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Families of bounded orbits near binary asteroid
65803 Didymos

Andrea Capannolo∗, Fabio Ferrari† and Michèle Lavagna‡

Politecnico di Milano, Via La Masa 34, 20156, Milano, IT

Nomenclature

a, b, c = Semi-axes of ellipsoid [m]

C0,1 = Jacobi constant for point mass and modified gravitational fields

dE = Jacobi constants difference

F = Vector of objective functions

G = Gravitational constant [ m3

kgs2 ]

J = Jacobian matrix

Uell,poly = Ellipsoid/Polyhedron gravitational potential [m
2

s2 ]

Ũell,poly = Nondimensional Ellipsoid/Polyhedron gravitational potential

X = Vector of free variables

ρ = Mean density [ kg
m3 ]

I. Introduction

Orbital dynamics around complex-shaped bodies is a topic of great interest nowadays. Small

celestial bodies of the Solar System are the current frontier of space exploration: the

accessibility of the Near-Earth Asteroid (NEA) population makes them suitable candidates to pursue

the exploration of our Solar System. When dealing with such bodies, a relevant aspect concerns
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trajectory design of spacecraft orbiting them. Due to their peculiar properties, asteroids possess

a very weak and irregular gravity field. The dynamics of a spacecraft in the close proximity of

these bodies are subjected to an extremely chaotic behavior, which makes the design of orbits and

trajectories very challenging.

In the last few decades and years, some effort has been made to develop models suitable to

accurately reproduce the gravity field around small and irregular celestial bodies. These methods

replaced the classical central field Keplerian model, which is not suitable to accurately represent the

mass distribution of such complex bodies. Popular methods include shape-based techniques and

mass-concentrated models. Shape-based methods are used to model the celestial body as an object

with specific shape, such as ellipsoids [1] or polyhedra [2, 3]. The distribution of mass depends on

the shape of the body, and it is usually considered homogeneous. Non-homogeneities among the

body are usually modeled using mass-concentrated (mascon) models. The mascon method was first

developed to explain the anomalies of the Moon’s gravity field [4] and helped in the development of

a highly accurate lunar gravity model. A similar technique is used to reproduce the gravity field

of asteroids [5–7]. The designer’s choice on the method to be used depends on the information

available on the body’s mass distribution and on the level of accuracy required. Typically, each

model fits a specific class of asteroids and application range.

These enhanced models of the gravity field around small celestial bodies are used to study

and generate trajectories under a more accurate and realistic dynamics. Relevant studies and

examples include the generation of orbits close to asteroids 4179 Toutatis [3], 433 Eros [8] and

216 Kleopatra [9]. The paper specifically investigates periodic motion about a binary asteroid

system. Relevant results regarding binary asteroids include the work by [10–13].

This work shows families of periodic orbits in the close proximity of binary asteroid 65803 Didy-

mos (main system’s characteristics are reported in [14]). Didymos is the target body of the

Asteroid Impact and Deflection Assessment (AIDA) [15], a joint cooperation between NASA [16]

and ESA [17]. Few results have been published in the past few years regarding the dynamical

environment of Didymos, mainly about landing opportunities for the MASCOT-2 (Mobile Asteroid
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Surface Scout-2) spacecraft, to be released on the smaller asteroid of the couple, informally called

“Didymoon” [18, 19]. Most published studies assume spherical and ellipsoidal shaped attrac-

tors [13, 20, 21], or assume multiple, rigidly connected, point masses [10]. Studies exploting the

real shape of the asteroids are, on the other hand, limited in terms of number of studied orbits, which

have been selected for specific missions purposes [21]. The novelty of this paper is twofold. Firstly,

various set of orbits around Lagrangian points are generated with a high-fidelity asteroid model,

to study the local effects of perturbed gravitational field with respect to an equivalent point mass

system. Secondly, a novel method for orbit generation, based on attractors’ shape continuation, is

exploited. To compare orbital families in the two models, a synchronous system (with axisymmetric

primary and tidally locked secondary) is initially assumed, to provide insight on the effect of the

uneven mass distribution, while averaging periodic disturbances that arise from primary asteroid

rotation. Successively, exact shape and rotation of the primary are introduced to assess robustness

of stable orbits in the non-synchronous system.

