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Abstract—Network slicing is one of the main novelty of 5G
systems and it is expected to radically change the approach of
network operators to the support of vertical applications with
specific and stringent performance requirements that can be
managed by tenants. Static allocation of resources to slices is
a straightforward approach to meet Service Level Agreements
(SLAs), but it may lead to dramatic inefficiencies and high costs.
On the other side, dynamic sharing can greatly improve resource
utilization, but it requires a strict control of performance parame-
ters so as to guarantee small congestion probability and smoothed
degradation when it occurs. In this paper, we propose a utility-
based approach that can properly map the slice customization
strategies that tenants can use to address the different traffic
requirements and their specific service management policies. We
define resource scheduling mechanisms that allow differentiation
among slices and service prioritization through slice-specific
parameters. We model resource allocation as a mathematical
programming problem and present numerical results that show
the viability of the proposed approach.

I. INTRODUCTION

In the next years, it is expected that mobile internet traffic
not only will continue to increase fast, but it will also diversify
with an unprecedented proliferation of connected devices that
will support a wide range of new applications [1]. This grow-
ing trend towards an everything-and-everywhere connected
society is exposing network operators to a substantial increase
of their operating expenditure (OpEx) and capital expenditure
(CapEx), which may not be easily matched by an increase in
their profit [2].

For network operators it is therefore mandatory exploiting
the new use cases enabled by 5G and reshaping their modus
operandi in business. The NGMN Alliance, that includes most
operators, has identified the concept of Network Slicing [3]
as the one that will play a crucial role in new 5G networks
and will influence the renovation of the business ecosystem.
Network slicing allows to accommodate on the same physical
infrastructure different end-to-end logical networks, referred to
as network slices. Slices manage sets of virtualized commu-
nication resources, network elements and functions, exposed
through abstractions by a shared infrastructure for supporting
different services and isolating their traffic.

By enabling programmability, flexibility, and scalability also
in the wireless domain, virtualization technologies, such as
Software Defined Networks (SDN) and Network Function
Virtualization (NFV), make network slicing a viable solution

for the next generation networks. The logical partition of the
network opens up opportunities for new roles in the mobile
ecosystem: in [4] it is envisioned the new role of “network
slice broker” governing the interactions among an infras-
tructure provider, responsible for the network deployment,
and tenants, that run their services on top of it. Similarly,
in [5] it is defined the concept of Network Slicing as a
Service, NSaaS, that enables enterprises focused on specific
application domains (also referred to as verticals) to deploy
their own logical network and to deliver tailored services to
their customers.

Although virtualization has been widely used in cloud
systems and wired networks, several challenges are still open
when applying it to the wireless domain, mainly due to radio
resource abstraction and isolation, mobility management, and
security compliance [6]. In particular, when considering the
radio resource allocation problem, standardization organiza-
tions, e.g. 3GPP, emphasize the need of slice isolation [7]. This
means that each slice is expected to be logically independent,
and that quality guarantees included in its Service Level
Agreement (SLA) should not be affected by the behavior of
the other slices.

As a results, most of the related literature on network
slicing [8]–[11], suggests to translate SLAs into a fixed share
of the physical available resources to be statically assigned
to each slice. Authors in [8] analyze admission control algo-
rithms, implemented at the network side, that allow an infras-
tructure provider to maximize its revenue accepting slices only
if the SLAs can be honored. Along the same lines, in [9] a
prediction algorithm is proposed to predict the mobile traffic
of each slice and apply different admission control policies,
considering the tradeoff between accepting more slices and
increasing the probability of SLAs violation.

Other previous work points out the need of schemes dealing
with user demand uncertainties. In [10], a network slice allo-
cation problem is solved by robust optimization, distributing
resource shares so as to minimize the extra costs due to
demand uncertainties. A fair resource allocation is considered
in [11], where a distributed algorithm allocates resources to
users of each slice, based on traffic demands on different
locations. This allows for flexible assignment of resource
shares on different locations, while guaranteeing SLAs on the
overall network.



