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Abstract Object: The aim of this paper is to investigate the use of fully-convo-
lutional neural networks (FCNNs) to segment scar tissue in the left ventricle from
cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) im-
ages. Methods: A successful FCNN in the literature (the ENet) was modified and
trained to provide scar-tissue segmentation. Two segmentation protocols (Proto-
col 1 and Protocol 2) were investigated, the latter limiting the scar-segmentation
search area to the left ventricular myocardial tissue region. CMR-LGE from 30
patients with ischemic-heart disease were retrospectively analyzed, for a total
of 250 images, presenting high variability in terms of scar dimension and loca-
tion. Segmentation results were assessed against manual scar-tissue tracing using
one-patient-out cross validation. Results: Protocol 2 outperformed Protocol 1
significantly (p-value < 0.05), with median sensitivity and Dice similarity coeffi-
cient equal to 88.07% (inter-quartile range (IQR) = 18.84%) and 71.25% (IQR
= 31.82%), respectively. Discussion: Both segmentation protocols were able to
detect scar tissues in the CMR-LGE images but higher performance was achieved
when limiting the search area to the myocardial region. The findings of this paper
represent an encouraging starting point for the use of FCNNs for the automatic
segmentation of nonviable scar tissue from CMR-LGE images.
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1 Introduction

The presence of nonviable scar tissue in left ventricle (LV) has a crucial prognos-
tic and therapeutic role. Indeed, it enables assessing LV remodeling, as well as
patient’s cardiac dysfunction or mortality [1, 2, 3].

Scar-tissue presence is commonly identified using cardiac magnetic resonance
with late gadolinium enhancement (CMR-LGE) [4]. CMR-LGE is performed within
ten to twenty minutes after the intravenous administration of gadolinium, thus
when gadolinium has already been washed out from healthy tissues. This results
in hyperenhanced (HE) intensity areas where nonviable scar tissue is present [5].

In clinical practice, scar analysis from CMR-LGE images is performed quali-
tatively using the American heart association (AHA) 17-segment model [6], which
provides conventional risk stratification [7]. In particular, the average transmural
extent of HE areas is estimated within each segment (0%, 1-25%, 26-50%, 51-75%,
76-100%) to perform diagnosis. Guidelines also suggest to compare CMR-LGE
images with cine and perfusion images (if the latter are obtained) to correctly
categorize ischemia and viability. However, a quantitative approach to scar anal-
ysis would provide supplementary information to be exploited for diagnosis and
follow-up evaluation [8].

Several methods have been proposed for quantitative scar analysis that rely on
automatic or semi-automatic scar segmentation in the manually-traced LV region
from CMR-LGE images. Methods include two widely used threshold-based semi-
automatic algorithms [7]. These two algorithms are semi-automatic as a region of
interest has to be manually identified within the myocardial region for calculating
the threshold values. The two thresholds are defined as: (i) the intensity value
n-standard deviations higher than the mean intensity of a user-defined region
in the normal myocardium (nSD), (ii) the half value of maximum intensity of
a user-defined HE region (full width at half maximum (FWHM)). In addition,
other methods in the literature largely exploit pixel-intensity information for scar-
tissue segmentation through thresholding (e.g. [9, 10, 11, 12, 13, 14, 15]). Popular
approaches include also clustering techniques, such as Gaussian mixture model
(GMM) [16], fuzzy c-means [8], and superpixel segmentation [17, 18], where a
superpixel is defined as a group of connected pixels with similar gray-level intensity
and texture [19]. Max-flow and graph-cut optimization were explored in [20, 21],
while level-set modeling was used in [22].

Although these methodologies achieved encouraging segmentation performance,
they suffer from variability in CMR-LGE images (e.g. in terms of noise and inten-
sity level associated to HE areas), and/or require heavy operator intervention. This
strongly hampers the translation of the developed methodologies into the actual
clinical practice [22]. To tackle image variability and reduce operator intervention,
the literature on medical-image segmentation is focusing more and more on deep-
learning (DL) approaches based on convolutional neural networks (CNNs) [23]. A
CNN is a neural network that consists of (i) a set of convolutional layers and (ii)
one or more fully-connected layers. The convolutional layers allow feature extrac-
tion while the fully-connected layers perform feature classification. The weights
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Fig. 1 Fully-convolutional neural network (FCNN) architecture. Numbers refer to the FCNN-
module indexes.

of both CNN convolutional kernels and fully-connected connections are learned
automatically during the CNN training process.