II. Didymos dynamical system
The dynamics of the problem are modeled using a Shape-based Circular Restricted Three-Body

Problem (also referenced here as SCR3BP). The model is based on the classical Circular Restricted

Three-Body Problem (CR3BP) formulation, but it makes use of shape-based models to reproduce the

gravity field of primaries. Nonetheless, the motion of primaries still relies on Keplerian dynamics

(as for CR3BP), and it is not affected by their non-spherical mass distribution. Consequently, the

distance of primaries is constant in time as they move with constant velocity on a circular path around

the barycenter of the system. Initially, the rotational motion of the two asteroids is synchronized

with their orbital period: the primary attractor shape is averaged around the spin axis (orthogonal to

the orbital plane), while the secondary attractor is assumed to be tidally locked to the primary. Under

these assumptions, the relative rotation between the two asteroids is null, thus making the dynamical

problem autonomous, since it does not depend explicitly on time. As a consequence, it is possible to

define periodic orbits that do not depend on the initial attitude of the attractors,and approximate the
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real non-periodic motion arising from asteroids’ rotations. Successively, the primary’s exact shape

and rotation are restored to assess the effect of the gravitational oscillation on the periodic orbits

found in the averaged asteroid model. The nondimensional equations of motion of the spacecraft in

the synodic frame (co-rotating with primaries) are very similar to that of CR3BP:



Üx = x + 2 Ûy + Ũpolyx + Ũellx

Üy = y − 2 Ûx + Ũpolyy + Ũelly

Üz = Ũpolyz + Ũellz

(1)

where x, y, z represent the position in the synodic frame, the subscript (·)x , (·)y or (·)z indicate partial

derivatives, and Û(·), Ü(·) are the time derivatives. As discussed, the difference between Eq. (1) and

the equations of motion of the CR3BP is to be found in the gravity potential of primary sources

(Ũpoly and Ũell). According to the latest observations of Didymos system, information on the shape

of the asteroids are partially available. The mass distrubution of the primary asteroid (also called

“Didymain”) is modeled using its polyhedral shape model∗, while Didymoon’s shape is estimated

to be an elongated tri-axial ellipsoid. Accordingly, Ũpoly and Ũell represent the nondimensional

gravitational potential due to Didymain and Didymoon.

The expression of the primary’s potential, modeled as a constant density polyhedron, is based

on the method proposed by Werner and Scheeres [2]:

Upoly(x, y, z) = −
1
2

Gρ
( ∑

f ∈faces
r f · F f · r fω f −

∑
e∈edges

r e · Ee · r eLe

)
(2)

where F f is the dyad associated to face f and Ee is the dyad associated to edge e of the polyhedron

model, Le represents the potential of a wire associated to the edge e, and ω f is the solid angle

associated to the face f . The expression of the aforementioned quantities is described in [2]. The
∗The Didymain shape model is used in the frame of the AIM contract, however it is still unpublished (courtesy of L.

Benner and S. Naidu)
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secondary’s potential, modeled as a constant density tri-axial ellipsoid, is derived in [22]:

Uell =
2Gρπabc
√

a2 − c2

{[
1 −

x2

a2 − b2 +
y2

a2 − b2

]
F(ωκ, k)+

+

[
x2

a2 − b2 −
(a2 − c2)y2

(a2 − b2)(b2 − c2)
+

z2

b2 − c2

]
E(ωκ, k)+

+

[
(c2 + κ)y2

b2 − c2 −
(b2 + κ)z2

b2 − c2

] √
a2 − c2√

(a2 + κ)(b2 + κ)(c2 + κ)

} (3)

where a > b > c are the semi-axes of the ellipsoid, F and E are the Legendre’s elliptic integrals of

first and second kind, and κ is the largest root of a cubic expression, defined in [22].