However, it is rather obvious that a static allocation of
resources per slice does not necessarily provide service guar-
antees nor resource efficient use, due to the stochastic nature of
the wireless channel and traffic fluctuations across the network.
Actually, the advantages of resource pooling and spectrum
sharing have been already largely demonstrated [12], [13].
We, therefore, envision an allocation mechanism that exploits
the advantages of resource pooling through a dynamic sharing
among slices, and, at the same time, is able to guarantee slice-
specific requirements, including those for critical applications.
Dynamic sharing among slices has been also considered
in [14], which however considers as quality parameter only
the throughput achieved by the users. We propose here a more
general approach based on utility functions that include also
latency, the most critical parameter for several 5G application
scenarios.

A. Our contribution

We propose a dynamic network slicing framework, where
multiple slices share radio resources managed by a single
network operator. We assume that the operator has the control
on the overall network and orchestrates its capabilities by real-
time network reconfiguration and flexible reassignment of the
resources. It does so considering the current slice traffic and
requirements, while maximizing the overall network efficiency.

We consider different metrics, namely latency and through-
put, and evaluate the achieved performance by using slice-
specific utility functions. In this way, we allow slice customiza-
tion, by translating the service requirements (and achieved
quality) of the specific slice in a measurable quantity that
can be monitored in real-time by the tenants. To the best of
our knowledge, this is one of the first works that considers
both throughput and latency in utility definition and resource
allocation, and allows slices to differentiate their requirements
based on these parameters.

In particular, we define differentiation among slices and
service prioritization, by introducing slice-specific parameters.
These allow tenants to require different utility guarantees and
to enforce specific service provisioning strategies, tuning the
contribution of the considered metrics in their utility. In this
paper we assume that these parameters are given and known to
tenants and network operator. In a more general context, they
can be directly mapped in SLAs, and dynamically renegotiated
based on the tenants’ needs and network conditions.

The paper is organized as follows: in Section II, we present
the network slicing problem and describe all the parame-
ters involved in the definition of the slice customization. In
Section III, we present the approach and the algorithm that
allocates the resource and the impact of the slice-specific pa-
rameters. Then, in Section IV, numerical results are discussed
to assess the validity of the proposed solution and finally, our
remarks conclude the paper in Section V.

II. SYSTEM MODEL

We consider a scenario where a single Mobile Network
Operator (MNO) manages the downlink of a base station

scheduler, whose wireless physical resources are shared among
different slices. We denote by S the set of instantiated slices
(and tenants1); let K be the set of users in the system, and
denote by Ks the subset of active users of slice s. Each tenant
s ∈ S defines its slice requirements as a set of network
capabilities (network functions, coverage area, expected user
density, quality requirements, etc.) that, in addition to the
instantiation of end-to-end slice services, are translated at the
base station scheduler in Key Performance Indicators (KPIs),
such as latency and throughput requirements.

We model radio resource sharing as a queuing system that
works in a slotted time n ∈ N , where packets arrive randomly
at the scheduler of a base station at the start of each time slot n.
The packet arrival process follows a Poisson distribution, with
λs being the average arrival rate for packets of slice s. Then,
we denote by bs the packet length of slice s, normalized by
the size of a Physical Resource Block (PRB), i.e., the system
bandwidth multiplied by the duration of one time slot. Let
Dk[n] be the cumulative number of packets arrived in the
system at time n for user k. Similarly, we denote by zk[n] the
cumulative number of packets served to user k at time slot n.
We assume that a packet is successfully received when the
total number of transmitted bits is equal to the packet size2.