Despite the potentiality of DL for medical-image segmentation, few DL-based
attempts at scar segmentation from CMR-LGE images can be found in the liter-
ature. These attempts include [24, 18], that exploit CNNs for superpixels-based
feature extraction and sparse auto-encoders for superpixel classification (i.e., each
superpixel is classified as scar tissue or healthy myocardial tissue). Additionally,
in [25] CNN-based image features were extracted from image square patches, and
the features from one patch were classified with fully-connected layers while the
output class was assigned to the central pixel of the patch.

It is worth noting that these DL-based methodologies classify superpixels or
image patches individually. To encode spatial-connection information while per-
forming segmentation, advancements in DL in other fields (such as natural-image
segmentation, and, more recently, medical image segmentation in other anatomi-
cal districts) have lead to the introduction of fully-convolutional neural networks
(FCNNs). In a FCNN, fully-connected layers are replaced by upsampling layers to
provide directly fast and accurate image segmentation [26, 27].

Considering the performance achieved by FCNNs in other fields, the aim of
this paper was to investigate the feasibility and accuracy of FCNNs for scar seg-
mentation in CMR-LGE images.

2 Methods

From the earlier attempts at using FCNNs for image segmentation [26], mainly
relying on successful CNN architectures modified and tuned to include and train
upsampling layers, several FCNN models have been proposed (e.g., [28, 29]). In this
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Fig. 2 Workflow of the first segmentation protocol (Protocol 1). GT: ground truth;
CMR-LGE: cardiac magnetic resonance with late gadolinium enhancement; FCNN: Fully-
convolutional neural network.

work, the efficient neural network (ENet), that was presented in [29] for natural-
image segmentation, was exploited and modified. Indeed, while providing compa-
rable accuracy to existing FCNN models, ENet was demonstrated to be faster to
be trained and able in reducing significantly the number of required floating point
operations per second (FLOPs). Moreover, ENet has been already found able to
provide good results for ventricle segmentation in CMR images [30].

The ENet architecture consists of a sequence of 7 different stages (Fig. 1).
The first stage, called initial stage, consists of an inception module [31], that
concatenates the results of convolutional layers of different receptive field size
(i.e., 5x5, 3x3 and 1x1) to allow a reach (multi-scale) feature representation. With
respect to ENet, our FCNN initial stage had only 13 convolutional layers in parallel
to a max-pooling layer, thus resulting in 14 feature maps after concatenation,
instead of the original 16. Indeed, ENet was designed for RGB images, while
our FCNN was fed with CMR-LGE images with one videointensity channel only.
Convolution was performed with 3x3 kernels with stride 2 and max pooling with
non-overlapping 2x2 windows.

ENet stages from 2 to 4 act as encoders for feature extraction and consist of
a series of bottleneck modules. As in the original paper [31], in the implemented
FCNN configuration each bottleneck module had a main branch and a lateral
branch, the latter consisting of a series of three convolutional layers. The output
of each of the three convolutional layers was activated with the parametric rectified
linear unit (PReLU) [32]. Prior to activation, batch normalization was performed
as regularization technique. The main branch consisted of a max pooling layer
followed by padding to match the dimensions of the convolutional-filter output.
The output maps from the two branches were summed up and activated with
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Fig. 3 Workflow of the second segmentation protocol (Protocol 2). GT: ground truth;
CMR-LGE: cardiac magnetic resonance with late gadolinium enhancement; FCNN: Fully-
convolutional neural network. Myocardial masks are obtained with manual delineation of my-
ocardial contours.

PReLU. As shown in Fig. 1, stages 2, 3 and 4 were made of 5, 9 and 8 bottleneck
modules, respectively.

Also stages 5 and 6 of ENet consist of a series of bottleneck modules (3 and 2,
respectively), but these stages act as decoders performing upsampling. As in [32],
here max unpooling and spatial convolution were present in the lateral and main
branches of the bottleneck modules, respectively.

The last stage of the proposed FCNN consisted of a bare full convolution. The
convolution kernel had height and width equal to the size of the CMR-LGE images,
and 2 channels, as the problem addressed in this paper is a binary segmentation
problem.