III. Numerical method
The unpredictable local variations in the gravitational field due to uneven mass distribution,

and the higher computational cost deriving from high fidelity polyhedral model, suggest a lighter

approach for orbital families generation than the classical one in use for the CR3BP [23–25]. The

strategy is subdivided into "initialization", "correction" and "continuation" phases. These are

discussed in detail in the following sections.

A. Initialization

The initialization phase exploits already known families from CR3BP through a sampling

process: for each family, a subset of evenly spaced orbits is selected and saved for next steps of the

orbit generation process. The reduced number of orbits allows lower computational cost, while their

uniform distribution preserve the overall trends of size, period and stability, along the entire family.

B. Continuation

The continuation step acts on the gravitational field rather than on the orbits: fixing the sampled

trajectory, a modification of the attractors’s shape is introduced through a parameter α, which turns

the bodies from spheres (when α = 0) to the real shape (when α = 1). The gradual modification of

α allows smooth variation of the gravity field from the spherical model (equivalent to point mass)
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to the asteroids model. The irregularly shaped bodies possess a surface point with the minimum

distance from the center of mass, being it the radius of the inscribed sphere of the object. The

difference between the radius at each surface point of the body and the radius of the inscribed sphere

can be scaled using α and added to the inscribed sphere to introduce irregularities. The system to be

solved reads: 
rS = min(rB)

rα = rS[1 + α( rB
rS
− 1)]

(4)

with rB, rS and rα being respectively the vector of all distances of surface points from the center

of mass, the radius of the inscribed sphere, and the vector of the scaled surface’s points distances

from center. It is worth underlining that, in order to go from the spherical model to the actual shape

model of the body without changing the mass ratio between attractors, the homogeneous density of

the bodies shall be adjusted according to the volumes update at each step.

C. Correction

The perturbations on the gravity field, introduced by the continuation, will distort the orbit,

making it lose its periodicity. To restore it, a shooting algorithm (as the one adopted for CR3BP)

is used [25], with extension to a multi-nodal scheme to deal with the increased sensitivity of the

problem. The trajectory is divided into many nodes equally spaced in time (3 per nondimensional

time unit). The purpose of the correction scheme is to nullify the difference between the state of

each node and the propagated state from the previous node, in order to have a continuous trajectory

either in position and velocity. Periodicity is ensured through an additional continuity constraint

between initial and final node. A tolerance is set to assess whether the target periodic orbit has been

reached. To implement correction of the trajectory, a damped method (Levenberg-Marquardt) is

used, to avoid overshooting issues arising from the strong sensitivity of the problem. The numerical

scheme equation reads:

∂X = −
(
JT J + λ · diag(JT J)

)−1
JTF (5)
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being λ the damping parameter. As mentioned, the constraints vector contains conditions to enforce

continuity (difference between the i-th nodes’ state and propagated state from the (i − 1)-th nodes:

6(N − 1) conditions) and periodicity (continuity between final and initial node: 6 conditions).

Overall, the length of the constraint vector is 6N . The presence of a variable period requires an

additional constraint to solve problem: the total number of free variables is 6N + 1 (N state at nodes

plus period). The (N + 1)-th condition is provided through the conservation of the Jacobi constant,

allowing also to generate families with specific energy levels in both models, for a more meaningful

comparative analysis. The conservation of Jacobi constant is ensured through Eq. (6):


Ci = 2

(
U(xi, yi, zi) −

1
2 ( Ûx

2
i + Ûy

2
i + Ûz

2
i )

)
, i = 0,1

dE = C1 − C0

(6)

Although the formulated problem provides a unique orbit, the nodes are not yet constrained and

may move along the trajectory. To avoid such phenomenon, the y position of the initial node (yn
1) is

constrained to its initial value ”y0”. The final constraint vector reads:

F =
{
xp

2 − xn
2; xp

3 − xn
3; . . . xn

N − xn
1; dE; yn

1 − y0

}T
(7)

with xp
i and xn

i being respectively the propagated state from (i - 1)-th node and the state of i-th node.