The base station scheduler hosts one buffer per slice of
infinite length. We denote the state of the s-th buffer by
Qs[n] ∈ {0, 1}, indicating whether at time n the buffer is
empty or not. We also assume that, in each buffer, packets
are served according to the First-In-First-Out (FIFO) policy:
the rational behind this assumption is that each slice defines a
unique service type and, then, all packets are treated equally
within one slice. On the contrary, packets belonging to differ-
ent buffers are served based on a scheduling policy that guar-
antees slice customization and differentiation. To implement
this, we define a set of network performance metrics denoted
by O, e.g., average user throughput, minimum latency. For
each element o ∈ O, we define a generic utility function as:

Uos (f
o(xs), β

o
s ) , ∀o ∈ O,∀s ∈ S, (1)

where βos is the requirement of slice s for the specific metric o
and fo(xs) is a function of the allocated resources to slice s
aggregated over all its users:

xs =
∑
n∈N

∑
k∈Ks

xk[n] (2)

and xk[n] is the fraction of assigned resources by the scheduler
to the user k at time slot n. Finally, we assume perfect channel
knowledge at the scheduler and denote by rk[n], the maximum
achievable rate of user k at time slot n.

1In this work, we assume that a tenant runs a single slice, and therefore,
hereinafter, we will refer interchangeably either to tenant or slice. However,
the proposed framework can be easily extended to the case of multiple slices
per tenant.

2Note that we refer to application layer packets (messages): this implies
that at each n it is possible that only a portion of a packet is transmitted, e.g.,
after Service Data Unit (SDU) segmentation at Radio Link Control (RLC)
layer.



A. Utility function definition
We assume that each slice defines a specific service, for

which the tenant requires tailored and customized network
configurations. We model the slice customization at the radio
scheduler through piece-wise linear utility functions, that are
able to map the achieved network performances with the
requirements set by the tenants. The linearity assumption is
mainly made for mathematical tractability. Alternative utility
functions can be considered as well, without affecting the
proposed formulation.

In this work, we focus on two service performance metrics,
latency and throughput, and provide a utility characterization
for each of them.

1) Latency utility function: For each packet in the buffer,
we measure the waiting time before it is transmitted, and
define this time as latency. Then, we define (i) the maximum
experienced latency as:

Lmax
s = max

k∈Ks

{(n−i),∀i ≤ n : zk[n] = Dk[i])}, ∀s ∈ S, (3)

and (ii) the average experienced latency as:

Lave
s =

1

|Ks|
∑
k∈Ks

1

Dk

∑
d∈Dk

ld, ∀s ∈ S (4)

where ld denotes the latency of the single packet d and Dk the
total number of packets arrived in the system for user k. The
former describes the maximum packet latency experienced by
any user of slice s; the latter evaluates the average latency
experienced by all the users of that slice.

For each of these two measurements, we define a utility
function denoted by:

ÛL
s (y, τs) =


ULtar, if y ≤ τtar,

ULtar −
(UL

tar−U
L
min)(y−τtar)

(τmax−τtar)
, if τtar ≤ y ≤ τmax,

ULmin, if y ≥ τmax,
(5)

where y is the variable denoting the latency performance met-
rics, i.e., either Lmax

s or Lave
s , and τs is the latency requirement

of the slice. Namely, we assume that each slice specifies an
interval of required latency, defined by τtar, the target latency,
and τmax, the maximum tolerable latency, and τs = {τtar, τmax}.
An illustrative example is shown in Fig. 1(a): for y values
below τtar, utility is equal to its maximum value, set to ULtar,
while for values above τmax, it drops to ULmin. Between these
two values, we assume that the utility decreases linearly w.r.t.
the latency. The slope of the curve describes the tolerance of
the slice to latency. Note that by setting properly the latency
parameters, slice can obtain either a step function (infinite
slope when τtar = τmax) or a flat function (zero slope when
τmax =∞).

Based on the definitions above, the overall latency utility
can be expressed as:

ULs = δs·ÛLs (Lmax
s , τs)+(1−δs)·ÛLs (Lave

s , τs) , ∀s ∈ S, (6)

where δs is a weighting factor set by the tenant, that defines
the slice priority of the latency utility, in terms of maximum
latency, Lmax

s , or average latency, Lave
s .

