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Abstract—This work deals with the analytical solution of 

transients in single-line-to-ground faults in three-phase power 

systems through the Clarke transformation. The proposed 

approach is based on the Thevenin representation of the alpha, 

beta, and zero component circuits in the Laplace domain. The 

fault results in a mutual coupling of such circuits. For the single-

line-to-ground fault the circuit coupling can be represented by an 

ideal transformer connected between the alpha and the zero 

component circuits. The proposed systematic methodology, 

however, can be readily extended to other kinds of faults. The 

analytical solution derived in the paper is validated through 

Matlab simulations in the time domain.  

Index Terms— Clarke transformation, Power system analysis, 

Time domain analysis, Transient analysis.  

I. INTRODUCTION  

Transients analysis in electrical power systems is a key 
issue in power system analysis, especially when fault analysis 
and the related effects on system components are concerned [1]. 
The conventional approach foresees the use of commercial 
software like the ElectroMagnetic Transients Program (EMTP) 
for numerical simulation of the system [1]-[2]. It is well-known, 
however, as a general principle, that analytical solutions would 
provide deeper insight into theoretical and physical 
understanding of the system under analysis. Moreover, in many 
cases a system can be effectively represented through a 
simplified equivalent circuit for which analytical techniques 
could be well suited instead of the rough numerical approach. 
Two main problems, however, need consideration when 
analytical solutions come into play. First, conventional circuit 
analysis of three-phase systems is performed through a 
frequency-domain tool such as the symmetrical components 
transformation which is based on the assumption of circuit 
symmetry between the three phases [3]-[5]. Such assumption, 
however, is not met under fault conditions where typically only 
one or two phases are involved. A second point is that a 
transient analysis is more properly performed in the time 
domain instead of frequency domain. Such point can be faced 
by means of a time-domain tool such as the Clarke 
transformation traditionally used in the analysis of rotating 

electrical machines and power electronics [6]-[8]. To the 
Author’s knowledge, power system analysis by means of the 
Clarke transformation has received very little attention in the 
related technical literature [2], [6]. In this paper, it is shown that 
the Clarke transformation is a tool very well-suited for transient 
analysis of three-phase circuits since it operates in the time 
domain, and since it results in simple coupling between alpha, 
beta, and zero component circuits (i.e., the modal circuits of the 
transformation) in case of asymmetrical faults such as the 
single-line-to-ground fault. The equivalent circuits derived in 
the paper can be readily solved through the Laplace transform. 
The proposed methodology is based on a rigorous and 
systematic circuit representation of each three-phase 
component and connection, thus the proposed approach can be 
easily extended to other fault conditions. 

II. THE CLARKE TRANSFORMATION 

The Clarke transformation operates on three phase 
variables (i.e., currents or voltages) in the time domain to 
obtain the transformed variables alpha, beta, and zero, 
according to: 
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Notice that (1) is the so-called rational form of the Clarke 
transformation since the orthogonality of the transformation 
matrix results in the conservation of power from the (𝑎, 𝑏, 𝑐) 
to the (𝛼, 𝛽, 0) variables. This property is fundamental in the 
derivation of equivalent circuits in the transformed domain. 
Moreover, notice that (1) holds also when linear operators are 
applied to the time domain variables, e.g., phasors under 
sinusoidal steady state and Laplace transform for general time-
domain behavior.  

In view of the transient analysis described in Section III, it 
is important to stress that the phasor analysis under sinusoidal 
conditions is needed to solve the three-phase system in the 
steady state prior the fault in order to evaluate the initial 
conditions for the fault event. In fact, before the fault event, the 



system is assumed symmetrical and under sinusoidal steady 
state. Therefore, from the standard Clarke analysis, we obtain 
three uncoupled circuits whose phasor solutions can be readily 
derived. Such solutions allow the calculation of the initial 
condition corresponding to the fault time instant. The initial 
conditions evaluated through the phasor analysis valid in the 
steady state prior the fault event will be used for a proper 
application of the Laplace transform to analyze the transient 
after the fault event.  

III. CIRCUIT REPRESENTATION OF A                               

SINGLE-LINE-TO-GROUND FAULT  

Let us consider the reference three-phase circuit shown in 
Fig. 1 where the left side represents a simplified model for the 
source and the line, whereas the right side represents the load. 
The single-line-to-ground fault is taken into account by a three-
phase switch where only the switch between line a and ground 
can be operated, whereas the remaining switches b and c hold 
the open-circuit state. Prior the fault event, the circuit is 
working under sinusoidal steady state conditions. Phasors can 
be used to evaluate the currents in the alpha, beta, and zero 
component circuits obtained through the Clarke 
transformation. From the phasor solutions the line currents at t 

=  (i.e., the fault time instant) can be readily evaluated in order 
to establish the initial conditions for the inductors. The alpha, 
beta, and zero component circuits in the sinusoidal steady state 
prior the fault event are shown in Fig. 2. Notice that to obtain 
the modal circuits in Fig. 2 the following two results 
concerning the four-terminal star connection were used. First, 
in alpha and beta component circuits each star centre is 
shorted. Second, in the zero component circuit the impedances 
connected to the star fourth terminal can be reported to the 
three-phase side by a simple multiplication by 3. Such 
properties can be rigorously proved similarly to the case of the 
symmetrical component transformation [3]. 