The term xn
N − xn

1 is the periodicity condition. Coherently, the Jabobian matrix is expressed as:

J =



∂xp
2

∂xn1
−I6

Ûxp
2

N−1

. . .
. . .

...

∂xp
N

∂xn
N−1

−I6
Ûxp
N

N−1

−I6 I6 06

∂dE
∂xn1

. . . ∂dE
∂xnN

0(1×6)

∂yn1
∂xn1

0(1×6) . . . 0(1×6)



(8)
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where the last column is related to the variable period, the last eight rows are respectively the

connection of initial and final state (from first to sixth row), the energy constraint (seventh row), and

the initial node "y" constraint (eighth row), while the upper left block is the sparse matrix ensuring

the connection of all nodes. At each iteration the algorithm reduces the parameter λ (if converging),

or increases it (if diverging), consequently making the corrector move towards a Newton method or

a steepest descent method [26] . The residual evaluated to assess the convergence is defined as:

r = ‖F‖ (9)

To modify the parameter λ, a direct correlation with the residual is adopted, such that λ = ξ r2,

which speeds up the process [27]. Acting on "ξ", the damping term can be adjusted. The overall

procedure stops when continuity and periodicity are ensured within tolerances, and final shape of

the attractors is obtained.

IV. Periodic orbits in the SCR3BP
The selection of the orbits to be analyzed has been driven by their effectiveness in the framework

of the Asteroid Impact Mission design. Four different families are studied in the CR3BP environment:

• Distant Retrograde Orbits (DRO)

• Short Period Orbits (SPO) around L4

• Halo Northern/Southern Orbits around L1 and L2 (HNL1/HSL1/HNL2/HSL2)

• Lyapunov Orbits around L1 and L2 (LyL1/LyL2)

The properties of these families are studied and compared in the two different models of dynamics

(point masses and asteroids), highlighting differences in terms of period, shape, size and stability.

Each orbit is identified with a Jacobi constant, defining its position along the family and, also giving

an idea of the size with respect to the rest of the family. In particular, as the distance of the orbit

from its reference equilibrium point increases, orbital size increases as well. At the same time, it is

observed, for all the families under study, a reduction of the Jacobi constant. For this reason, when
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studying orbital properties with respect to increasing size, the graphs shall be looked at from highest

C0 to lowest, that is, from the right side to the left side of plots.

After a visual representation of families in the "Point Mass" and "Asteroids" models, the analysis

of the most relevant features of each family is illustrated, highlighting the main differences between

the models used.

A. DRO (Distant Retrograde Orbits)

DRO are characterized by a wide span of sizes, from very small orbits (close to the secondary

attractor) to very large ones (close passages to main attractor), thus being suitable for very different

applications. The natural stability characterizing these orbits represents a further advantage that

extends their exploitation to spacecraft with very cheap station keeping control expense.

The comparison between the classical DRO family and the modified version in the shape-based

model highlights relevant changes, particularly related to the shape of the orbits. As can be noticed

from Fig. 1, the typical planarity of the family is lost and an out-of-plane component is observed. In

particular, the out-of-plane component appears to move downwards far from the main attractor, and

upwards close to it. Looking at the mean "Z" component and at the vertical oscillations span, as

illustrated in Fig. 2(a), two observations arise:

• The vertical mean deviation is roughly proportional to orbital size (that is, to the inverse of

Jacobi constant) up to very small orbits.

• The mean deviation value is closer to the lower limit of the "Z" range covered along the orbit.