2.1 Segmentation protocols

After modifying the ENet architecture to deal with the scar-segmentation task, two
segmentation protocols were investigated. The aim of the first protocol (Protocol 1)
was to explore the potential of the presented FCNN to directly provide scar seg-
mentation from CMR-LGE images. Thus, during training, the FCNN was fed with
CMR-LGE images and the relative scar ground-truth (GT) masks. Scar-GT cre-
ation is explained in Sec. 3. The workflow of Protocol 1 is shown in Fig. 2.

The second protocol (Protocol 2) aimed to explore the potential of the FCNN
in segmenting scar in a pre-defined LV myocardial region. With Protocol 2,
the aim was to investigate if delimiting the search area for scar segmentation, as
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Fig. 4 An example of the masks characterizing the scar presence as drawn by an expert
cardiologist for three patients. Scar location and dimension vary from slice to slice and from
patient to patient.

currently done in the semi-automated quantification methods described in Sec. 1,
could provide more accurate segmentation results. Thus, Protocol 2 required a
priori to manually identify the myocardial boundaries to delimit the search area.
To this goal, prior to feeding the FCNN, CMR-LGE images were multiplied by
the relevant binary myocardial masks (obtained through manually tracing of LV
contours as explained in Sec. 3). The workflow of Protocol 2 is shown in Fig. 3.

3 Experimental setup

The CMR-LGE images analyzed in this study refer to 30 different patients (26
men and 4 women) acquired at the Centro Cardiologico Monzino hospital in Mi-
lan (Italy), for a total of 250 short-axis images. These patients were retrospec-
tively selected from the hospital database, with inclusion criteria a diagnosis of
ischemic heart disease with a consequent presence of nonviable scar tissue in LV
myocardium. Image size was 256x256 pixels and all the images were used for the
analysis (i.e., no slice selection was performed).

For training and testing purposes, scar GT was obtained with manual tracing
of scar contours by an expert cardiologist using Circle Cardiovascular Imaging
v.5.61. LV-myocardium contours for Protocol 2 were obtained in the same way.
Examples of CMR-LGE images and relevant ground truth resulting from scar
manual tracing are shown in Fig. 4.

Data pre-processing was performed prior to FCNN training and testing. In
particular, CMR-LGE images were cropped to reduce the processing area, as com-
monly suggested in the literature [22]. Image cropping was fully automatic. First,
LV diameter and center were retrieved using the circle Hough transform [33] from
each CMR-LGE slice. Squared cropping was then performed by centering the crop
area with the LV center and setting crop side length equal to double the LV di-
ameter. To standardize the cropped-image size, as LV size varied from patient to
patient, all the images were resized to 64x64 pixels, i.e. the minimum crop size
found. The 64x64 images were processed by subtracting the intensity mean value
from each image and normalizing by the intensity standard deviation.

1 https://www.circlecvi.com/
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To test the proposed segmentation approaches, the CMR-LGE image dataset
was divided into two sets: the former was used for training and validation and
the latter for testing purpose only. Considering the relatively limited number of
CMR-LGE images available (even though comparable with similar work in the
literature [22]), leave-one-patient-out cross-validation was used for robust perfor-
mance evaluation. Thus, images from one patient were classified using the FCNN
trained with all the images from the remaining 29 patients. This procedure was
repeated for all the 30 patients.

Data augmentation was performed on the training set, by applying vertically
flipping, horizontally flipping, and a combination of both, 90◦ rotation, 90◦ rota-
tion and vertically flipping, 90◦ rotation and horizontally flipping, and 90◦ rotation
with both vertically and horizontally flipping, for a total of 7 transformations.

3.1 FCNN training

Mini-batch gradient descent was used for FCNN training (for both the segmen-
tation protocols), using a batch size equal to 4. Mini-batch gradient descent was
chosen as a compromise between gradient descent and stochastic gradient descent,
to provide fast training convergence while limiting the memory usage [34].

Cross entropy was used as loss function. The adaptive moment estimation
(ADAM) [35] that adapts the learning rate by regularizing the gradient descent
using both gradient amplitude and momentum, was used as training optimizer.
To (upper) bound the learning rate during training, an exponentially-decaying
learning-rate bounding function was defined, using an initial learning rate equal
to 5e-5. This resulted to be useful especially during the last training epochs to
further reduce the loss, as commonly recognized in the DL literature [36]. As a
regularization technique, a weight decay equal to 2e-5 for the FCNN convolution
layers was imposed. The FCNNs for both the two protocols were trained on 100
epochs. The best model among epochs according to the Dice similarity coefficient
(DSC) [37] was then chosen. All the training parameters were established with a
trial-and-error procedure.