Once the initial conditions for the alpha, beta, and zero 
component circuits have been evaluated, the fault takes place, 
i.e., the switch a in Fig. 1 is operated. The constraints set by 
the three-phase switch on the a, b, c variables: 

 𝑣𝑎 = 0,   𝑖𝑏 = 𝑖𝑐 = 0 (2) 

result in constraints on the alpha, beta, zero variables according 
to the Clarke transformation: 
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Figure 1. Reference three-phase circuit used to explain the proposed 

methodology. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Alpha (a), beta (b), and zero (c) component circuits for t  , i.e., 
prior the fault event. They can be analyzed in the phasor domain in order to 

calculate the inductors currents at t = , i.e., the initial conditions for the 
subsequent transient analysis. 

Thus, from (3a)-(3b) we obtain the following constraints 
on the Clarke variables: 

 𝑣0 = −√2𝑣𝛼,   𝑖𝛼 = √2𝑖0,   𝑖𝛽 = 0 (4) 

The first two equations in (4) define an ideal transformer 

with ratio 𝑘 = −√2 between alpha and zero component 
circuits, whereas the third equation states that the beta 



component circuit is not involved in the transient. Therefore, 
the transient analysis can be performed in the Laplace domain 
by representing the coupling between alpha and zero 
component circuits through the ideal transformer defined 
above. The equivalent circuit is represented in Fig. 3, where 
the Thevenin equivalents of the alpha and zero component 
circuits shown in Fig. 2 are considered. Simple circuit analysis 
of Fig. 3 provides: 

 𝐼𝛼(𝑠) =
𝑉𝑇𝛼(𝑠)−𝑉𝑇0(𝑠) 𝑘⁄

𝑍𝑇𝛼(𝑠)+𝑍𝑇0(𝑠) 𝑘2⁄
=

𝑉𝑇𝛼(𝑠)+𝑉𝑇0(𝑠) √2⁄

𝑍𝑇𝛼(𝑠)+𝑍𝑇0(𝑠) 2⁄
 (5) 

Finally, from (3b) we obtain the Laplace transform of the 

fault current 𝐼𝑎(𝑠) = √3 2⁄ 𝐼𝛼(𝑠). 

For a complete analysis of the transient, the voltages vb and 
vc must be also evaluated. From the inverse Clarke 
transformation of (3a) we obtain: 
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In the Laplace domain, from Fig. 3 we have: 

 𝑉𝛼(𝑠) = 𝑉𝑇𝛼(𝑠) − 𝑍𝑇𝛼(𝑠)𝐼𝛼(𝑠) (7) 

where 𝐼𝛼(𝑠) is given by (5). The beta voltage in (6) (Laplace 
domain) is given by the Thevenin voltage 𝑉𝑇𝛽(𝑠) of the beta 

component circuit not involved in the transient (i.e., open 
circuited at the fault location). Therefore, from (6) we obtain: 

 𝑉𝑏(𝑠) = −√
3

2
𝑉𝛼(𝑠) +

1

√2
𝑉𝛽(𝑠) (8a) 

 𝑉𝑐(𝑠) = −√
3

2
𝑉𝛼(𝑠) −

1

√2
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IV. NUMERICAL VALIDATION 

The three-phase circuit shown in Fig. 1 was implemented 
in Simulink and simulated in the time domain The switch a 

was operated at t =  and the transient of the fault current ia(t) 
was calculated. The source was a set of balanced voltages with 
positive phase rotation, phase of ea(t) equal to +𝜋 6⁄ , rms 
amplitude 1 kV and frequency 50 Hz. The other parameters 
were selected as 𝑅1 = 𝑅2 = 𝑅𝑛1 = 𝑅𝑛2 = 0.1 Ω, 𝐿𝑝 =
3 𝑚𝐻, 𝐿𝑚 = 1 𝑚𝐻, 𝐿2 = 5 𝑚𝐻. Fig. 4a shows the comparison 
between ia(t) obtained by simulation (red curve) and obtained 
by inverse Laplace transform of 𝐼𝑎(𝑠) as calculated in Section 
3 (blue curve). In Fig. 4b the same comparison was performed 
by assuming the phase of source a equal to − 𝜋 2⁄  instead of 
+𝜋 6⁄   as  in  the  previous  case.  In  both  cases the proposed 

 
Figure 3. Coupled alpha and zero circuits in the Laplace domain for single-

line-to-ground fault analysis.  

analytical approach shows good agreement with simulations 
since the red lines are covered by the blue lines. In Fig. 5 the 
behaviors of vb and vc obtained by inverse Laplace transform 
of (8) are compared with simulations (source a with phase 

+𝜋 6⁄ ). Notice the discontinuous behavior at t = . 
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Figure 4. Comparison between numerical simulation (red curves) and 
analytical model (blue curves) for the transient behavior of the fault current 
ia(t) in the three-phase circuit in Fig. 1. In (a) the phase of the voltage source 
ea(t) was 𝜋 6⁄ , whereas in (b) the phase was − 𝜋 2⁄ . Red curves are exactly 
covered by blue curves. 
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Figure 5. Comparison between numerical simulation (red curves) and 

analytical model (blue curves) for the transient behavior of the fault voltages 

vb(t) and vc(t) in the three-phase circuit in Fig. 1. For 𝑡 < 0 the analytical 

solution is not represented. For 𝑡 > 0 red curves are covered by blue curves. 

V. CONCLUSION 

It was shown that the transient analysis of single-line-to-
ground fault can be effectively and rigorously performed by 
resorting to the Clarke transformation and the Thevenin 
equivalents in the Laplace domain. Asymmetry introduced by 
the fault condition results in coupling between the Clarke modal 
circuits. A conceptually similar result is obtained in the 
conventional analysis of faults under sinusoidal steady-state 
conditions performed by means of the symmetrical component 
transformation. The proposed systematic approach will be 
extended to other fault conditions in future work. 
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