As a consequence, the majority of orbital period is spent below the plane of the three-body binary

system. This is due to the non-symmetric distribution of mass between the northern and southern

hemisphere of the primary asteroid. The vertical motion is surely the most relevant and evident

effect. In addition, "X" and "Y" components are slightly shrunk for bigger orbits, resulting in overall

reduced orbital size (expressed in terms of line integral along the orbit), while small orbits display

larger values. In particular, the shrinkage effect relevantly affects orbits closer to main attractor,

while the enlargement on the orbital plane is mostly present in small-medium size orbits. (see
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Fig. 1 DRO family in (a) point mass model and (b) asteroids model
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Fig. 2 DRO family (a) out-of-plane deviation and (b) eigenvalue tracking

Fig. 3(a)). Nevertheless, the size change never goes beyond the 10% of the "point mass" orbit. In the

same way, a (negligible) reduction of the orbital period is measured for orbits that are closer to the

main attractor, while the smallest (close to secondary attractor "Didymoon") have longer periods, as

shown in Fig. 3(b): their period changes up to a maximum around 10%, compared to that of the

original trajectory, as a consequence of the combined effect of moonlet’s elongated body (J2 effect)

and prominent equatorial ridge of primary attractor.

Stability properties are not significantly changed, however, some eigenvalues display slightly

different values in specific regions of the family. For example, eigenvalues of smaller orbits in the

asteroid model are closer to unitary value, while point mass solutions have values closer to the real

axis when moving towards the biggest orbits, as shown in Fig. 2(b).
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Fig. 4 SPO family in point mass model (a) and asteroids model (b)

B. SPO (Short Period Orbits)

SPO are located in a stable region of the three-body domain, since they are correlated to libration

point L4 and L5. Compared to DRO, they show an opposite size-period behavior: larger orbits have

lower periods, so that the spacecraft would move to many positions in the system in a relatively low

time. For the case of asteroid exploration missions, this could be particularly advantageous e.g. for

gravimetric measurements.

The visual representation of the SPO family in both models (Fig. 4) does not make relevant

differences stand out, as observed in the case of DROs. Nonetheless, few conclusions can be drawn.

Figure 5(a) shows that a vertical component arises, especially for bigger orbits. In this case, the shift

follows a positive Z trend, with time-averaged mean value closer to the upper bound, meaning a

longer time spent on the upper region of the binary system plane. In opposition to the DRO case, the

11



(a)

2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95

C0 [-]

0

0.2

0.4

0.6

0.8

1

M
a
g
n
it
u
d
e
 [
-]

Real part (Point mass)

Imaginary part (Point mass)

Real part (Asteroids)

Imaginary part (Asteroids)

(b)

Fig. 5 SPO family (a) out-of-plane deviation and (b) eigenvalue tracking
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Fig. 6 SPO family (a) line integral and (b) period in point mass and in asteroids models

farther from the main attractor, the higher the Z component, suggesting a different local influence of

the asteroid’s mass distribution. The vertical shift is nearly ineffective on the overall orbital size,

as illustrated in Fig. 6(a). In fact, bigger orbits are far closer in length to their corresponding in

point mass model than smaller ones. The length change of the small trajectories can be explained

considering that Jacobi constant of lagrangian points has slightly increased when passing from

point mass to asteroids model. The correction method forces conservation of energy and finds the

new solution farther from the equilibrium point. This behavior is observed for all other families

studied. Interesting results appear from the comparison of orbital period. The typical monotonic

trend is replaced by a quadratic-like curve, with the minimum located in the region of largest orbits

(Fig. 6(b)), possibly due to the additional vertical component. The eigenvalues show an interesting
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behavior along the family. While solutions in the point mass model exhibit a monotonic behavior

(with eigenvalue approaching the real axis as orbital size increases), solutions in the asteroid models

are not monotonic. In fact, as observed in Fig. 5(b), eigenvalues of smaller orbits share a nearly

identical trend between the two models. The trend becomes different from the middle-sized orbits

region on.