FCNN training and testing were implemented using TensorFlow2. All tests
were performed using NVIDIA R© GeForce R© GTX 1050 (4 GB GDDR5 dedicated)
on a Intel R© Core R© i7-7700HQ (2.8 GHz, 6 MB cache, 4 cores) computer with
16 GB DDR4-2400 SDRAM. FCNN training took ∼30 hours for each of the two
protocols.

3.2 Evaluation

Inspired by similar work in the literature for scar segmentation (e.g. [24, 18, 25]),
the segmentation outcomes, obtained with both Protocol 1 and Protocol 2, were
quantitatively evaluated with respect to the GT in terms of pixel classification
accuracy (Acc), sensitivity (Se), and specificity (Sp):

Acc =
TP + TN

n
(1)

2 https://www.tensorflow.org/
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Table 1 Median (inter-quartile range) performance measures obtained for the first (Protocol
1) and second (Protocol 2) segmentation protocol. Acc = accuracy, Sp = specificity, Se =
sensitivity, DSC = Dice similarity coefficient.

Acc Sp Se DSC
Protocol 1 95.79% (3.55%) 97.31% (3.01%) 68.77% (34.83%) 54.00% (41.03%)
Protocol 2 96.83% (3.26%) 97.89% (2.93%) 88.07% (17.84%) 71.25% (31.82%)

Table 2 Median normalized contingency table for Protocol 1.

Ground-truth segmentation
Scar tissue Background

FCNN-based Scar tissue 68.77% 2.69%
segmentation Background 31.23% 97.31%

Table 3 Median normalized contingency table for Protocol 2.

Ground-truth segmentation
Scar tissue Background

FCNN-based Scar tissue 88.07% 2.11%
segmentation Background 11.93% 97.89%

Se =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

where TP and TN are number of scar and background pixels that were correctly
identified, respectively. FP and FN are the number of background pixels classified
as scar tissue and the number of scar pixels classified as background, respectively.
The DSC, representing an overlap measure, was also computed as:

DSC =
2TP

FP + FN + 2TP
(4)

The Wilcoxon signed-rank test (significance level (α) = 0.05) was used to assess
whether significant differences existed in DSC among the segmentation results
obtained with Protocol 1 and Protocol 2.

4 Results

Despite all patients were previously diagnosed with myocardial fibrosis in the LV,
scar tissue was present only in 215 slices out of 250 (86% of the slices). The scar
area in each slice ranged between 20 and 1259 pixels (pixel resolution: 1.49 x 1.49
mm). The dataset granted high intra- and inter-variability in both scar size and
location in the LV, as can be seen from sample scar masks in Fig. 4.

Table 1 shows the performance measures obtained with Protocol 1 and Pro-
tocol 2. The normalized contingency tables are shown in Table 2 (Protocol 1)
and Table 3 (Protocol 2). With Protocol 1, median Se and DSC were 68.77%
(IQR = 34.83%) and 54.00% (IQR = 41.03%), respectively. Protocol 2 outper-
formed Protocol 1 significantly (p-value < 0.05), with median Se and DSC equal
to 88.07% (IQR = 18.84%) and 71.25% (IQR = 31.82%), respectively.
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Patient 1 Patient 2

Patient 3 Patient 4

Fig. 5 Sample segmentation results obtained with Protocol 1 (red contour) and Protocol 2
(green contour) for four patient. The blue contour refers to ground-truth segmentation. Each
row refers to a different patient.

Protocol 1 and Protocol 2 failed in detecting the presence of scar tissue
in 17 slices from 7 patients and 2 slices from 1 patient, respectively. Protocol 1
and Protocol 2 detected scar tissue when it was not present in 21 slices from 10
patients and 28 slices from 11 patients, respectively.

Some examples of segmentation outcome obtained with Protocol 1 and Pro-
tocol 2 for four patients, highlighting the observed scenarios, are shown in Fig. 5.
In CMR-LGE slices from Patient 1 and Patient 2, the tendency of Protocol 1
(red line) in overestimating GT scar contours (blue line) can be observed. In Pa-
tient 3, both Protocol 1 and Protocol 2 detected scar tissue while this was not
evidenced by the expert cardiologist in three out of eight slices. A relevant exam-
ple is shown in Fig. 5 bottom left. For Patient 4, Protocol 1 failed (or barely
succeeded) in detecting the presence of scar tissue in four slices out of nine. Two
examples are shown in Fig. 5 bottom right.