2) Throughput utility function: We define the aggregate
user throughput of one slice as:

Rs =
1

TACT
s

∑
k∈Ks

zk[N ] · bk, ∀s ∈ S, (7)

where we denote by zk[N ] the total number of packets
transmitted to user k and by TACT

s the overall time during
which the buffer is active to transmit packets. We represent
the throughput utility function as:

UT
s (y, ρs) =


UTtar, if y ≥ ρtar,

UTtar −
(UT

tar−U
T
min)(y−ρtar)

(ρmin−ρtar)
, if ρtar ≥ y ≥ ρmin,

UTmin
(y−ρzero)

(ρmin−ρzero)
, if ρmin ≥ y ≥ ρzero,

0, if y ≤ ρzero,
(8)

where y = Rs is the aggregate user throughput of slice s
and ρs = {ρtar, ρmin, ρzero} is the corresponding throughput
requirement. While for latency we consider a single linearity
region, for the throughput we propose a piece-wise linear
function, as in [14]. As shown in Fig. 1(b), we assume that for
each slice a basic bit-rate, ρzero, has to be provided. To stress
this request, the utility value is set to 0 for all achieved bit-rates
below the threshold. Then, we identify two linear regions with
different slopes. In the first region, the tenants set a minimum
guaranteed bit-rate, ρmin necessary to deliver standard quality
services, for which a corresponding utility UTmin is assigned.
In the second region, we model the increase in throughput
necessary to deliver high quality services to the slice, so that
when the achieved bit rate is greater or equal than ρtar, the
utility saturates to its maximum value, UTtar. Being a measure
of the aggregate throughput of the users, the slopes of the two
linear regions will also vary in time according to the traffic
load variations of the slice.

B. Slice type characterization

By considering both latency and throughput in the utility
definition, we are now able to cope with a big plurality of ser-
vices, varying from very low latency to very high throughput
applications, hence exploiting the potential of network slicing.

In particular, we consider some of the well-know categories
of services envisioned for 5G: Tactile Internet (TI), enhanced
Mobile BroadBand (eMBB), massive Machine Type Commu-
nication (mMTC) and critical Machine Type Communication
(cMTC) [15].

1) Latency utility: Based on the definition of latency pro-
vided in the previous section, the slice latency utility for the
four slice types is shown in Fig. 2(a). Among the applications
that are included under the big umbrella of Ultra-Reliable
Low Latency Communication (URLLC), i.e. latency critical,
we select as use cases the cMTC and TI. These two slices
represent the most-critical applications in terms of latency,
whose requirements are identified with values below 1 ms [15].
Furthermore, to provide service differentiation, we assume that
TI can tolerate slightly higher latency values, given that for
these applications high throughput is required as well [16].
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Fig. 1: Generic utility function definition.
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Fig. 2: Slice utility customization.

Differently, we assume that the eMBB and the mMTC slices
are more flexible w.r.t. the latency requirements and their
utility is less impacted by delay in the scheduling decisions.

2) Throughput utility: As show in Fig. 2(b), we assume
that for the low-demanding applications, in terms of through-
put, the achievement of the minimum guaranteed bit-rate is
sufficient to provide a fruitful service, resulting in a relatively
high utility. In contrast, for the eMBB slice, we impose a much
lower utility value, which indicates a low provided quality.
For the second region, the critical applications (cMTC and
TI) show almost a step behavior, which is a direct effect of
the stringent latency requirements of such applications: an
increase in the throughput leads to a decrease in the latency. On
the other side, the non latency-critical applications are more
demanding in terms of aggregate throughput: in particular, for
the mMTC we assume that a minimum guaranteed bit rate
must be provided, but given the massive number of devices
expected, the aggregate throughput can be high. Similarly, for
the eMBB slice we assume a per-user high throughput require-
ment, but with a relatively low number of users simultaneously
active per cell.

The specific values used in the numerical evaluation for
both the latency and the throughput utility are detailed in
Section IV.