C. Halo Orbits

Halo orbits are characterized by an out-of-plane motion near secondary attractor [28]. As known,

they are intrinsically unstable and require station keeping to avoid long term escaping trajectories or

impacts with surface. The comparison between point mass and asteroids halo orbits is carried on in

parallel for all four family groups (Northern/Southern-L1/L2), to underline the main differences

related to each subgroup. Graphic results are presented for the L1 Halo families, as L2 families

display similar trends, however, specific differences will be discussed in the text (Northern L2 family

will be depicted to highlight the similarity with the L1 family). From the analysis of the families, it

is observed, for all subgroups, how the modification of the gravitational environment leads to an

"empty region" between the first halo, departing from Lyapunov family bifurcation, and the rest of

the family (Fig. 7). Similarly to what discussed regarding the increase of energy of equilibrium

points, this phenomenon can be attributed to a change in the energy variation from one orbit to

another, suggesting a lower rate of change of the Jacobi constant in the empty region.

The size of asteroid families are not uniformly shifted from their originating values: smaller

orbits appear greater (as a consequence of the energy-related phenomenon), while bigger orbits are

shrunk, as illustrated in Fig. 8. Conversely, the period is uniformly shifted towards lower values

(with peaks of reduction around 13-14 % of the initial value), and the trend along the families is

nearly unchanged, as illustrated in Fig. 9.

A peculiar behavior is observed through the tracking of one of the monodromy matrix’s

eigenvalues. The L1 families couple displays a highly asymmetric distribution with respect to the

binary orbital plane, which is not present in the L2 families. Looking at Fig. 10), it is noticed that
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Fig. 7 Northern Halo family around L1 and L2 in point mass model (a,c) and asteroids
model (b,d).

Northern L1 family reaches a tangent bifurcation point in (-1;0) of the Real-Complex plane (at

some distance from Didymoon), while the same bifurcation is found in Southern L1 family when

collision with the asteroid is reached (although a virtual continuation of the family would suggest

the same results of the Northern orbits). In contrast, the two families around L2 display comparable

trends (close to the one from L1 southern family), being they farther from Didymain, and thus less

subjected to the uneven field. It is interesting noting, from all the plots related to Halo families, how

asteroid model orbits anticipate every parameter with respect to their point mass counterpart, as

they are characterized by higher Jacobi constant values.
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Fig. 8 Halo families size in point mass and asteroids model. Northern L1 Halo (a) and
southern L1 halo (b) are depicted.

3 3.02 3.04 3.06 3.08 3.1 3.12 3.14

C
0
 [-]

4

4.5

5

5.5

T
 [
h
]

HNL1 Period

Point mass

Asteroids

(a)

3.04 3.06 3.08 3.1 3.12 3.14

C
0
 [-]

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

T
 [
h
]

HSL1 Period

Point mass

Asteroids

(b)

Fig. 9 Halo L1 family periods in point mass and asteroids model. Northern L1 Halo (a) and
southern L1 halo (b) are depicted.

D. Lyapunov Orbits

Lyapunov orbits, as Halo, are characterized by instability and they are close to the secondary

attractor. Differently from Halo orbits, they do not possess any out-of-plane component [28].

Together with Halo orbits, they are among the most common orbit families used for mission design

and planning.

As for the Halo analysis, plots related to the L1 family are depicted, and differences of the L2

family will be mentioned in the text (as for Halo case, the L2 family is depicted to show the similarity

with the L1 family). The comparison between the families in both models, highlights a peculiar
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Fig. 10 Halo families eigenvalue tracking. Values for northern L1 Halo (a) and southern L1
halo (b) are depicted.

result of the correction of small Lyapunov orbits in the surroundings of their respective Lagrangian

point. In fact, by comparing L1 orbits in Fig. 11, one can observe that small planar Lyapunov orbits

are converted into Halo orbits, while keeping the same Jacobi constant (ensured through constraints

of the correction algorithm). The shift of energy of the Lagrangian points may cause an increase of

the gap between the original Lyapunov and the one having the same Jacobi constant, thus making the

process converge towards a closer solution (the Halo orbit). As a consequence, most of parameters

of the orbits are subjected to high oscillation for the first orbits, then stabilize while moving away

from the equilibrium point.

