertheless, they could be crucial for the definition of a fair policy. Moreover, GIS 
tools has been employed mainly for representing effectively the results of the computation of the 
retrofit scenarios, despite other insights could be achieved if this information would be combined 
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with other spatial data which could describe further phenomena at the regional level. For instance, 
a further research insight can be carried out for the definition of the most suitable U-values 
thresholds to be adopted when the focus of the refurbishment is an historical or a protected 
building. Indeed, in this case, the modification of the envelope is way more critical and, due to the 
complexity of the intervention, it may cause additional costs, therefore it needs special attention. 
Nevertheless, the proposed methods must be considered within the context of high-level portfolio 
management strategy definition. Therefore, once the retrofit policy is developed and implemented 
a retrofit project must be defined case by case. 
Moreover, a further integration of the ANNs and GIS will be achieved through a future 
development of the research, concerning the calculation of the retrofitting costs of the school 
buildings. Regione Lombardia provides free datasets concerning the main geometric 
characteristics of the buildings, in compliance with the EU INSPIRE Directive [41]. These data 
can be used to estimate the surfaces and volumes of buildings subject to retrofitting, supporting 
the cost assessment of different types interventions. Once the geometries are computed, a 
following step concerns the identifications of the costs related to the retrofit interventions, this will 
be done through the identification of walling, roofing and glazing technologies according to the 
year of construction and to the thermal transmittance. This requires further research efforts, testing 
of the methods and integration with additional open spatial datasets. Moreover, despite the research 
has been carried out at the Lombardy region level, it is possible to apply the same methods to 
further datasets at the national or European level, since member states must be compliant to Energy 
Performance Building Directive (EPBD) [5].  
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