III. PROBLEM FORMULATION

Based on the utility functions defined in the previous
section, the scheduler assigns the physical resources to users
in order to fulfill the slice requirements, respectively translated

into utility functions (and values). Furthermore, as mentioned
in the introduction, we introduce slice-specific parameters,
αs, to enable a dynamic mechanism in which the tenants
can decide how to weight their utility components. In the
following, we detail the problem formulation and provide
insights on the effects of the slice parameters αs.

A. Slice-aware resource allocation problem

We define the resource allocation problem by means of the
optimization formulation described by Eq. (9a)-(9f):

max
∑
s∈S

Us · αs (9a)

s.t.
∑
k∈K

xk[n] ≤ 1, ∀n ∈ N, (9b)

zk[n] ≤ Dk[n− 1], ∀k ∈ K, ∀n ∈ N, (9c)
n∑
i=1

xk[i] · rk[i] ≤ Dk[n] · bk, ∀k ∈ K, ∀n ∈ N, (9d)

n∑
i=1

xk[i] · rk[i] ≥ zk[n] · bk, ∀k ∈ K, ∀n ∈ N, (9e)

Qs[n] =

{
0, if Dk[n] = zk[n]

1, otherwise
, ∀n ∈ N, ∀k ∈ Ks,∀s ∈ S,

(9f)
where the optimal solution is obtained maximizing the

weighted sum of the slices utilities. Without loss of generality,
we assume in this work Us = {ULs , UTs } and αs = {αLs , αTs },
which can be however extended to include several utility
functions and corresponding weights.

Constraint (9b) ensures that at each time slot the scheduler
does not assign more resources than the ones available in the
network. With constraint (9c), we assume that a packet can
be considered successfully transmitted only at the end of a
time slot, or equivalently at the beginning of the next one. In
(9d), we ensure that the number of transmitted bits cannot be
greater than the total number of bits arrived in the system at
that time slot. Based on (9c) and (9d), constraint (9e) updates
the cumulative number of received packets, at each time slot n,
based on the total number of bits received. Finally, equation
(9f) defines the state evolution of the buffers3.

B. Customization and differentiation of slices

The proposed formulation always guarantees the maximiza-
tion of the utilities for all the slices. Therefore, when there is
“enough resources for everyone”, we can assume that all slices
perfectly reach their maximum utility. However, the MNO has
to be ready also to deal with situations in which resources
are not enough, e.g. due to congestion. For this reason, we
assume that tenants are able to monitor real-time their slice
performances and can modify their priority metrics in order to
rescale their utilities and get different network performances.

3For the sake of readability, we write the constraint as non-linear, but it
can be easily linearized with standard techniques.



TI cMTC eMBB mMTC
[τtar − τmax] [ms] [1− 4] [1− 2] [10− 20] [20− 40]

UL
tar 1 1 1 1

UL
min 0 0 0 0
δs 0.1 0.1 0.1 0.1

[ρmin − ρtar] [Mbps] [3− 20] [0.1− 1] [5− 50] [0.01− 1]
UT

tar 1 1 1 1

UT
min 0.5 0.6 0.7 0.2

λs [pkt/ms] 1 4 0.4 6
bs [kbit] 20 1 250 20
|Ks| 1 4 2 110

TABLE I: Simulation parameters.

By introducing the slice-specific parameters αs, we enable
tenants to achieve slice customization and differentiation.
These features become particularly interesting in case of con-
gestion of the network, since the MNO has to take decisions
how to handle slices, when it is known a priori that meeting
all requirements might not be possible. In this sense, tuning
αs allows the tenants:
• To define priorities among the set of network perfor-

mances (that has to be satisfied) within a single slice
(slice customization). According to this, whenever the
MNO is not be able to meet all the slice requirements, the
resources will be assigned so as to maximize the utilities
of the metrics with higher priority.

• To define priorities among slices (slice differentiation).
In this case, when the MNO is not able to provide the
maximum utility values for all the slices, these parameters
give indication on the most critical slices that require
higher priority.