As for the SPO family, the first orbits of the asteroid model have orbital size significantly higher

than their respective in the point mass model, however, the gap shortens as moving towards bigger

orbits (quickly reaching a percentage variation below 10%), as shown in Fig. 12(a). It is worth

noting that, despite the vertical imbalance of primary’s gravity field, the orbits (non degenerating

into Halo family) maintain a quasi-planar behavior, with oscillations on the Z axis of the order of

few meters. On the contrary, most of the dimensions variation is due to the Y component of the

motion, with asteroid model orbits more prominent with respect to Didymoon’s sides (Fig. 12(b)).

Regarding orbital period, minor differences have been detected, with deviations from the point

mass model lower than 5 %.
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V. Sensitivity analysis
The periodic families described in Section IV are obtained through the assumption of an

axisymmetric primary, to take into account average effects of its rotation. This reduction of

complexity of the model is necessary to provide the sufficient regularity to orbits, to analyze the

effects of irregular shapes with respect to spherical masses. As a consequence, the study requires an

assessment of the robustness of trajectories in a more realistic environment. Three initial angles

for the attitude of the primary (with respect to the spin axis Z) are considered, namely the 0° , the

120° and the 240° configurations. A constant rotation along Z axis is then introduced (accordingly

to the rotation period presented in [14]), and initial conditions of the periodic orbits propagated for a

time equal to ten times the common multiple of orbital period and asteroid rotation period, given by

their product. It is important to underline that only stable periodic orbits have been considered for

this analysis, since it is interesting to assess to what extent their stability properties are valid, while

an immediate divergence of unstable orbits is expected and no further information would be given.

Figure 13 shows the three attitudes overlapped, to highlight which one is more prominent (and,

consequently, more perturbing) in each zone. For sake of clarity, regions aligned with X axis will be

named "front-back" areas, those aligned with Y axis "left-right" (left corresponding to positive Y),

and those aligned with Z axis "north-south". As can be observed, the front region is dominated by

the 240° attitude, with small influence in the north region of 120° attitude and in the south region

18



of the 0° attitude. Instead, the left region is largely occupied by the 0°, with higher influence of

the 120° in the south area and a small presence of the 240° in the north region (shifted towards

the left-back area). This unbalance of mass distribution along the north-south direction causes a

continuous shift of gravity force in a vertical direction, while the equatorial prominent ridge (with a

peak in the front region of the 240° configuration) creates a periodic disturbance in the orbital plane.

This ridge is likely to be the main cause of the instability and divergence that have been observed

for all the largest DRO and SPO orbits passing close to the asteroid’s surface. This instability is,

however, foreseeable if looking at the eigenvalues behavior along the two families (Fig. 2(b) and

Fig. 5(b)), where proximity to the real axis is maximized for large orbits.

Exception made for the aforementioned orbits, the study of asteroid’s rotation effect is carried

on for the smallest DRO and SPO, and for large trajectories of the same families (in particular, the

last ones showing some stability property before reaching the complete divergence in the family).

The DRO family is characterized by periods that go from 1:1 to 4:1 ratios with respect to

Didymain’s rotation, thus having various chances to display resonance phenomena. However, the

large variation in dimensions and distances from the main asteroid make the resonance responses

different. In fact, considering small DRO, the 1:1 period ratio would suggest relevant perturbing

effects, but the proximity to Didymoon introduces more stability, thus leaving the orbits nearly

unchanged (oscillations are below one meter). Nevertheless, it is interesting to notice that the initial

attitude of the primary asteroid still affects the period of the orbit in a long term fashion, by reducing

or increasing it of a small quantity (see the change in phase of the three oscillations in Fig. 14).

