

Mission analysis for potential threat scenarios: kinetic impactor

Camilla Colombo, Pierluigi Di Lizia, Lorenzo Bolsi, Mathieu Petit, Giovanni Purpura, Marta Albano, Marco Castronuovo, Roberto Bertacin, Alessandro Gabrielli, Ettore Perozzi, Giovanni Valsecchi, Elena Vellutini, Simone Pizzurro *Agenzia Spaziale Italiana, Space Mission Advisory group*

The team

Italian Space Agency

Marco M. Castronuovo, Marta Albano, Roberto Bertacin, Alessandro Gabrielli, Ettore Perozzi, Simone Pizzurro, Elena Vellutini.

Politecnico di Milano

Camilla Colombo, Pierluigi Di Lizia, Lorenzo Bolsi, Mathieu Petit, Giovanni Purpura

IAPS/INAF, IFAC/CNR

Giovanni Valsecchi

POLITECNICO MILANO 1863

Introduction

Space Mission Planning Advisory Group (SMPAG)

Prepare a coordinated response protocol to an impact threat scenario

- Criteria and thresholds for impact response actions
- Mitigation mission types/technologies to be considered
- Mapping of threat scenarios to mission types
- Reference missions for different NEO threat scenarios
- A plan for action in case of a credible threat
- Communication guidelines in case of a credible threat
- Roadmap for future work on planetary defence
- Criteria for deflection targeting
- Toolbox for a characterisation payload

Chelyabinsk, Russia (2013), 17-30 m diameter asteroid

Introduction

Reference missions for different threat scenarios

- Define a number of typical Near Earth Objects (NEOs) threat cases (based on time to closest approach, material characteristics, dynamical properties)
- Set of reference mission identified (e.g. mass; orbit; time-to-closest-approach) and evaluated in accordance with criteria defined (e.g. time between the impact alert and the launch window opening, etc).
- Sensitivity analysis on accuracy of orbit determination
- Robust control on the magnitude and direction of the imparted delta-velocity, centre of impact point
- For each reference mission investigate political and financial implications and constraints in the risk mitigation analysis
- Considering several deflection strategies

POLITECNICO MILANO 1863

Summary till January 2018

- Target asteroid selection
- Definition of threat scenarios: direct hit and resonant scenario
- Mission design for kinetic impactor direct hit
 - Mission analysis
 - System design
 - Additional payload to be agreed with Payload Toolbox task
- Gravity tug system design

Insight into kinetic impactor design

Goals

- Improve trajectory design of the direct impact to improve deflection efficiency
 - Consider fly-bys during trajectory
- Study resonant encounter hit
 - Design of deflection manoeuvre robust to multiple encounters
 - Avoiding deflecting into a resonant return
- Guidance navigation and control of the approach phase
 - Navigation based on visual camera
 - Feedback on-board control algorithm

Next steps

- By SMPAG meeting Feb 2019: write report including
 - Mission design work (IAC paper 2017)
 - Insight into kinetic impactor design
 - Improve trajectory design of the direct impact to improve deflection efficiency
 - Study resonant encounter hit
 - Guidance navigation and control of the approach phase
 - Gravity tug?

MILANO 1863

A part of this study has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS)

CMPASS

erc

Mission analysis for potential threat scenarios: kinetic impactor

Marco M. Castronuovo Camilla Colombo Pierluigi Di Lizia

marco.castronuovo@asi.it camilla.colombo@polimi.it pierluigi.dilizia@polimi.it