IV. NUMERICAL RESULTS

A. Simulation setup

The simulation scenario adopted for our numerical analysis
is based on the numerology 0 of the 5G frame structure [17].
We consider M = 60 sub-windows, each one of length equal
to N = 100 time slots, where the scheduler takes decision on
every time slot of length 1 ms. Namely, at every sub-window4,
we solve the optimization problem defined in Eq. (9a)-(9f),
by means of the Gurobi Mixed Integer Linear Programming
(MILP) solver [18]. Numerical results are evaluated at the end
of the simulation as average values over all the sub-windows.

We consider |S| = 4 slices, one per type defined in
Section II. The simulation parameters for each slice have been
derived according to [15] and are reported in Table I. We also
assume for all slices ρzero = ρmin

2 . The λs parameter defines
the aggregated message arrival rate of users in slice s. We
assume that both mMTC and cMTC have high rates but small
size messages. While for eMBB, we consider relatively large
messages, to map the high bandwidth requirements of this
slice, and for TI, both low rate and small messages.

4Note that we do not solve the problem at every time slot, but evaluate
the optimal allocation policy that would satisfy the tenants’ requirements at
every sub-window, assuming knowledge of upcoming users’ channel states
and packet arrivalss.
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αT = [0, 0, 1, 1]

Fig. 3: Average latency utilities when varying the slice-specific
latency parameters.

Users are uniformly distributed throughout the coverage
area of the base station (with a radius of 250 m), and
during the simulation period they are active and do not move.
We model the wireless channel by a frequency-flat block
fading channel with i.i.d. Rayleigh coefficients, resulting in
exponentially distributed random channel gains |hk[n]|2. Then,
we assume that the power received by a generic user is
calculated through the Okumura-Hata model, indicating the
base station transmitted power (in Watts [W]) by P , and the
path-loss exponent by β = 3.5. Hence, the average Signal-to-
Interference-plus-Noise-Ratio (SINR) of user k, SINRk, can
be computed as:

SINRk =
P · d−βk
σ2 + I0

, (10)

where dk is the user’s distance from the base station (in meters
[m]), σ2 is the thermal noise, I0 is the average interference
power of the neighboring base stations, with P

σ2+I0
= 90 dB.

Due to the fast fading components, the instantaneous SINR at
time slot n is equal to

γk[n] = |hk[n]|2 · SINRk, (11)

and then the reference spectral efficiency of a user k (in
bit/s/Hz) at any time instant n is

rk[n] = log2(1 + γk[n]). (12)

B. Numerical evaluation

The scheduling behavior depends mainly on two factors: the
utility functions and how they are defined for the different slice
types, and how the tenants weight them together by setting αs.
In presenting results, the slice-specific weights are grouped and
shown as follow

αT = [αTTI , α
T
cMTC , α

T
eMBB , α

T
mMTC ],

for the throughput parameters, whereas the slice-specific la-
tency parameters as

αL = [αLTI , α
L
cMTC , α

L
eMBB , α

L
mMTC ].



Slice parameters % of resources
αL = [0.1, 0.1, 0, 0]
αT = [0, 0, 1, 1]

[15.2, 4.9, 64.0, 15.7]

αL = [0.1, 1, 0, 0]
αT = [0, 0, 1, 1]

[15.2, 5.6, 63.6, 15.4]

αL = [1, 1, 0, 0]
αT = [0, 0, 1, 1]

[17.6, 5.6, 62.0, 14.6]

TABLE II: Percentage of resources allocated to each slice, for
different slice-specific latency parameters, according to the tuple [TI,
cMTC, eMBB, cMTC].
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Fig. 4: Cumulative distribution function of packet latency for Tactile
Internet slice.