On the other hand, large DRO orbits, which are close to a 4:1 ratio, are visibly influenced by the

rotation, with different behavior as the initial asteroid’s attitude changes (Fig. 15). In particular,

mean position’s oscillations are of the order of hundreds of meters, and the overall motion along

the orbits is more chaotic. While X and Y components appear to oscillate around a constant value,

the out-of-plane motion is subjected to an overall increasing trend, from negative mean position

towards the orbital plane. It is also observed that in 0° and 120° oscillations are damped with time

(planarization of the orbit), while in the 240° they become larger (Fig. 16).
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SPO orbits are characterized by periods in a ratio between 5:1 and 4:1 with respect to Didymain’s

rotation. As for DRO orbits, some are subjected to averaging effects, while others display resonance,

depending on the distance from the asteroid’s surface. In particular, considering the small SPO, the

vertical component maintains a very stable position around an out-of-plane mean value, as shown in

Fig. 17. Notice that vertical peaks of the motion around this orbit appear to get closer to the average

value, suggesting a complete flattening of the orbit or, possibly, a very low frequency behavior in the
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out-of-plane motion. Regarding large SPO orbits, similar results in the vertical displacement are

measured, however, the proximity of the trajectory to the asteroid’s surface causes large perturbation

in the in plane motion, moving the average X and Y positions back and forth of hundreds of meters.

Fig. 18 shows this effect for the Y component (as the X component displays similar behavior). As a

result, the orbits are pushed periodically towards the back and the front of main asteroid, with a

relatively high frequency (see Fig. 19).

It is interesting to notice how the most perturbing effects (for both SPO and DRO orbits) are

always related to a specific initial configuration of the main asteroid (240° for DROs, 120° for

SPOs), proving that some effects from the equatorial ridge are present despite the high rotation, and
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a complete averaging of gravity force cannot be attained.

VI. Conclusion
The paper addressed the topic of orbital dynamics around binary system of uneven celestial

bodies, with specific application to the system 65803 Didymos. The study has been presented as a

novel technique for periodic orbits search in this environment, and results of the process served for a

classification of the trajectories in perturbed gravitational field, to highlight differences with respect

to the classic point mass dynamics.
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The dynamics around Didymos are modeled through a Shape-based Circular Restricted Three-

Body Problem (SCR3BP) formulation, where point mass sources are replaced by shape-based

models of asteroid’s mass distribution. This was considered as a close-to-reality model of the

dynamics as it refer to the most up-to-date information available on Didymos, although still relying

on some dynamics assumptions. The algorithm to find periodic motion implements a novel strategy

to investigate solutions in the SCR3BP, based on shape continuation of primaries. Correction is

performed through multi-nodal correction and using a damped Levenberg-Marquardt algorithm.

This allowed to deal with irregular gravity field without convergence or overshooting problems, at

the cost of higher computational burden.

Orbital families found in the close-to-reality model have been analyzed and compared to the

original CR3BP solutions, highlighting differences in shape, period, size and stability. The main

result emerging from the study is the effect of the out-of-plane perturbation, which causes trajectory

deformation as relevant as the overall orbital size increases. Such deviation is the confirmation

that the CR3BP model can no longer be adopted in these type of systems, even for nearly spherical

objects as the ones considered in the present work. In addition, significant differences in the size of

smaller orbits have been detected, and related to energetic shifts of the equilibrium points in the

system. Lyapunov orbits have shown unpredicted behavior and hint possible modifications in the

orbital nature of such solutions due to the irregularities and asymmetries of the field. However, it is

worth noting that CR3BP dynamics provide similar results in terms of period and stability properties.

The subsequent introduction of the primary’s rotation allowed to test the periodic solutions in a

more realistic, non-synchronous system. The rotation caused some variations, with different effects

depending on the specific orbit and its dimensions. However, for the orbits that maintained stability,

the deviations appeared to be bounded, thus making the periodic trajectories, of the synchronous

model, suitable for preliminary trajectory search.

The outcome of this work provide sets of families of periodic orbits in the close proximity

of Didymos binary system and proves the effectiveness of the shape-based continuation method

implemented. Orbital solutions discussed represents a step towards improved precision for irregular
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gravity fields and realistic trajectory design. They can serve as basis for further and more detailed

investigations, when more information on the binary system is available. Other features could be

included in a further advancement step, to enhance the realism of the dynamics environment. These

include eccentricity of the secondary’s orbit and external perturbation sources (e.g. solar radiation

pressure).
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