5 Discussion

In this paper, the feasibility and accuracy of FCNNs for scar segmentation in
CMR-LGE images were assessed. Accordingly, ENet was properly modified to be
applicable to this kind of images, and evaluation of its performance in two par-
allel segmentation protocols was achieved. In this pilot study, as only 30 patients
were included, data augmentation techniques allowed increasing the total num-
ber of available images up to 2000, and leave-one-patient-out cross-validation was
the method of choice to guarantee proper analysis. Computational training time
(about 30 hours) could be considered acceptable, considering this approach and
the use of not optimized computer architecture. Both segmentation protocols were
in general able to detect scar tissue in the CMR-LGE images. Nonetheless, the per-
formance achieved in Protocol 1 was lower than the one achieved in Protocol 2.
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This result was expected, as scar-segmentation algorithms in the literature (both
traditional and based on DL) commonly require a priori knowledge of the LV my-
ocardial position, defined by its myocardial borders, to define the regions of search
for segmentation (e.g. [7, 8, 17, 18]). Indeed, in the CMR-LGE images, several
structures are present surrounding the LV. Such structures have similar intensity
and texture with respect to the scar tissue, making the task of Protocol 1 more
challenging than the one of Protocol 2.

The results obtained with Protocol 2 (median DSC = 71.25% (IQR =
31.82%)) were in line with those (median DSC = 64.00% (IQR = 20%)) reported
in [22] for seven semi-automatic approaches. The dataset in [22] was built with
15 subjects, for a total of 124 CMR-LGE training images (from 5 subjects) and
208 CMR-LGE testing images (from 10 subjects). A direct comparison was not
possible as, to the best of the authors’ knowledge, the GT masks for the dataset
presented in [22] were not provided for the testing images. Nonetheless, with re-
spect to the state of the art approaches, both Protocol 1 and Protocol 2 were
fully automatic and parameter free. This is an undoubled advantage compared
to threshold approaches (such as nST and FWHM) that require both user in-
teraction for manual delineation of regions of interest in the LV myocardium for
threshold computation and parameter tuning for setting the thresholds (e.g. num-
ber of standard deviations for nST). Similarly, clustering techniques such as GMM
need to the define the number of GMM classes, which is not always trivial [38, 39].
With respect to other DL-based methodologies, such as [24, 18, 25], our approach
directly provided the segmentation mask without requiring (i) pre-processing to
extract and (ii) post processing to merge superpixels or patches from the LV my-
ocardial region. This was achieved by exploiting a fully-convolutional architecture
instead of an architecture based on CNNs with fully-connected layers for classifi-
cation tasks. This is widely recognized in the literature to simultaneously simplify,
toughen and speed up both learning and segmentation [26].

A first limitation of this study, as also reported in [8], is related to the lack of
a true GT for algorithm training and testing. In fact, having a GT for the scar-
segmentation task is not trivial. Histological validation in animal models that has
been considered as GT in other studies (e.g. [40, 12]) resulted to be inadequate
for humans [41]. However, expert tracing of contours of the object of interest is
widely considered as acceptable strategy to provide a reference for comparison.
A second issue is related to the fact that our evaluation protocol was based on
a limited number of CMR-LGE images. Even if such number was comparable
with other approaches in the state of the art [22] (332 CMR-LGE images from
15 different subjects), a larger training dataset would allow encoding variability
in image characteristics and scar size and position, to increase the segmentation
performance. However, this initial work has to be intended as a proof of concept
for the described methodology, and we are currently working with our clinical
partners on expanding our training dataset.

As future extension of this work, instead of focusing on CMR-LGE images, 3D
FCNNs will be investigated to deal with the 3D information encoded in CMR-LGE
data. In fact, 3D FCNNs were recently shown to provide encouraging results for
magnetic-resonance volumes of prostate [42].

In conclusion, the proposed strategy for automated scar segmentation from
CMR-LGE images based on FCNN showed a good performance, in particular
once the process was guided by limiting the processing area to the myocardium
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only. These results are promising for application of deep learning techniques to
this kind of medical imaging, and constitute the basis for future research involving
larger training datasets.
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