In Fig. 3, we consider three different scenarios, where we
fix the αT values while modifying the αL values for the
latency-critical slices. As expected, when tenants decrease the
value of αLs from 1 to 0.1, their utility values also decrease.
According to the definition of average latency (Eq. (4)) and
the corresponding slice utility (Fig. 2(a)), the utility values
decrease when one slice experiences an increasing delay in the
transmission of the packets in its buffer. This means that, in
order to maximize the utility function of latency-critical slices,
users need to be scheduled as soon as a packet arrives in the
buffer, regardless of their channel conditions. This approach
assigns the maximum priority to such users and does not allow
the scheduler to adopt more efficient scheduling decisions.
This is shown in Table II, where we can see that the higher the
values of αLs , the higher the percentage of allocated resources.
On the other side, for lower values of αLs , the critical services
(cMTC and TI) get less resources and observe a degradation
in latency performance, which is balanced by an increase in
resource utilization for the other slices (mMTC and eMBB).
This degradation is reported for the latency-critical slices in
Fig. 4 and Fig. 5. Between the two, the TI slice experiences
higher packet delay because it requires more bandwidth and
then competes on a larger amount of resources with the other
slices.

In Fig. 6, we consider the scenario where we keep fixed αLs
values, and change the values of αTs for eMBB and mMTC.
Since the critical slices have their αLs parameter set to 1, the
scheduler always assigns maximum priority to the latency-
critical slices, and this indirectly maximizes their throughput
utilities (equal to 1). After having satisfied the requirements
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Fig. 5: Cumulative distribution function of packet latency for cMTC
slice.

Slice parameters % of resources
αL = [1, 1, 0, 0]
αT = [0, 0, 1, 0.1]

[17.7, 5.6, 65.1, 11.3]

αL = [1, 1, 0, 0]
αT = [0, 0, 0.1, 1]

[18.2, 5.7, 12.3, 63.6]

αL = [1, 1, 0, 0]
αT = [0, 0, 1, 1]

[17.6, 5.6, 62.0, 14.6]

TABLE III: Percentage of resources allocated to each slice, for
different slice-specific throughput parameters, according to the tuple
[TI, cMTC, eMBB, cMTC].

for the latency-critical slices, the scheduler optimizes the
allocation of the available resources, privileging the slice for
which the utility has the steeper slope. As a matter of fact, we
can observe that the scheduler is always able to guarantee the
minimum bit-rate to all slices, namely providing the minimum
slice utility value.

Moreover, as shown in Fig. 7, the performance of the
eMBB slice does not experience significant degradation due
to changes in the αTs of the mMTC (compare red and green
curves). Due to steeper slope in the second linearity region
(Fig. 2(b)), the eMBB users get higher priority w.r.t. to the
mMTC ones, once the minimum bit rate has been guaranteed.
Therefore, only when the mMTC slice requires higher priority
w.r.t. the eMBB slice (yellow curve in Fig. 7 and Fig. 8), the
mMTC users can achieve higher throughput.

Furthermore, it is worth noting that, differently from
latency-critical services, for which the channel conditions of
the users do not affect the scheduling priority, for throughput-
oriented slices, the increase in utility can also be caused by
good channel conditions of the users (which explains also
what observed in Fig. 6, where values can also be above the
minimum utility).

Finally, we can observe from Table III that, on one side, the
tuning of αTs in the utility function allows the competing slices
(eMBB and mMTC) to get higher amount of resources (to the
detriment of the competitor). On the other side, however, the
competition among these slices does not affect the resource
distribution for the critical slices (TI and cMTC).
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Fig. 6: Aggregate throughput utilities when varying the slice-specific
throughput parameters.
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Fig. 7: Cumulative distribution function of aggregate throughput for
eMBB slice.

V. CONCLUSION

In this work, we propose a dynamic resource sharing algo-
rithm among slices. We provide a slice utility characterization,
that enables customization of behaviors of different slice types.
Furthermore, differentiation among tenants is achieved, by
modifying slice-specific parameters that dynamically reshape
their slice utility functions. However, numerical results show
that performance of latency-critical services are not affected
by changes in other slices. Moreover, the algorithm always
guarantees the minimum slice utility value, which corresponds
to a minimum guaranteed bit-rate for each slice. Finally, the
interactions among tenants and MNO on the renegotiation of
such parameters has not been investigated in this work, but the
technical and business implications of such agreements will be
studied in future works.
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